pan/midgard: Eliminate blank_alu_src
[mesa.git] / src / panfrost / midgard / midgard_ra.c
index dcae8183513df53aa54f37c6458c1863b679432e..d278223f7f1edb4f61cbfb28a036db6bb0f2ab2e 100644 (file)
@@ -26,6 +26,7 @@
 #include "midgard_ops.h"
 #include "util/register_allocate.h"
 #include "util/u_math.h"
+#include "util/u_memory.h"
 
 /* For work registers, we can subdivide in various ways. So we create
  * classes for the various sizes and conflict accordingly, keeping in
 
 #define WORK_STRIDE 10
 
+/* We have overlapping register classes for special registers, handled via
+ * shadows */
+
+#define SHADOW_R0  17
+#define SHADOW_R28 18
+#define SHADOW_R29 19
+
 /* Prepacked masks/swizzles for virtual register types */
 static unsigned reg_type_to_mask[WORK_STRIDE] = {
         0xF,                                    /* xyzw */
@@ -53,89 +61,37 @@ static unsigned reg_type_to_mask[WORK_STRIDE] = {
                  0x1, 0x1 << 1, 0x1 << 2, 0x1 << 3       /* x */
 };
 
-static unsigned reg_type_to_swizzle[WORK_STRIDE] = {
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_W, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Z, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_W, COMPONENT_Z, COMPONENT_W),
-
-        SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Y, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_Z, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-        SWIZZLE(COMPONENT_W, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
-};
-
 struct phys_reg {
+        /* Physical register: 0-31 */
         unsigned reg;
-        unsigned mask;
-        unsigned swizzle;
-};
-
-/* Given the mask/swizzle of both the register and the original source,
- * compose to find the actual mask/swizzle to give the hardware */
-
-static unsigned
-compose_writemask(unsigned mask, struct phys_reg reg)
-{
-        /* Note: the reg mask is guaranteed to be contiguous. So we shift
-         * into the X place, compose via a simple AND, and shift back */
-
-        unsigned shift = __builtin_ctz(reg.mask);
-        return ((reg.mask >> shift) & mask) << shift;
-}
-
-static unsigned
-compose_swizzle(unsigned swizzle, unsigned mask,
-                struct phys_reg reg, struct phys_reg dst)
-{
-        unsigned out = pan_compose_swizzle(swizzle, reg.swizzle);
 
-        /* Based on the register mask, we need to adjust over. E.g if we're
-         * writing to yz, a base swizzle of xy__ becomes _xy_. Save the
-         * original first component (x). But to prevent duplicate shifting
-         * (only applies to ALU -- mask param is set to xyzw out on L/S to
-         * prevent changes), we have to account for the shift inherent to the
-         * original writemask */
+        /* Byte offset into the physical register: 0-15 */
+        unsigned offset;
 
-        unsigned rep = out & 0x3;
-        unsigned shift = __builtin_ctz(dst.mask) - __builtin_ctz(mask);
-        unsigned shifted = out << (2*shift);
-
-        /* ..but we fill in the gaps so it appears to replicate */
-
-        for (unsigned s = 0; s < shift; ++s)
-                shifted |= rep << (2*s);
-
-        return shifted;
-}
+        /* Number of bytes in a component of this register */
+        unsigned size;
+};
 
-/* When we're 'squeezing down' the values in the IR, we maintain a hash
- * as such */
+/* Shift each component up by reg_offset and shift all components horizontally
+ * by dst_offset. TODO: vec8+ */
 
-static unsigned
-find_or_allocate_temp(compiler_context *ctx, unsigned hash)
+static void
+offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcsize, unsigned dst_offset, unsigned dstsize)
 {
-        if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
-                return hash;
-
-        unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(
-                                ctx->hash_to_temp, hash + 1);
+        unsigned out[MIR_VEC_COMPONENTS];
 
-        if (temp)
-                return temp - 1;
+        signed reg_comp = reg_offset / srcsize;
+        signed dst_comp = dst_offset / dstsize;
 
-        /* If no temp is find, allocate one */
-        temp = ctx->temp_count++;
-        ctx->max_hash = MAX2(ctx->max_hash, hash);
+        assert(reg_comp * srcsize == reg_offset);
+        assert(dst_comp * dstsize == dst_offset);
 
-        _mesa_hash_table_u64_insert(ctx->hash_to_temp,
-                                    hash + 1, (void *) ((uintptr_t) temp + 1));
+        for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
+                signed comp = MAX2(c - dst_comp, 0);
+                out[c] = MIN2(swizzle[comp] + reg_comp, 4 - 1);
+        }
 
-        return temp;
+        memcpy(swizzle, out, sizeof(out));
 }
 
 /* Helper to return the default phys_reg for a given register */
@@ -145,8 +101,8 @@ default_phys_reg(int reg)
 {
         struct phys_reg r = {
                 .reg = reg,
-                .mask = 0xF, /* xyzw */
-                .swizzle = 0xE4 /* xyzw */
+                .offset = 0,
+                .size = 4
         };
 
         return r;
@@ -156,12 +112,14 @@ default_phys_reg(int reg)
  * register corresponds to */
 
 static struct phys_reg
-index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
+index_to_reg(compiler_context *ctx, struct ra_graph *g, unsigned reg, midgard_reg_mode size)
 {
         /* Check for special cases */
-        if (reg >= SSA_FIXED_MINIMUM)
+        if (reg == ~0)
+                return default_phys_reg(REGISTER_UNUSED);
+        else if (reg >= SSA_FIXED_MINIMUM)
                 return default_phys_reg(SSA_REG_FROM_FIXED(reg));
-        else if ((reg < 0) || !g)
+        else if (!g)
                 return default_phys_reg(REGISTER_UNUSED);
 
         /* Special cases aside, we pick the underlying register */
@@ -171,219 +129,532 @@ index_to_reg(compiler_context *ctx, struct ra_graph *g, int reg)
         int phys = virt / WORK_STRIDE;
         int type = virt % WORK_STRIDE;
 
+        /* Apply shadow registers */
+
+        if (phys >= SHADOW_R28 && phys <= SHADOW_R29)
+                phys += 28 - SHADOW_R28;
+        else if (phys == SHADOW_R0)
+                phys = 0;
+
+        unsigned bytes = mir_bytes_for_mode(size);
+
         struct phys_reg r = {
                 .reg = phys,
-                .mask = reg_type_to_mask[type],
-                .swizzle = reg_type_to_swizzle[type]
+                .offset = __builtin_ctz(reg_type_to_mask[type]) * bytes,
+                .size = bytes
         };
 
         /* Report that we actually use this register, and return it */
-        ctx->work_registers = MAX2(ctx->work_registers, phys);
+
+        if (phys < 16)
+                ctx->work_registers = MAX2(ctx->work_registers, phys);
+
         return r;
 }
 
-/* This routine performs the actual register allocation. It should be succeeded
- * by install_registers */
+/* This routine creates a register set. Should be called infrequently since
+ * it's slow and can be cached. For legibility, variables are named in terms of
+ * work registers, although it is also used to create the register set for
+ * special register allocation */
 
-struct ra_graph *
-allocate_registers(compiler_context *ctx, bool *spilled)
+static void
+add_shadow_conflicts (struct ra_regs *regs, unsigned base, unsigned shadow, unsigned shadow_count)
 {
-        /* The number of vec4 work registers available depends on when the
-         * uniforms start, so compute that first */
+        for (unsigned a = 0; a < WORK_STRIDE; ++a) {
+                unsigned reg_a = (WORK_STRIDE * base) + a;
 
-        int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
+                for (unsigned b = 0; b < shadow_count; ++b) {
+                        unsigned reg_b = (WORK_STRIDE * shadow) + b;
 
-        int virtual_count = work_count * WORK_STRIDE;
+                        ra_add_reg_conflict(regs, reg_a, reg_b);
+                        ra_add_reg_conflict(regs, reg_b, reg_a);
+                }
+        }
+}
+
+static struct ra_regs *
+create_register_set(unsigned work_count, unsigned *classes)
+{
+        int virtual_count = 32 * WORK_STRIDE;
 
         /* First, initialize the RA */
         struct ra_regs *regs = ra_alloc_reg_set(NULL, virtual_count, true);
 
-        int work_vec4 = ra_alloc_reg_class(regs);
-        int work_vec3 = ra_alloc_reg_class(regs);
-        int work_vec2 = ra_alloc_reg_class(regs);
-        int work_vec1 = ra_alloc_reg_class(regs);
-
-        unsigned classes[4] = {
-                work_vec1,
-                work_vec2,
-                work_vec3,
-                work_vec4
-        };
-
-        /* Add the full set of work registers */
-        for (unsigned i = 0; i < work_count; ++i) {
-                int base = WORK_STRIDE * i;
-
-                /* Build a full set of subdivisions */
-                ra_class_add_reg(regs, work_vec4, base);
-                ra_class_add_reg(regs, work_vec3, base + 1);
-                ra_class_add_reg(regs, work_vec3, base + 2);
-                ra_class_add_reg(regs, work_vec2, base + 3);
-                ra_class_add_reg(regs, work_vec2, base + 4);
-                ra_class_add_reg(regs, work_vec2, base + 5);
-                ra_class_add_reg(regs, work_vec1, base + 6);
-                ra_class_add_reg(regs, work_vec1, base + 7);
-                ra_class_add_reg(regs, work_vec1, base + 8);
-                ra_class_add_reg(regs, work_vec1, base + 9);
-
-                for (unsigned a = 0; a < 10; ++a) {
-                        unsigned mask1 = reg_type_to_mask[a];
-
-                        for (unsigned b = 0; b < 10; ++b) {
-                                unsigned mask2 = reg_type_to_mask[b];
-
-                                if (mask1 & mask2)
-                                        ra_add_reg_conflict(regs,
-                                                            base + a, base + b);
+        for (unsigned c = 0; c < (NR_REG_CLASSES - 1); ++c) {
+                int work_vec4 = ra_alloc_reg_class(regs);
+                int work_vec3 = ra_alloc_reg_class(regs);
+                int work_vec2 = ra_alloc_reg_class(regs);
+                int work_vec1 = ra_alloc_reg_class(regs);
+
+                classes[4*c + 0] = work_vec1;
+                classes[4*c + 1] = work_vec2;
+                classes[4*c + 2] = work_vec3;
+                classes[4*c + 3] = work_vec4;
+
+                /* Special register classes have other register counts */
+                unsigned count =
+                        (c == REG_CLASS_WORK)   ? work_count : 2;
+
+                unsigned first_reg =
+                        (c == REG_CLASS_LDST)   ? 26 :
+                        (c == REG_CLASS_TEXR)   ? 28 :
+                        (c == REG_CLASS_TEXW)   ? SHADOW_R28 :
+                        0;
+
+                /* Add the full set of work registers */
+                for (unsigned i = first_reg; i < (first_reg + count); ++i) {
+                        int base = WORK_STRIDE * i;
+
+                        /* Build a full set of subdivisions */
+                        ra_class_add_reg(regs, work_vec4, base);
+                        ra_class_add_reg(regs, work_vec3, base + 1);
+                        ra_class_add_reg(regs, work_vec3, base + 2);
+                        ra_class_add_reg(regs, work_vec2, base + 3);
+                        ra_class_add_reg(regs, work_vec2, base + 4);
+                        ra_class_add_reg(regs, work_vec2, base + 5);
+                        ra_class_add_reg(regs, work_vec1, base + 6);
+                        ra_class_add_reg(regs, work_vec1, base + 7);
+                        ra_class_add_reg(regs, work_vec1, base + 8);
+                        ra_class_add_reg(regs, work_vec1, base + 9);
+
+                        for (unsigned a = 0; a < 10; ++a) {
+                                unsigned mask1 = reg_type_to_mask[a];
+
+                                for (unsigned b = 0; b < 10; ++b) {
+                                        unsigned mask2 = reg_type_to_mask[b];
+
+                                        if (mask1 & mask2)
+                                                ra_add_reg_conflict(regs,
+                                                                    base + a, base + b);
+                                }
                         }
                 }
         }
 
+        int fragc = ra_alloc_reg_class(regs);
+
+        classes[4*REG_CLASS_FRAGC + 0] = fragc;
+        classes[4*REG_CLASS_FRAGC + 1] = fragc;
+        classes[4*REG_CLASS_FRAGC + 2] = fragc;
+        classes[4*REG_CLASS_FRAGC + 3] = fragc;
+        ra_class_add_reg(regs, fragc, WORK_STRIDE * SHADOW_R0);
+
+        /* We have duplicate classes */
+        add_shadow_conflicts(regs,  0, SHADOW_R0,  1);
+        add_shadow_conflicts(regs, 28, SHADOW_R28, WORK_STRIDE);
+        add_shadow_conflicts(regs, 29, SHADOW_R29, WORK_STRIDE);
+
         /* We're done setting up */
         ra_set_finalize(regs, NULL);
 
-        /* Transform the MIR into squeezed index form */
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
+        return regs;
+}
 
-                        ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
-                        ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
+/* This routine gets a precomputed register set off the screen if it's able, or
+ * otherwise it computes one on the fly */
 
-                        if (!ins->ssa_args.inline_constant)
-                                ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
+static struct ra_regs *
+get_register_set(struct midgard_screen *screen, unsigned work_count, unsigned **classes)
+{
+        /* Bounds check */
+        assert(work_count >= 8);
+        assert(work_count <= 16);
 
-                }
+        /* Compute index */
+        unsigned index = work_count - 8;
+
+        /* Find the reg set */
+        struct ra_regs *cached = screen->regs[index];
+
+        if (cached) {
+                assert(screen->reg_classes[index]);
+                *classes = screen->reg_classes[index];
+                return cached;
         }
 
-        /* No register allocation to do with no SSA */
+        /* Otherwise, create one */
+        struct ra_regs *created = create_register_set(work_count, screen->reg_classes[index]);
 
-        if (!ctx->temp_count)
-                return NULL;
+        /* Cache it and use it */
+        screen->regs[index] = created;
 
-        /* Let's actually do register allocation */
-        int nodes = ctx->temp_count;
-        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
+        *classes = screen->reg_classes[index];
+        return created;
+}
 
-        /* Determine minimum size needed to hold values, to indirectly
        * determine class */
+/* Assign a (special) class, ensuring that it is compatible with whatever class
* was already set */
 
-        unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
+static void
+set_class(unsigned *classes, unsigned node, unsigned class)
+{
+        /* Check that we're even a node */
+        if (node >= SSA_FIXED_MINIMUM)
+                return;
 
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
-                        if (ins->ssa_args.dest < 0) continue;
-                        if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
+        /* First 4 are work, next 4 are load/store.. */
+        unsigned current_class = classes[node] >> 2;
 
-                        int class = util_logbase2(ins->mask) + 1;
+        /* Nothing to do */
+        if (class == current_class)
+                return;
 
-                        /* Use the largest class if there's ambiguity, this
-                         * handles partial writes */
+        /* If we're changing, we haven't assigned a special class */
+        assert(current_class == REG_CLASS_WORK);
 
-                        int dest = ins->ssa_args.dest;
-                        found_class[dest] = MAX2(found_class[dest], class);
-                }
-        }
+        classes[node] &= 0x3;
+        classes[node] |= (class << 2);
+}
 
-        for (unsigned i = 0; i < ctx->temp_count; ++i) {
-                unsigned class = found_class[i];
-                if (!class) continue;
-                ra_set_node_class(g, i, classes[class - 1]);
-        }
+static void
+force_vec4(unsigned *classes, unsigned node)
+{
+        if (node >= SSA_FIXED_MINIMUM)
+                return;
 
-        /* Determine liveness */
+        /* Force vec4 = 3 */
+        classes[node] |= 0x3;
+}
 
-        int *live_start = malloc(nodes * sizeof(int));
-        int *live_end = malloc(nodes * sizeof(int));
+/* Special register classes impose special constraints on who can read their
+ * values, so check that */
 
-        /* Initialize as non-existent */
+static bool
+check_read_class(unsigned *classes, unsigned tag, unsigned node)
+{
+        /* Non-nodes are implicitly ok */
+        if (node >= SSA_FIXED_MINIMUM)
+                return true;
+
+        unsigned current_class = classes[node] >> 2;
+
+        switch (current_class) {
+        case REG_CLASS_LDST:
+                return (tag == TAG_LOAD_STORE_4);
+        case REG_CLASS_TEXR:
+                return (tag == TAG_TEXTURE_4);
+        case REG_CLASS_TEXW:
+                return (tag != TAG_LOAD_STORE_4);
+        case REG_CLASS_WORK:
+                return IS_ALU(tag);
+        default:
+                unreachable("Invalid class");
+        }
+}
 
-        for (int i = 0; i < nodes; ++i) {
-                live_start[i] = live_end[i] = -1;
+static bool
+check_write_class(unsigned *classes, unsigned tag, unsigned node)
+{
+        /* Non-nodes are implicitly ok */
+        if (node >= SSA_FIXED_MINIMUM)
+                return true;
+
+        unsigned current_class = classes[node] >> 2;
+
+        switch (current_class) {
+        case REG_CLASS_TEXR:
+                return true;
+        case REG_CLASS_TEXW:
+                return (tag == TAG_TEXTURE_4);
+        case REG_CLASS_LDST:
+        case REG_CLASS_WORK:
+                return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
+        default:
+                unreachable("Invalid class");
         }
+}
+
+/* Prepass before RA to ensure special class restrictions are met. The idea is
+ * to create a bit field of types of instructions that read a particular index.
+ * Later, we'll add moves as appropriate and rewrite to specialize by type. */
 
-        int d = 0;
+static void
+mark_node_class (unsigned *bitfield, unsigned node)
+{
+        if (node < SSA_FIXED_MINIMUM)
+                BITSET_SET(bitfield, node);
+}
 
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
+void
+mir_lower_special_reads(compiler_context *ctx)
+{
+        size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
+
+        /* Bitfields for the various types of registers we could have. aluw can
+         * be written by either ALU or load/store */
+
+        unsigned *alur = calloc(sz, 1);
+        unsigned *aluw = calloc(sz, 1);
+        unsigned *brar = calloc(sz, 1);
+        unsigned *ldst = calloc(sz, 1);
+        unsigned *texr = calloc(sz, 1);
+        unsigned *texw = calloc(sz, 1);
+
+        /* Pass #1 is analysis, a linear scan to fill out the bitfields */
+
+        mir_foreach_instr_global(ctx, ins) {
+                switch (ins->type) {
+                case TAG_ALU_4:
+                        mark_node_class(aluw, ins->dest);
+                        mark_node_class(alur, ins->src[0]);
+                        mark_node_class(alur, ins->src[1]);
+                        mark_node_class(alur, ins->src[2]);
+
+                        if (ins->compact_branch && ins->writeout)
+                                mark_node_class(brar, ins->src[0]);
+
+                        break;
+
+                case TAG_LOAD_STORE_4:
+                        mark_node_class(aluw, ins->dest);
+                        mark_node_class(ldst, ins->src[0]);
+                        mark_node_class(ldst, ins->src[1]);
+                        mark_node_class(ldst, ins->src[2]);
+                        break;
+
+                case TAG_TEXTURE_4:
+                        mark_node_class(texr, ins->src[0]);
+                        mark_node_class(texr, ins->src[1]);
+                        mark_node_class(texr, ins->src[2]);
+                        mark_node_class(texw, ins->dest);
+                        break;
+                }
+        }
 
-                        /* Dest is < 0 for st_vary instructions, which break
-                         * the usual SSA conventions. Liveness analysis doesn't
-                         * make sense on these instructions, so skip them to
-                         * avoid memory corruption */
+        /* Pass #2 is lowering now that we've analyzed all the classes.
+         * Conceptually, if an index is only marked for a single type of use,
+         * there is nothing to lower. If it is marked for different uses, we
+         * split up based on the number of types of uses. To do so, we divide
+         * into N distinct classes of use (where N>1 by definition), emit N-1
+         * moves from the index to copies of the index, and finally rewrite N-1
+         * of the types of uses to use the corresponding move */
 
-                        if (ins->ssa_args.dest < 0) continue;
+        unsigned spill_idx = ctx->temp_count;
 
-                        if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
-                                /* If this destination is not yet live, it is
-                                 * now since we just wrote it */
+        for (unsigned i = 0; i < ctx->temp_count; ++i) {
+                bool is_alur = BITSET_TEST(alur, i);
+                bool is_aluw = BITSET_TEST(aluw, i);
+                bool is_brar = BITSET_TEST(brar, i);
+                bool is_ldst = BITSET_TEST(ldst, i);
+                bool is_texr = BITSET_TEST(texr, i);
+                bool is_texw = BITSET_TEST(texw, i);
+
+                /* Analyse to check how many distinct uses there are. ALU ops
+                 * (alur) can read the results of the texture pipeline (texw)
+                 * but not ldst or texr. Load/store ops (ldst) cannot read
+                 * anything but load/store inputs. Texture pipeline cannot read
+                 * anything but texture inputs. TODO: Simplify.  */
+
+                bool collision =
+                        (is_alur && (is_ldst || is_texr)) ||
+                        (is_ldst && (is_alur || is_texr || is_texw)) ||
+                        (is_texr && (is_alur || is_ldst || is_texw)) ||
+                        (is_texw && (is_aluw || is_ldst || is_texr)) ||
+                        (is_brar && is_texw);
+        
+                if (!collision)
+                        continue;
+
+                /* Use the index as-is as the work copy. Emit copies for
+                 * special uses */
+
+                unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
+                bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
+
+                for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
+                        if (!collisions[j]) continue;
+
+                        /* When the hazard is from reading, we move and rewrite
+                         * sources (typical case). When it's from writing, we
+                         * flip the move and rewrite destinations (obscure,
+                         * only from control flow -- impossible in SSA) */
+
+                        bool hazard_write = (j == 2);
+
+                        unsigned idx = spill_idx++;
+
+                        midgard_instruction m = hazard_write ?
+                                v_mov(idx, i) : v_mov(i, idx);
+
+                        /* Insert move before each read/write, depending on the
+                         * hazard we're trying to account for */
+
+                        mir_foreach_instr_global_safe(ctx, pre_use) {
+                                if (pre_use->type != classes[j])
+                                        continue;
 
-                                int dest = ins->ssa_args.dest;
+                                if (hazard_write) {
+                                        if (pre_use->dest != i)
+                                                continue;
+                                } else {
+                                        if (!mir_has_arg(pre_use, i))
+                                                continue;
+                                }
 
-                                if (live_start[dest] == -1)
-                                        live_start[dest] = d;
+                                if (hazard_write) {
+                                        midgard_instruction *use = mir_next_op(pre_use);
+                                        assert(use);
+                                        mir_insert_instruction_before(ctx, use, m);
+                                        mir_rewrite_index_dst_single(pre_use, i, idx);
+                                } else {
+                                        idx = spill_idx++;
+                                        m = v_mov(i, idx);
+                                        m.mask = mir_from_bytemask(mir_bytemask_of_read_components(pre_use, i), midgard_reg_mode_32);
+                                        mir_insert_instruction_before(ctx, pre_use, m);
+                                        mir_rewrite_index_src_single(pre_use, i, idx);
+                                }
                         }
+                }
+        }
 
-                        /* Since we just used a source, the source might be
-                         * dead now. Scan the rest of the block for
-                         * invocations, and if there are none, the source dies
-                         * */
+        free(alur);
+        free(aluw);
+        free(brar);
+        free(ldst);
+        free(texr);
+        free(texw);
+}
 
-                        int sources[2] = {
-                                ins->ssa_args.src0, ins->ssa_args.src1
-                        };
+static void
+mir_compute_interference(
+                compiler_context *ctx,
+                struct ra_graph *g)
+{
+        /* First, we need liveness information to be computed per block */
+        mir_compute_liveness(ctx);
 
-                        for (int src = 0; src < 2; ++src) {
-                                int s = sources[src];
+        /* Now that every block has live_in/live_out computed, we can determine
+         * interference by walking each block linearly. Take live_out at the
+         * end of each block and walk the block backwards. */
 
-                                if (ins->ssa_args.inline_constant && src == 1)
-                                        continue;
+        mir_foreach_block(ctx, blk) {
+                uint16_t *live = mem_dup(blk->live_out, ctx->temp_count * sizeof(uint16_t));
 
-                                if (s < 0) continue;
+                mir_foreach_instr_in_block_rev(blk, ins) {
+                        /* Mark all registers live after the instruction as
+                         * interfering with the destination */
 
-                                if (s >= SSA_FIXED_MINIMUM) continue;
+                        unsigned dest = ins->dest;
 
-                                if (!mir_is_live_after(ctx, block, ins, s)) {
-                                        live_end[s] = d;
-                                }
+                        if (dest < ctx->temp_count) {
+                                for (unsigned i = 0; i < ctx->temp_count; ++i)
+                                        if (live[i])
+                                                ra_add_node_interference(g, dest, i);
                         }
 
-                        ++d;
+                        /* Update live_in */
+                        mir_liveness_ins_update(live, ins, ctx->temp_count);
                 }
+
+                free(live);
         }
+}
 
-        /* If a node still hasn't been killed, kill it now */
+/* This routine performs the actual register allocation. It should be succeeded
+ * by install_registers */
 
-        for (int i = 0; i < nodes; ++i) {
-                /* live_start == -1 most likely indicates a pinned output */
+struct ra_graph *
+allocate_registers(compiler_context *ctx, bool *spilled)
+{
+        /* The number of vec4 work registers available depends on when the
+         * uniforms start, so compute that first */
+        int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
+        unsigned *classes = NULL;
+        struct ra_regs *regs = get_register_set(ctx->screen, work_count, &classes);
+
+        assert(regs != NULL);
+        assert(classes != NULL);
 
-                if (live_end[i] == -1)
-                        live_end[i] = d;
+       /* No register allocation to do with no SSA */
+
+        if (!ctx->temp_count)
+                return NULL;
+
+        /* Let's actually do register allocation */
+        int nodes = ctx->temp_count;
+        struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
+        
+        /* Register class (as known to the Mesa register allocator) is actually
+         * the product of both semantic class (work, load/store, texture..) and
+         * size (vec2/vec3..). First, we'll go through and determine the
+         * minimum size needed to hold values */
+
+        unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
+
+        mir_foreach_instr_global(ctx, ins) {
+                if (ins->dest >= SSA_FIXED_MINIMUM) continue;
+
+                /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
+                int class = util_logbase2(ins->mask);
+
+                /* Use the largest class if there's ambiguity, this
+                 * handles partial writes */
+
+                int dest = ins->dest;
+                found_class[dest] = MAX2(found_class[dest], class);
         }
 
-        /* Setup interference between nodes that are live at the same time */
+        /* Next, we'll determine semantic class. We default to zero (work).
+         * But, if we're used with a special operation, that will force us to a
+         * particular class. Each node must be assigned to exactly one class; a
+         * prepass before RA should have lowered what-would-have-been
+         * multiclass nodes into a series of moves to break it up into multiple
+         * nodes (TODO) */
+
+        mir_foreach_instr_global(ctx, ins) {
+                /* Check if this operation imposes any classes */
 
-        for (int i = 0; i < nodes; ++i) {
-                for (int j = i + 1; j < nodes; ++j) {
-                        bool j_overlaps_i = live_start[j] < live_end[i];
-                        bool i_overlaps_j = live_end[j] < live_start[i];
+                if (ins->type == TAG_LOAD_STORE_4) {
+                        bool force_vec4_only = OP_IS_VEC4_ONLY(ins->load_store.op);
 
-                        if (i_overlaps_j || j_overlaps_i)
-                                ra_add_node_interference(g, i, j);
+                        set_class(found_class, ins->src[0], REG_CLASS_LDST);
+                        set_class(found_class, ins->src[1], REG_CLASS_LDST);
+                        set_class(found_class, ins->src[2], REG_CLASS_LDST);
+
+                        if (force_vec4_only) {
+                                force_vec4(found_class, ins->dest);
+                                force_vec4(found_class, ins->src[0]);
+                                force_vec4(found_class, ins->src[1]);
+                                force_vec4(found_class, ins->src[2]);
+                        }
+                } else if (ins->type == TAG_TEXTURE_4) {
+                        set_class(found_class, ins->dest, REG_CLASS_TEXW);
+                        set_class(found_class, ins->src[0], REG_CLASS_TEXR);
+                        set_class(found_class, ins->src[1], REG_CLASS_TEXR);
+                        set_class(found_class, ins->src[2], REG_CLASS_TEXR);
                 }
         }
 
-        /* Cleanup */
-        free(live_start);
-        free(live_end);
+        /* Check that the semantics of the class are respected */
+        mir_foreach_instr_global(ctx, ins) {
+                assert(check_write_class(found_class, ins->type, ins->dest));
+                assert(check_read_class(found_class, ins->type, ins->src[0]));
+                assert(check_read_class(found_class, ins->type, ins->src[1]));
+                assert(check_read_class(found_class, ins->type, ins->src[2]));
+        }
+
+        /* Mark writeout to r0 */
+        mir_foreach_instr_global(ctx, ins) {
+                if (ins->compact_branch && ins->writeout)
+                        set_class(found_class, ins->src[0], REG_CLASS_FRAGC);
+        }
+
+        for (unsigned i = 0; i < ctx->temp_count; ++i) {
+                unsigned class = found_class[i];
+                ra_set_node_class(g, i, classes[class]);
+        }
+
+        mir_compute_interference(ctx, g);
 
         if (!ra_allocate(g)) {
                 *spilled = true;
-                return NULL;
+        } else {
+                *spilled = false;
         }
 
+        /* Whether we were successful or not, report the graph so we can
+         * compute spill nodes */
+
         return g;
 }
 
@@ -397,32 +668,31 @@ install_registers_instr(
         struct ra_graph *g,
         midgard_instruction *ins)
 {
-        ssa_args args = ins->ssa_args;
-
         switch (ins->type) {
-        case TAG_ALU_4: {
-                int adjusted_src = args.inline_constant ? -1 : args.src1;
-                struct phys_reg src1 = index_to_reg(ctx, g, args.src0);
-                struct phys_reg src2 = index_to_reg(ctx, g, adjusted_src);
-                struct phys_reg dest = index_to_reg(ctx, g, args.dest);
+        case TAG_ALU_4:
+        case TAG_ALU_8:
+        case TAG_ALU_12:
+        case TAG_ALU_16: {
+                 if (ins->compact_branch)
+                         return;
+
+                struct phys_reg src1 = index_to_reg(ctx, g, ins->src[0], mir_srcsize(ins, 0));
+                struct phys_reg src2 = index_to_reg(ctx, g, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg dest = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
 
-                unsigned uncomposed_mask = ins->mask;
-                ins->mask = compose_writemask(uncomposed_mask, dest);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
 
-                /* Adjust the dest mask if necessary. Mostly this is a no-op
-                 * but it matters for dot products */
-                dest.mask = effective_writemask(&ins->alu, ins->mask);
+                unsigned dest_offset =
+                        GET_CHANNEL_COUNT(alu_opcode_props[ins->alu.op].props) ? 0 :
+                        dest.offset;
 
-                midgard_vector_alu_src mod1 =
-                        vector_alu_from_unsigned(ins->alu.src1);
-                mod1.swizzle = compose_swizzle(mod1.swizzle, uncomposed_mask, src1, dest);
-                ins->alu.src1 = vector_alu_srco_unsigned(mod1);
+                offset_swizzle(ins->swizzle[0], src1.offset, src1.size, dest_offset, dest.size);
 
                 ins->registers.src1_reg = src1.reg;
 
-                ins->registers.src2_imm = args.inline_constant;
+                ins->registers.src2_imm = ins->has_inline_constant;
 
-                if (args.inline_constant) {
+                if (ins->has_inline_constant) {
                         /* Encode inline 16-bit constant. See disassembler for
                          * where the algorithm is from */
 
@@ -436,8 +706,7 @@ install_registers_instr(
                 } else {
                         midgard_vector_alu_src mod2 =
                                 vector_alu_from_unsigned(ins->alu.src2);
-                        mod2.swizzle = compose_swizzle(
-                                               mod2.swizzle, uncomposed_mask, src2, dest);
+                        offset_swizzle(ins->swizzle[1], src2.offset, src2.size, dest_offset, dest.size);
                         ins->alu.src2 = vector_alu_srco_unsigned(mod2);
 
                         ins->registers.src2_reg = src2.reg;
@@ -448,26 +717,82 @@ install_registers_instr(
         }
 
         case TAG_LOAD_STORE_4: {
-                if (OP_IS_STORE_R26(ins->load_store.op)) {
-                        /* TODO: use ssa_args for st_vary */
-                        ins->load_store.reg = 0;
-                } else {
-                        /* Which physical register we read off depends on
-                         * whether we are loading or storing -- think about the
-                         * logical dataflow */
+                /* Which physical register we read off depends on
+                 * whether we are loading or storing -- think about the
+                 * logical dataflow */
+
+                bool encodes_src = OP_IS_STORE(ins->load_store.op);
 
-                        unsigned r = OP_IS_STORE(ins->load_store.op) ?
-                                     args.src0 : args.dest;
-                        struct phys_reg src = index_to_reg(ctx, g, r);
+                if (encodes_src) {
+                        struct phys_reg src = index_to_reg(ctx, g, ins->src[0], mir_srcsize(ins, 0));
+                        assert(src.reg == 26 || src.reg == 27);
 
-                        ins->load_store.reg = src.reg;
+                        ins->load_store.reg = src.reg - 26;
+                        offset_swizzle(ins->swizzle[0], src.offset, src.size, 0, 4);
+               } else {
+                        struct phys_reg dst = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
 
-                        ins->load_store.swizzle = compose_swizzle(
-                                                          ins->load_store.swizzle, 0xF,
-                                                          default_phys_reg(0), src);
+                        ins->load_store.reg = dst.reg;
+                        offset_swizzle(ins->swizzle[0], 0, 4, dst.offset, dst.size);
+                        mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
+                }
+
+                /* We also follow up by actual arguments */
+
+                unsigned src2 = ins->src[1];
+                unsigned src3 = ins->src[2];
 
-                        ins->mask = compose_writemask(
-                                            ins->mask, src);
+                if (src2 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, g, src2, mir_srcsize(ins, 1));
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
+                        ins->load_store.arg_1 |= midgard_ldst_reg(src.reg, component);
+                }
+
+                if (src3 != ~0) {
+                        struct phys_reg src = index_to_reg(ctx, g, src3, mir_srcsize(ins, 2));
+                        unsigned component = src.offset / src.size;
+                        assert(component * src.size == src.offset);
+                        ins->load_store.arg_2 |= midgard_ldst_reg(src.reg, component);
+                }
+                break;
+        }
+
+        case TAG_TEXTURE_4: {
+                /* Grab RA results */
+                struct phys_reg dest = index_to_reg(ctx, g, ins->dest, mir_typesize(ins));
+                struct phys_reg coord = index_to_reg(ctx, g, ins->src[1], mir_srcsize(ins, 1));
+                struct phys_reg lod = index_to_reg(ctx, g, ins->src[2], mir_srcsize(ins, 2));
+
+                assert(dest.reg == 28 || dest.reg == 29);
+                assert(coord.reg == 28 || coord.reg == 29);
+
+                /* First, install the texture coordinate */
+                ins->texture.in_reg_full = 1;
+                ins->texture.in_reg_upper = 0;
+                ins->texture.in_reg_select = coord.reg - 28;
+                offset_swizzle(ins->swizzle[1], coord.offset, coord.size, 0, 4);
+
+                /* Next, install the destination */
+                ins->texture.out_full = 1;
+                ins->texture.out_upper = 0;
+                ins->texture.out_reg_select = dest.reg - 28;
+                offset_swizzle(ins->swizzle[0], 0, 4, dest.offset, dest.size);
+                mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
+
+                /* If there is a register LOD/bias, use it */
+                if (ins->src[2] != ~0) {
+                        assert(!(lod.offset & 3));
+                        midgard_tex_register_select sel = {
+                                .select = lod.reg,
+                                .full = 1,
+                                .component = lod.offset / 4
+                        };
+
+                        uint8_t packed;
+                        memcpy(&packed, &sel, sizeof(packed));
+                        ins->texture.bias = packed;
                 }
 
                 break;
@@ -481,11 +806,6 @@ install_registers_instr(
 void
 install_registers(compiler_context *ctx, struct ra_graph *g)
 {
-        mir_foreach_block(ctx, block) {
-                mir_foreach_instr_in_block(block, ins) {
-                        if (ins->compact_branch) continue;
-                        install_registers_instr(ctx, g, ins);
-                }
-        }
-
+        mir_foreach_instr_global(ctx, ins)
+                install_registers_instr(ctx, g, ins);
 }