X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;ds=sidebyside;f=src%2Fglsl%2Fast_function.cpp;h=6ecf779c935abaf7a8ef7741f7ae5387f30b6a59;hb=36a59b29ef07b78378dcb3934131d262d42612cb;hp=761af00b95e9740b9d0dd6888e85487b82249c1a;hpb=bcc13b74443137043e8a34f8cb64a5add0d8af93;p=mesa.git diff --git a/src/glsl/ast_function.cpp b/src/glsl/ast_function.cpp index 761af00b95e..6ecf779c935 100644 --- a/src/glsl/ast_function.cpp +++ b/src/glsl/ast_function.cpp @@ -25,6 +25,14 @@ #include "ast.h" #include "glsl_types.h" #include "ir.h" +#include "main/core.h" /* for MIN2 */ + +static ir_rvalue * +convert_component(ir_rvalue *src, const glsl_type *desired_type); + +bool +apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from, + struct _mesa_glsl_parse_state *state); static unsigned process_parameters(exec_list *instructions, exec_list *actual_parameters, @@ -49,18 +57,76 @@ process_parameters(exec_list *instructions, exec_list *actual_parameters, } +/** + * Generate a source prototype for a function signature + * + * \param return_type Return type of the function. May be \c NULL. + * \param name Name of the function. + * \param parameters Parameter list for the function. This may be either a + * formal or actual parameter list. Only the type is used. + * + * \return + * A talloced string representing the prototype of the function. + */ +char * +prototype_string(const glsl_type *return_type, const char *name, + exec_list *parameters) +{ + char *str = NULL; + + if (return_type != NULL) + str = talloc_asprintf(str, "%s ", return_type->name); + + str = talloc_asprintf_append(str, "%s(", name); + + const char *comma = ""; + foreach_list(node, parameters) { + const ir_instruction *const param = (ir_instruction *) node; + + str = talloc_asprintf_append(str, "%s%s", comma, param->type->name); + comma = ", "; + } + + str = talloc_strdup_append(str, ")"); + return str; +} + + static ir_rvalue * -process_call(exec_list *instructions, ir_function *f, - YYLTYPE *loc, exec_list *actual_parameters, - struct _mesa_glsl_parse_state *state) +match_function_by_name(exec_list *instructions, const char *name, + YYLTYPE *loc, exec_list *actual_parameters, + struct _mesa_glsl_parse_state *state) { - void *ctx = talloc_parent(state); + void *ctx = state; + ir_function *f = state->symbols->get_function(name); + ir_function_signature *sig; + + sig = f ? f->matching_signature(actual_parameters) : NULL; - const ir_function_signature *sig = - f->matching_signature(actual_parameters); + /* FINISHME: This doesn't handle the case where shader X contains a + * FINISHME: matching signature but shader X + N contains an _exact_ + * FINISHME: matching signature. + */ + if (sig == NULL && (f == NULL || state->es_shader || !f->has_user_signature()) && state->symbols->get_type(name) == NULL && (state->language_version == 110 || state->symbols->get_variable(name) == NULL)) { + /* The current shader doesn't contain a matching function or signature. + * Before giving up, look for the prototype in the built-in functions. + */ + for (unsigned i = 0; i < state->num_builtins_to_link; i++) { + ir_function *builtin; + builtin = state->builtins_to_link[i]->symbols->get_function(name); + sig = builtin ? builtin->matching_signature(actual_parameters) : NULL; + if (sig != NULL) { + if (f == NULL) { + f = new(ctx) ir_function(name); + state->symbols->add_global_function(f); + emit_function(state, instructions, f); + } - /* The instructions param will be used when the FINISHMEs below are done */ - (void) instructions; + f->add_signature(sig->clone_prototype(f, NULL)); + break; + } + } + } if (sig != NULL) { /* Verify that 'out' and 'inout' actual parameters are lvalues. This @@ -88,49 +154,80 @@ process_call(exec_list *instructions, ir_function *f, } } + if (formal->type->is_numeric() || formal->type->is_boolean()) { + ir_rvalue *converted = convert_component(actual, formal->type); + actual->replace_with(converted); + } + actual_iter.next(); formal_iter.next(); } - /* FINISHME: The list of actual parameters needs to be modified to - * FINISHME: include any necessary conversions. + /* Always insert the call in the instruction stream, and return a deref + * of its return val if it returns a value, since we don't know if + * the rvalue is going to be assigned to anything or not. */ - return new(ctx) ir_call(sig, actual_parameters); + ir_call *call = new(ctx) ir_call(sig, actual_parameters); + if (!sig->return_type->is_void()) { + ir_variable *var; + ir_dereference_variable *deref; + + var = new(ctx) ir_variable(sig->return_type, + talloc_asprintf(ctx, "%s_retval", + sig->function_name()), + ir_var_temporary); + instructions->push_tail(var); + + deref = new(ctx) ir_dereference_variable(var); + ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL); + instructions->push_tail(assign); + if (state->language_version >= 120) + var->constant_value = call->constant_expression_value(); + + deref = new(ctx) ir_dereference_variable(var); + return deref; + } else { + instructions->push_tail(call); + return NULL; + } } else { - /* FINISHME: Log a better error message here. G++ will show the types - * FINISHME: of the actual parameters and the set of candidate - * FINISHME: functions. A different error should also be logged when - * FINISHME: multiple functions match. - */ + char *str = prototype_string(NULL, name, actual_parameters); + _mesa_glsl_error(loc, state, "no matching function for call to `%s'", - f->name); - return ir_call::get_error_instruction(ctx); - } -} + str); + talloc_free(str); + const char *prefix = "candidates are: "; -static ir_rvalue * -match_function_by_name(exec_list *instructions, const char *name, - YYLTYPE *loc, exec_list *actual_parameters, - struct _mesa_glsl_parse_state *state) -{ - void *ctx = talloc_parent(state); - ir_function *f = state->symbols->get_function(name); + for (int i = -1; i < state->num_builtins_to_link; i++) { + glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols + : state->symbols; + f = syms->get_function(name); + if (f == NULL) + continue; + + foreach_list (node, &f->signatures) { + ir_function_signature *sig = (ir_function_signature *) node; + + str = prototype_string(sig->return_type, f->name, &sig->parameters); + _mesa_glsl_error(loc, state, "%s%s\n", prefix, str); + talloc_free(str); + + prefix = " "; + } + + } - if (f == NULL) { - _mesa_glsl_error(loc, state, "function `%s' undeclared", name); return ir_call::get_error_instruction(ctx); } - - /* Once we've determined that the function being called might exist, try - * to find an overload of the function that matches the parameters. - */ - return process_call(instructions, f, loc, actual_parameters, state); } /** * Perform automatic type conversion of constructor parameters + * + * This implements the rules in the "Conversion and Scalar Constructors" + * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules. */ static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type) @@ -172,26 +269,26 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type) break; } break; - case GLSL_TYPE_BOOL: { - ir_constant *zero = NULL; - + case GLSL_TYPE_BOOL: switch (b) { - case GLSL_TYPE_UINT: zero = new(ctx) ir_constant(unsigned(0)); break; - case GLSL_TYPE_INT: zero = new(ctx) ir_constant(int(0)); break; - case GLSL_TYPE_FLOAT: zero = new(ctx) ir_constant(0.0f); break; + case GLSL_TYPE_UINT: + case GLSL_TYPE_INT: + result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL); + break; + case GLSL_TYPE_FLOAT: + result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); + break; } - - result = new(ctx) ir_expression(ir_binop_nequal, desired_type, src, zero); - } + break; } assert(result != NULL); + /* Try constant folding; it may fold in the conversion we just added. */ ir_constant *const constant = result->constant_expression_value(); return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result; } - /** * Dereference a specific component from a scalar, vector, or matrix */ @@ -239,7 +336,7 @@ process_array_constructor(exec_list *instructions, YYLTYPE *loc, exec_list *parameters, struct _mesa_glsl_parse_state *state) { - void *ctx = talloc_parent(state); + void *ctx = state; /* Array constructors come in two forms: sized and unsized. Sized array * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4 * variables. In this case the number of parameters must exactly match the @@ -279,29 +376,69 @@ process_array_constructor(exec_list *instructions, if (constructor_type->length == 0) { constructor_type = - glsl_type::get_array_instance(state, - constructor_type->element_type(), + glsl_type::get_array_instance(constructor_type->element_type(), parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); } - ir_function *f = state->symbols->get_function(constructor_type->name); + bool all_parameters_are_constant = true; - /* If the constructor for this type of array does not exist, generate the - * prototype and add it to the symbol table. - */ - if (f == NULL) { - f = constructor_type->generate_constructor(state->symbols); + /* Type cast each parameter and, if possible, fold constants. */ + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *ir = (ir_rvalue *) n; + ir_rvalue *result = ir; + + /* Apply implicit conversions (not the scalar constructor rules!) */ + if (constructor_type->element_type()->is_float()) { + const glsl_type *desired_type = + glsl_type::get_instance(GLSL_TYPE_FLOAT, + ir->type->vector_elements, + ir->type->matrix_columns); + result = convert_component(ir, desired_type); + } + + if (result->type != constructor_type->element_type()) { + _mesa_glsl_error(loc, state, "type error in array constructor: " + "expected: %s, found %s", + constructor_type->element_type()->name, + result->type->name); + } + + /* Attempt to convert the parameter to a constant valued expression. + * After doing so, track whether or not all the parameters to the + * constructor are trivially constant valued expressions. + */ + ir_rvalue *const constant = result->constant_expression_value(); + + if (constant != NULL) + result = constant; + else + all_parameters_are_constant = false; + + ir->replace_with(result); } - ir_rvalue *const r = - process_call(instructions, f, loc, &actual_parameters, state); + if (all_parameters_are_constant) + return new(ctx) ir_constant(constructor_type, &actual_parameters); - assert(r != NULL); - assert(r->type->is_error() || (r->type == constructor_type)); + ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor", + ir_var_temporary); + instructions->push_tail(var); + + int i = 0; + foreach_list(node, &actual_parameters) { + ir_rvalue *rhs = (ir_rvalue *) node; + ir_rvalue *lhs = new(ctx) ir_dereference_array(var, + new(ctx) ir_constant(i)); + + ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL); + instructions->push_tail(assignment); + + i++; + } - return r; + return new(ctx) ir_dereference_variable(var); } @@ -310,137 +447,528 @@ process_array_constructor(exec_list *instructions, */ static ir_constant * constant_record_constructor(const glsl_type *constructor_type, - YYLTYPE *loc, exec_list *parameters, - struct _mesa_glsl_parse_state *state) + exec_list *parameters, void *mem_ctx) { - void *ctx = talloc_parent(state); - bool all_parameters_are_constant = true; - - exec_node *node = parameters->head; - for (unsigned i = 0; i < constructor_type->length; i++) { - ir_instruction *ir = (ir_instruction *) node; - - if (node->is_tail_sentinal()) { - _mesa_glsl_error(loc, state, - "insufficient parameters to constructor for `%s'", - constructor_type->name); + foreach_list(node, parameters) { + ir_constant *constant = ((ir_instruction *) node)->as_constant(); + if (constant == NULL) return NULL; - } - - if (ir->type != constructor_type->fields.structure[i].type) { - _mesa_glsl_error(loc, state, - "parameter type mismatch in constructor for `%s' " - " (%s vs %s)", - constructor_type->name, - ir->type->name, - constructor_type->fields.structure[i].type->name); - return NULL; - } + node->replace_with(constant); + } - if (ir->as_constant() == NULL) - all_parameters_are_constant = false; + return new(mem_ctx) ir_constant(constructor_type, parameters); +} - node = node->next; - } - if (!all_parameters_are_constant) - return NULL; +/** + * Determine if a list consists of a single scalar r-value + */ +bool +single_scalar_parameter(exec_list *parameters) +{ + const ir_rvalue *const p = (ir_rvalue *) parameters->head; + assert(((ir_rvalue *)p)->as_rvalue() != NULL); - return new(ctx) ir_constant(constructor_type, parameters); + return (p->type->is_scalar() && p->next->is_tail_sentinel()); } /** - * Generate data for a constant matrix constructor w/a single scalar parameter + * Generate inline code for a vector constructor * - * Matrix constructors in GLSL can be passed a single scalar of the - * approriate type. In these cases, the resulting matrix is the identity - * matrix multipled by the specified scalar. This function generates data for - * that matrix. + * The generated constructor code will consist of a temporary variable + * declaration of the same type as the constructor. A sequence of assignments + * from constructor parameters to the temporary will follow. * - * \param type Type of the desired matrix. - * \param initializer Scalar value used to initialize the matrix diagonal. - * \param data Location to store the resulting matrix. + * \return + * An \c ir_dereference_variable of the temprorary generated in the constructor + * body. */ -void -generate_constructor_matrix(const glsl_type *type, ir_constant *initializer, - ir_constant_data *data) +ir_rvalue * +emit_inline_vector_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *ctx) { - switch (type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - for (unsigned i = 0; i < type->components(); i++) - data->u[i] = 0; + assert(!parameters->is_empty()); + + ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); + instructions->push_tail(var); - for (unsigned i = 0; i < type->matrix_columns; i++) { - /* The array offset of the ith row and column of the matrix. + /* There are two kinds of vector constructors. + * + * - Construct a vector from a single scalar by replicating that scalar to + * all components of the vector. + * + * - Construct a vector from an arbirary combination of vectors and + * scalars. The components of the constructor parameters are assigned + * to the vector in order until the vector is full. + */ + const unsigned lhs_components = type->components(); + if (single_scalar_parameter(parameters)) { + ir_rvalue *first_param = (ir_rvalue *)parameters->head; + ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0, + lhs_components); + ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var); + const unsigned mask = (1U << lhs_components) - 1; + + assert(rhs->type == lhs->type); + + ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask); + instructions->push_tail(inst); + } else { + unsigned base_component = 0; + unsigned base_lhs_component = 0; + ir_constant_data data; + unsigned constant_mask = 0, constant_components = 0; + + memset(&data, 0, sizeof(data)); + + foreach_list(node, parameters) { + ir_rvalue *param = (ir_rvalue *) node; + unsigned rhs_components = param->type->components(); + + /* Do not try to assign more components to the vector than it has! */ - const unsigned idx = (i * type->vector_elements) + i; + if ((rhs_components + base_lhs_component) > lhs_components) { + rhs_components = lhs_components - base_lhs_component; + } - data->u[idx] = initializer->value.u[0]; + const ir_constant *const c = param->as_constant(); + if (c != NULL) { + for (unsigned i = 0; i < rhs_components; i++) { + switch (c->type->base_type) { + case GLSL_TYPE_UINT: + data.u[i + base_component] = c->get_uint_component(i); + break; + case GLSL_TYPE_INT: + data.i[i + base_component] = c->get_int_component(i); + break; + case GLSL_TYPE_FLOAT: + data.f[i + base_component] = c->get_float_component(i); + break; + case GLSL_TYPE_BOOL: + data.b[i + base_component] = c->get_bool_component(i); + break; + default: + assert(!"Should not get here."); + break; + } + } + + /* Mask of fields to be written in the assignment. + */ + constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component; + constant_components += rhs_components; + + base_component += rhs_components; + } + /* Advance the component index by the number of components + * that were just assigned. + */ + base_lhs_component += rhs_components; } - break; - case GLSL_TYPE_FLOAT: - for (unsigned i = 0; i < type->components(); i++) - data->f[i] = 0; + if (constant_mask != 0) { + ir_dereference *lhs = new(ctx) ir_dereference_variable(var); + const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type, + constant_components, + 1); + ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data); + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask); + instructions->push_tail(inst); + } - for (unsigned i = 0; i < type->matrix_columns; i++) { - /* The array offset of the ith row and column of the matrix. + base_component = 0; + foreach_list(node, parameters) { + ir_rvalue *param = (ir_rvalue *) node; + unsigned rhs_components = param->type->components(); + + /* Do not try to assign more components to the vector than it has! */ - const unsigned idx = (i * type->vector_elements) + i; + if ((rhs_components + base_component) > lhs_components) { + rhs_components = lhs_components - base_component; + } + + const ir_constant *const c = param->as_constant(); + if (c == NULL) { + /* Mask of fields to be written in the assignment. + */ + const unsigned write_mask = ((1U << rhs_components) - 1) + << base_component; + + ir_dereference *lhs = new(ctx) ir_dereference_variable(var); - data->f[idx] = initializer->value.f[0]; + /* Generate a swizzle so that LHS and RHS sizes match. + */ + ir_rvalue *rhs = + new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components); + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); + instructions->push_tail(inst); + } + + /* Advance the component index by the number of components that were + * just assigned. + */ + base_component += rhs_components; } + } + return new(ctx) ir_dereference_variable(var); +} - break; - default: - assert(!"Should not get here."); - break; +/** + * Generate assignment of a portion of a vector to a portion of a matrix column + * + * \param src_base First component of the source to be used in assignment + * \param column Column of destination to be assiged + * \param row_base First component of the destination column to be assigned + * \param count Number of components to be assigned + * + * \note + * \c src_base + \c count must be less than or equal to the number of components + * in the source vector. + */ +ir_instruction * +assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base, + ir_rvalue *src, unsigned src_base, unsigned count, + void *mem_ctx) +{ + ir_constant *col_idx = new(mem_ctx) ir_constant(column); + ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx); + + assert(column_ref->type->components() >= (row_base + count)); + assert(src->type->components() >= (src_base + count)); + + /* Generate a swizzle that extracts the number of components from the source + * that are to be assigned to the column of the matrix. + */ + if (count < src->type->vector_elements) { + src = new(mem_ctx) ir_swizzle(src, + src_base + 0, src_base + 1, + src_base + 2, src_base + 3, + count); } + + /* Mask of fields to be written in the assignment. + */ + const unsigned write_mask = ((1U << count) - 1) << row_base; + + return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask); } /** - * Generate data for a constant vector constructor w/a single scalar parameter + * Generate inline code for a matrix constructor * - * Vector constructors in GLSL can be passed a single scalar of the - * approriate type. In these cases, the resulting vector contains the specified - * value in all components. This function generates data for that vector. + * The generated constructor code will consist of a temporary variable + * declaration of the same type as the constructor. A sequence of assignments + * from constructor parameters to the temporary will follow. * - * \param type Type of the desired vector. - * \param initializer Scalar value used to initialize the vector. - * \param data Location to store the resulting vector data. + * \return + * An \c ir_dereference_variable of the temprorary generated in the constructor + * body. */ -void -generate_constructor_vector(const glsl_type *type, ir_constant *initializer, - ir_constant_data *data) +ir_rvalue * +emit_inline_matrix_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *ctx) { - switch (type->base_type) { - case GLSL_TYPE_UINT: - case GLSL_TYPE_INT: - for (unsigned i = 0; i < type->components(); i++) - data->u[i] = initializer->value.u[0]; + assert(!parameters->is_empty()); - break; + ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary); + instructions->push_tail(var); - case GLSL_TYPE_FLOAT: - for (unsigned i = 0; i < type->components(); i++) - data->f[i] = initializer->value.f[0]; + /* There are three kinds of matrix constructors. + * + * - Construct a matrix from a single scalar by replicating that scalar to + * along the diagonal of the matrix and setting all other components to + * zero. + * + * - Construct a matrix from an arbirary combination of vectors and + * scalars. The components of the constructor parameters are assigned + * to the matrix in colum-major order until the matrix is full. + * + * - Construct a matrix from a single matrix. The source matrix is copied + * to the upper left portion of the constructed matrix, and the remaining + * elements take values from the identity matrix. + */ + ir_rvalue *const first_param = (ir_rvalue *) parameters->head; + if (single_scalar_parameter(parameters)) { + /* Assign the scalar to the X component of a vec4, and fill the remaining + * components with zero. + */ + ir_variable *rhs_var = + new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec", + ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_constant_data zero; + zero.f[0] = 0.0; + zero.f[1] = 0.0; + zero.f[2] = 0.0; + zero.f[3] = 0.0; + + ir_instruction *inst = + new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), + new(ctx) ir_constant(rhs_var->type, &zero), + NULL); + instructions->push_tail(inst); + + ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + + inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01); + instructions->push_tail(inst); + + /* Assign the temporary vector to each column of the destination matrix + * with a swizzle that puts the X component on the diagonal of the + * matrix. In some cases this may mean that the X component does not + * get assigned into the column at all (i.e., when the matrix has more + * columns than rows). + */ + static const unsigned rhs_swiz[4][4] = { + { 0, 1, 1, 1 }, + { 1, 0, 1, 1 }, + { 1, 1, 0, 1 }, + { 1, 1, 1, 0 } + }; + + const unsigned cols_to_init = MIN2(type->matrix_columns, + type->vector_elements); + for (unsigned i = 0; i < cols_to_init; i++) { + ir_constant *const col_idx = new(ctx) ir_constant(i); + ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); + + ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i], + type->vector_elements); + + inst = new(ctx) ir_assignment(col_ref, rhs, NULL); + instructions->push_tail(inst); + } - break; + for (unsigned i = cols_to_init; i < type->matrix_columns; i++) { + ir_constant *const col_idx = new(ctx) ir_constant(i); + ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx); - case GLSL_TYPE_BOOL: - for (unsigned i = 0; i < type->components(); i++) - data->b[i] = initializer->value.b[0]; + ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var); + ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1, + type->vector_elements); - break; + inst = new(ctx) ir_assignment(col_ref, rhs, NULL); + instructions->push_tail(inst); + } + } else if (first_param->type->is_matrix()) { + /* From page 50 (56 of the PDF) of the GLSL 1.50 spec: + * + * "If a matrix is constructed from a matrix, then each component + * (column i, row j) in the result that has a corresponding + * component (column i, row j) in the argument will be initialized + * from there. All other components will be initialized to the + * identity matrix. If a matrix argument is given to a matrix + * constructor, it is an error to have any other arguments." + */ + assert(first_param->next->is_tail_sentinel()); + ir_rvalue *const src_matrix = first_param; - default: - assert(!"Should not get here."); - break; + /* If the source matrix is smaller, pre-initialize the relavent parts of + * the destination matrix to the identity matrix. + */ + if ((src_matrix->type->matrix_columns < var->type->matrix_columns) + || (src_matrix->type->vector_elements < var->type->vector_elements)) { + + /* If the source matrix has fewer rows, every column of the destination + * must be initialized. Otherwise only the columns in the destination + * that do not exist in the source must be initialized. + */ + unsigned col = + (src_matrix->type->vector_elements < var->type->vector_elements) + ? 0 : src_matrix->type->matrix_columns; + + const glsl_type *const col_type = var->type->column_type(); + for (/* empty */; col < var->type->matrix_columns; col++) { + ir_constant_data ident; + + ident.f[0] = 0.0; + ident.f[1] = 0.0; + ident.f[2] = 0.0; + ident.f[3] = 0.0; + + ident.f[col] = 1.0; + + ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident); + + ir_rvalue *const lhs = + new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col)); + + ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL); + instructions->push_tail(inst); + } + } + + /* Assign columns from the source matrix to the destination matrix. + * + * Since the parameter will be used in the RHS of multiple assignments, + * generate a temporary and copy the paramter there. + */ + ir_variable *const rhs_var = + new(ctx) ir_variable(first_param->type, "mat_ctor_mat", + ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_dereference *const rhs_var_ref = + new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *const inst = + new(ctx) ir_assignment(rhs_var_ref, first_param, NULL); + instructions->push_tail(inst); + + const unsigned last_row = MIN2(src_matrix->type->vector_elements, + var->type->vector_elements); + const unsigned last_col = MIN2(src_matrix->type->matrix_columns, + var->type->matrix_columns); + + unsigned swiz[4] = { 0, 0, 0, 0 }; + for (unsigned i = 1; i < last_row; i++) + swiz[i] = i; + + const unsigned write_mask = (1U << last_row) - 1; + + for (unsigned i = 0; i < last_col; i++) { + ir_dereference *const lhs = + new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); + ir_rvalue *const rhs_col = + new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i)); + + /* If one matrix has columns that are smaller than the columns of the + * other matrix, wrap the column access of the larger with a swizzle + * so that the LHS and RHS of the assignment have the same size (and + * therefore have the same type). + * + * It would be perfectly valid to unconditionally generate the + * swizzles, this this will typically result in a more compact IR tree. + */ + ir_rvalue *rhs; + if (lhs->type->vector_elements != rhs_col->type->vector_elements) { + rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row); + } else { + rhs = rhs_col; + } + + ir_instruction *inst = + new(ctx) ir_assignment(lhs, rhs, NULL, write_mask); + instructions->push_tail(inst); + } + } else { + const unsigned cols = type->matrix_columns; + const unsigned rows = type->vector_elements; + unsigned col_idx = 0; + unsigned row_idx = 0; + + foreach_list (node, parameters) { + ir_rvalue *const rhs = (ir_rvalue *) node; + const unsigned components_remaining_this_column = rows - row_idx; + unsigned rhs_components = rhs->type->components(); + unsigned rhs_base = 0; + + /* Since the parameter might be used in the RHS of two assignments, + * generate a temporary and copy the paramter there. + */ + ir_variable *rhs_var = + new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_dereference *rhs_var_ref = + new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); + instructions->push_tail(inst); + + /* Assign the current parameter to as many components of the matrix + * as it will fill. + * + * NOTE: A single vector parameter can span two matrix columns. A + * single vec4, for example, can completely fill a mat2. + */ + if (rhs_components >= components_remaining_this_column) { + const unsigned count = MIN2(rhs_components, + components_remaining_this_column); + + rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); + + ir_instruction *inst = assign_to_matrix_column(var, col_idx, + row_idx, + rhs_var_ref, 0, + count, ctx); + instructions->push_tail(inst); + + rhs_base = count; + + col_idx++; + row_idx = 0; + } + + /* If there is data left in the parameter and components left to be + * set in the destination, emit another assignment. It is possible + * that the assignment could be of a vec4 to the last element of the + * matrix. In this case col_idx==cols, but there is still data + * left in the source parameter. Obviously, don't emit an assignment + * to data outside the destination matrix. + */ + if ((col_idx < cols) && (rhs_base < rhs_components)) { + const unsigned count = rhs_components - rhs_base; + + rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); + + ir_instruction *inst = assign_to_matrix_column(var, col_idx, + row_idx, + rhs_var_ref, + rhs_base, + count, ctx); + instructions->push_tail(inst); + + row_idx += count; + } + } + } + + return new(ctx) ir_dereference_variable(var); +} + + +ir_rvalue * +emit_inline_record_constructor(const glsl_type *type, + exec_list *instructions, + exec_list *parameters, + void *mem_ctx) +{ + ir_variable *const var = + new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary); + ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var); + + instructions->push_tail(var); + + exec_node *node = parameters->head; + for (unsigned i = 0; i < type->length; i++) { + assert(!node->is_tail_sentinel()); + + ir_dereference *const lhs = + new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL), + type->fields.structure[i].name); + + ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue(); + assert(rhs != NULL); + + ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL); + + instructions->push_tail(assign); + node = node->next; } + + return d; } @@ -448,10 +976,10 @@ ir_rvalue * ast_function_expression::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state) { - void *ctx = talloc_parent(state); + void *ctx = state; /* There are three sorts of function calls. * - * 1. contstructors - The first subexpression is an ast_type_specifier. + * 1. constructors - The first subexpression is an ast_type_specifier. * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * @@ -485,6 +1013,7 @@ ast_function_expression::hir(exec_list *instructions, & loc, &this->expressions, state); } + /* There are two kinds of constructor call. Constructors for built-in * language types, such as mat4 and vec2, are free form. The only * requirement is that the parameters must provide enough values of the @@ -493,236 +1022,173 @@ ast_function_expression::hir(exec_list *instructions, * correct order. These constructors follow essentially the same type * matching rules as functions. */ - if (constructor_type->is_numeric() || constructor_type->is_boolean()) { - /* Constructing a numeric type has a couple steps. First all values - * passed to the constructor are broken into individual parameters - * and type converted to the base type of the thing being constructed. - * - * At that point we have some number of values that match the base - * type of the thing being constructed. Now the constructor can be - * treated like a function call. Each numeric type has a small set - * of constructor functions. The set of new parameters will either - * match one of those functions or the original constructor is - * invalid. - */ - const glsl_type *const base_type = constructor_type->get_base_type(); + if (!constructor_type->is_numeric() && !constructor_type->is_boolean()) + return ir_call::get_error_instruction(ctx); - /* Total number of components of the type being constructed. - */ - const unsigned type_components = constructor_type->components(); + /* Total number of components of the type being constructed. */ + const unsigned type_components = constructor_type->components(); - /* Number of components from parameters that have actually been - * consumed. This is used to perform several kinds of error checking. - */ - unsigned components_used = 0; + /* Number of components from parameters that have actually been + * consumed. This is used to perform several kinds of error checking. + */ + unsigned components_used = 0; - unsigned matrix_parameters = 0; - unsigned nonmatrix_parameters = 0; - exec_list actual_parameters; + unsigned matrix_parameters = 0; + unsigned nonmatrix_parameters = 0; + exec_list actual_parameters; - bool all_parameters_are_constant = true; + foreach_list (n, &this->expressions) { + ast_node *ast = exec_node_data(ast_node, n, link); + ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); - /* This handles invalid constructor calls such as 'vec4 v = vec4();' + /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: + * + * "It is an error to provide extra arguments beyond this + * last used argument." */ - if (this->expressions.is_empty()) { - _mesa_glsl_error(& loc, state, "too few components to construct " - "`%s'", + if (components_used >= type_components) { + _mesa_glsl_error(& loc, state, "too many parameters to `%s' " + "constructor", constructor_type->name); return ir_call::get_error_instruction(ctx); } - foreach_list (n, &this->expressions) { - ast_node *ast = exec_node_data(ast_node, n, link); - ir_rvalue *result = - ast->hir(instructions, state)->as_rvalue(); - ir_variable *result_var = NULL; - - /* Attempt to convert the parameter to a constant valued expression. - * After doing so, track whether or not all the parameters to the - * constructor are trivially constant valued expressions. - */ - ir_rvalue *const constant = - result->constant_expression_value(); - - if (constant != NULL) - result = constant; - else - all_parameters_are_constant = false; - - /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: - * - * "It is an error to provide extra arguments beyond this - * last used argument." - */ - if (components_used >= type_components) { - _mesa_glsl_error(& loc, state, "too many parameters to `%s' " - "constructor", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - if (!result->type->is_numeric() && !result->type->is_boolean()) { - _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " - "non-numeric data type", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } - - /* Count the number of matrix and nonmatrix parameters. This - * is used below to enforce some of the constructor rules. - */ - if (result->type->is_matrix()) - matrix_parameters++; - else - nonmatrix_parameters++; - - /* We can't use the same instruction node in the multiple - * swizzle dereferences that happen, so assign it to a - * variable and deref that. Plus it saves computation for - * complicated expressions and handles - * glsl-vs-constructor-call.shader_test. - */ - if (result->type->components() >= 1 && !result->as_constant()) { - result_var = new(ctx) ir_variable(result->type, - "constructor_tmp"); - ir_dereference_variable *lhs; - - lhs = new(ctx) ir_dereference_variable(result_var); - instructions->push_tail(new(ctx) ir_assignment(lhs, - result, NULL)); - } - - /* Process each of the components of the parameter. Dereference - * each component individually, perform any type conversions, and - * add it to the parameter list for the constructor. - */ - for (unsigned i = 0; i < result->type->components(); i++) { - if (components_used >= type_components) - break; + if (!result->type->is_numeric() && !result->type->is_boolean()) { + _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " + "non-numeric data type", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } - ir_rvalue *component; + /* Count the number of matrix and nonmatrix parameters. This + * is used below to enforce some of the constructor rules. + */ + if (result->type->is_matrix()) + matrix_parameters++; + else + nonmatrix_parameters++; - if (result_var) { - ir_dereference *d = new(ctx) ir_dereference_variable(result_var); - component = dereference_component(d, i); - } else { - component = dereference_component(result, i); - } - component = convert_component(component, base_type); + actual_parameters.push_tail(result); + components_used += result->type->components(); + } - /* All cases that could result in component->type being the - * error type should have already been caught above. - */ - assert(component->type == base_type); + /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: + * + * "It is an error to construct matrices from other matrices. This + * is reserved for future use." + */ + if (state->language_version == 110 && matrix_parameters > 0 + && constructor_type->is_matrix()) { + _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " + "matrix in GLSL 1.10", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } - if (component->as_constant() == NULL) - all_parameters_are_constant = false; + /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: + * + * "If a matrix argument is given to a matrix constructor, it is + * an error to have any other arguments." + */ + if ((matrix_parameters > 0) + && ((matrix_parameters + nonmatrix_parameters) > 1) + && constructor_type->is_matrix()) { + _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " + "matrix must be only parameter", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } - /* Don't actually generate constructor calls for scalars. - * Instead, do the usual component selection and conversion, - * and return the single component. - */ - if (constructor_type->is_scalar()) - return component; + /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: + * + * "In these cases, there must be enough components provided in the + * arguments to provide an initializer for every component in the + * constructed value." + */ + if (components_used < type_components && components_used != 1 + && matrix_parameters == 0) { + _mesa_glsl_error(& loc, state, "too few components to construct " + "`%s'", + constructor_type->name); + return ir_call::get_error_instruction(ctx); + } - actual_parameters.push_tail(component); - components_used++; + /* Later, we cast each parameter to the same base type as the + * constructor. Since there are no non-floating point matrices, we + * need to break them up into a series of column vectors. + */ + if (constructor_type->base_type != GLSL_TYPE_FLOAT) { + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *matrix = (ir_rvalue *) n; + + if (!matrix->type->is_matrix()) + continue; + + /* Create a temporary containing the matrix. */ + ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp", + ir_var_temporary); + instructions->push_tail(var); + instructions->push_tail(new(ctx) ir_assignment(new(ctx) + ir_dereference_variable(var), matrix, NULL)); + var->constant_value = matrix->constant_expression_value(); + + /* Replace the matrix with dereferences of its columns. */ + for (int i = 0; i < matrix->type->matrix_columns; i++) { + matrix->insert_before(new (ctx) ir_dereference_array(var, + new(ctx) ir_constant(i))); } + matrix->remove(); } + } - /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: - * - * "It is an error to construct matrices from other matrices. This - * is reserved for future use." - */ - if ((state->language_version <= 110) && (matrix_parameters > 0) - && constructor_type->is_matrix()) { - _mesa_glsl_error(& loc, state, "cannot construct `%s' from a " - "matrix in GLSL 1.10", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } + bool all_parameters_are_constant = true; - /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: - * - * "If a matrix argument is given to a matrix constructor, it is - * an error to have any other arguments." - */ - if ((matrix_parameters > 0) - && ((matrix_parameters + nonmatrix_parameters) > 1) - && constructor_type->is_matrix()) { - _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, " - "matrix must be only parameter", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } + /* Type cast each parameter and, if possible, fold constants.*/ + foreach_list_safe(n, &actual_parameters) { + ir_rvalue *ir = (ir_rvalue *) n; - /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec: - * - * "In these cases, there must be enough components provided in the - * arguments to provide an initializer for every component in the - * constructed value." + const glsl_type *desired_type = + glsl_type::get_instance(constructor_type->base_type, + ir->type->vector_elements, + ir->type->matrix_columns); + ir_rvalue *result = convert_component(ir, desired_type); + + /* Attempt to convert the parameter to a constant valued expression. + * After doing so, track whether or not all the parameters to the + * constructor are trivially constant valued expressions. */ - if ((components_used < type_components) && (components_used != 1)) { - _mesa_glsl_error(& loc, state, "too few components to construct " - "`%s'", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } + ir_rvalue *const constant = result->constant_expression_value(); - ir_function *f = state->symbols->get_function(constructor_type->name); - if (f == NULL) { - _mesa_glsl_error(& loc, state, "no constructor for type `%s'", - constructor_type->name); - return ir_call::get_error_instruction(ctx); - } + if (constant != NULL) + result = constant; + else + all_parameters_are_constant = false; - const ir_function_signature *sig = - f->matching_signature(& actual_parameters); - if (sig != NULL) { - /* If all of the parameters are trivially constant, create a - * constant representing the complete collection of parameters. - */ - if (all_parameters_are_constant) { - if (components_used >= type_components) - return new(ctx) ir_constant(sig->return_type, - & actual_parameters); - - assert(sig->return_type->is_vector() - || sig->return_type->is_matrix()); - - /* Constructors with exactly one component are special for - * vectors and matrices. For vectors it causes all elements of - * the vector to be filled with the value. For matrices it - * causes the matrix to be filled with 0 and the diagonal to be - * filled with the value. - */ - ir_constant_data data; - ir_constant *const initializer = - (ir_constant *) actual_parameters.head; - if (sig->return_type->is_matrix()) - generate_constructor_matrix(sig->return_type, initializer, - &data); - else - generate_constructor_vector(sig->return_type, initializer, - &data); - - return new(ctx) ir_constant(sig->return_type, &data); - } else - return new(ctx) ir_call(sig, & actual_parameters); - } else { - /* FINISHME: Log a better error message here. G++ will show the - * FINSIHME: types of the actual parameters and the set of - * FINSIHME: candidate functions. A different error should also be - * FINSIHME: logged when multiple functions match. - */ - _mesa_glsl_error(& loc, state, "no matching constructor for `%s'", - constructor_type->name); - return ir_call::get_error_instruction(ctx); + if (result != ir) { + ir->replace_with(result); } } - return ir_call::get_error_instruction(ctx); + /* If all of the parameters are trivially constant, create a + * constant representing the complete collection of parameters. + */ + if (all_parameters_are_constant) { + return new(ctx) ir_constant(constructor_type, &actual_parameters); + } else if (constructor_type->is_scalar()) { + return dereference_component((ir_rvalue *) actual_parameters.head, + 0); + } else if (constructor_type->is_vector()) { + return emit_inline_vector_constructor(constructor_type, + instructions, + &actual_parameters, + ctx); + } else { + assert(constructor_type->is_matrix()); + return emit_inline_matrix_constructor(constructor_type, + instructions, + &actual_parameters, + ctx); + } } else { const ast_expression *id = subexpressions[0]; YYLTYPE loc = id->get_location(); @@ -735,11 +1201,48 @@ ast_function_expression::hir(exec_list *instructions, state->symbols->get_type(id->primary_expression.identifier); if ((type != NULL) && type->is_record()) { - ir_constant *constant = - constant_record_constructor(type, &loc, &actual_parameters, state); + exec_node *node = actual_parameters.head; + for (unsigned i = 0; i < type->length; i++) { + ir_rvalue *ir = (ir_rvalue *) node; + + if (node->is_tail_sentinel()) { + _mesa_glsl_error(&loc, state, + "insufficient parameters to constructor " + "for `%s'", + type->name); + return ir_call::get_error_instruction(ctx); + } - if (constant != NULL) - return constant; + if (apply_implicit_conversion(type->fields.structure[i].type, ir, + state)) { + node->replace_with(ir); + } else { + _mesa_glsl_error(&loc, state, + "parameter type mismatch in constructor " + "for `%s.%s' (%s vs %s)", + type->name, + type->fields.structure[i].name, + ir->type->name, + type->fields.structure[i].type->name); + return ir_call::get_error_instruction(ctx);; + } + + node = node->next; + } + + if (!node->is_tail_sentinel()) { + _mesa_glsl_error(&loc, state, "too many parameters in constructor " + "for `%s'", type->name); + return ir_call::get_error_instruction(ctx); + } + + ir_rvalue *const constant = + constant_record_constructor(type, &actual_parameters, state); + + return (constant != NULL) + ? constant + : emit_inline_record_constructor(type, instructions, + &actual_parameters, state); } return match_function_by_name(instructions,