X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=gdb%2Famd64-tdep.c;h=a26dca43372af7fb9ffbbbfbf6fbc91e99965d65;hb=05c0465e16a5e2db92f8975aebf2bb5aacb1c542;hp=466ec245ac94c698e75511edc5843f9c64d00df5;hpb=ba581dc13b5e3ca555a49df501d5ac74287f504d;p=binutils-gdb.git diff --git a/gdb/amd64-tdep.c b/gdb/amd64-tdep.c index 466ec245ac9..a26dca43372 100644 --- a/gdb/amd64-tdep.c +++ b/gdb/amd64-tdep.c @@ -1,7 +1,6 @@ /* Target-dependent code for AMD64. - Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 - Free Software Foundation, Inc. + Copyright (C) 2001-2013 Free Software Foundation, Inc. Contributed by Jiri Smid, SuSE Labs. @@ -36,12 +35,21 @@ #include "regcache.h" #include "regset.h" #include "symfile.h" - +#include "disasm.h" #include "gdb_assert.h" - +#include "exceptions.h" #include "amd64-tdep.h" #include "i387-tdep.h" +#include "features/i386/amd64.c" +#include "features/i386/amd64-avx.c" +#include "features/i386/amd64-mpx.c" +#include "features/i386/x32.c" +#include "features/i386/x32-avx.c" + +#include "ax.h" +#include "ax-gdb.h" + /* Note that the AMD64 architecture was previously known as x86-64. The latter is (forever) engraved into the canonical system name as returned by config.guess, and used as the name for the AMD64 port @@ -69,60 +77,26 @@ static const char *amd64_register_names[] = "mxcsr", }; -/* Total number of registers. */ -#define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names) - -/* The registers used to pass integer arguments during a function call. */ -static int amd64_dummy_call_integer_regs[] = +static const char *amd64_ymm_names[] = { - AMD64_RDI_REGNUM, /* %rdi */ - AMD64_RSI_REGNUM, /* %rsi */ - AMD64_RDX_REGNUM, /* %rdx */ - AMD64_RCX_REGNUM, /* %rcx */ - 8, /* %r8 */ - 9 /* %r9 */ + "ymm0", "ymm1", "ymm2", "ymm3", + "ymm4", "ymm5", "ymm6", "ymm7", + "ymm8", "ymm9", "ymm10", "ymm11", + "ymm12", "ymm13", "ymm14", "ymm15" }; -/* Return the name of register REGNUM. */ - -const char * -amd64_register_name (struct gdbarch *gdbarch, int regnum) +static const char *amd64_ymmh_names[] = { - if (regnum >= 0 && regnum < AMD64_NUM_REGS) - return amd64_register_names[regnum]; - - return NULL; -} - -/* Return the GDB type object for the "standard" data type of data in - register REGNUM. */ + "ymm0h", "ymm1h", "ymm2h", "ymm3h", + "ymm4h", "ymm5h", "ymm6h", "ymm7h", + "ymm8h", "ymm9h", "ymm10h", "ymm11h", + "ymm12h", "ymm13h", "ymm14h", "ymm15h" +}; -struct type * -amd64_register_type (struct gdbarch *gdbarch, int regnum) +static const char *amd64_mpx_names[] = { - if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM) - return builtin_type (gdbarch)->builtin_int64; - if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM) - return builtin_type (gdbarch)->builtin_data_ptr; - if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM) - return builtin_type (gdbarch)->builtin_int64; - if (regnum == AMD64_RIP_REGNUM) - return builtin_type (gdbarch)->builtin_func_ptr; - if (regnum == AMD64_EFLAGS_REGNUM) - return i386_eflags_type (gdbarch); - if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM) - return builtin_type (gdbarch)->builtin_int32; - if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7) - return i387_ext_type (gdbarch); - if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7) - return builtin_type (gdbarch)->builtin_int32; - if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15) - return i386_sse_type (gdbarch); - if (regnum == AMD64_MXCSR_REGNUM) - return i386_mxcsr_type (gdbarch); - - internal_error (__FILE__, __LINE__, _("invalid regnum")); -} + "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" +}; /* DWARF Register Number Mapping as defined in the System V psABI, section 3.6. */ @@ -141,7 +115,14 @@ static int amd64_dwarf_regmap[] = AMD64_RSP_REGNUM, /* Extended Integer Registers 8 - 15. */ - 8, 9, 10, 11, 12, 13, 14, 15, + AMD64_R8_REGNUM, /* %r8 */ + AMD64_R9_REGNUM, /* %r9 */ + AMD64_R10_REGNUM, /* %r10 */ + AMD64_R11_REGNUM, /* %r11 */ + AMD64_R12_REGNUM, /* %r12 */ + AMD64_R13_REGNUM, /* %r13 */ + AMD64_R14_REGNUM, /* %r14 */ + AMD64_R15_REGNUM, /* %r15 */ /* Return Address RA. Mapped to RIP. */ AMD64_RIP_REGNUM, @@ -202,6 +183,8 @@ static const int amd64_dwarf_regmap_len = static int amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) { + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + int ymm0_regnum = tdep->ymm0_regnum; int regnum = -1; if (reg >= 0 && reg < amd64_dwarf_regmap_len) @@ -209,6 +192,9 @@ amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) if (regnum == -1) warning (_("Unmapped DWARF Register #%d encountered."), reg); + else if (ymm0_regnum >= 0 + && i386_xmm_regnum_p (gdbarch, regnum)) + regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); return regnum; } @@ -249,8 +235,178 @@ amd64_arch_reg_to_regnum (int reg) return amd64_arch_regmap[reg]; } +/* Register names for byte pseudo-registers. */ + +static const char *amd64_byte_names[] = +{ + "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", + "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", + "ah", "bh", "ch", "dh" +}; + +/* Number of lower byte registers. */ +#define AMD64_NUM_LOWER_BYTE_REGS 16 + +/* Register names for word pseudo-registers. */ + +static const char *amd64_word_names[] = +{ + "ax", "bx", "cx", "dx", "si", "di", "bp", "", + "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" +}; + +/* Register names for dword pseudo-registers. */ + +static const char *amd64_dword_names[] = +{ + "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", + "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", + "eip" +}; + +/* Return the name of register REGNUM. */ + +static const char * +amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + if (i386_byte_regnum_p (gdbarch, regnum)) + return amd64_byte_names[regnum - tdep->al_regnum]; + else if (i386_ymm_regnum_p (gdbarch, regnum)) + return amd64_ymm_names[regnum - tdep->ymm0_regnum]; + else if (i386_word_regnum_p (gdbarch, regnum)) + return amd64_word_names[regnum - tdep->ax_regnum]; + else if (i386_dword_regnum_p (gdbarch, regnum)) + return amd64_dword_names[regnum - tdep->eax_regnum]; + else + return i386_pseudo_register_name (gdbarch, regnum); +} + +static struct value * +amd64_pseudo_register_read_value (struct gdbarch *gdbarch, + struct regcache *regcache, + int regnum) +{ + gdb_byte raw_buf[MAX_REGISTER_SIZE]; + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum register_status status; + struct value *result_value; + gdb_byte *buf; + + result_value = allocate_value (register_type (gdbarch, regnum)); + VALUE_LVAL (result_value) = lval_register; + VALUE_REGNUM (result_value) = regnum; + buf = value_contents_raw (result_value); + + if (i386_byte_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->al_regnum; + + /* Extract (always little endian). */ + if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) + { + /* Special handling for AH, BH, CH, DH. */ + status = regcache_raw_read (regcache, + gpnum - AMD64_NUM_LOWER_BYTE_REGS, + raw_buf); + if (status == REG_VALID) + memcpy (buf, raw_buf + 1, 1); + else + mark_value_bytes_unavailable (result_value, 0, + TYPE_LENGTH (value_type (result_value))); + } + else + { + status = regcache_raw_read (regcache, gpnum, raw_buf); + if (status == REG_VALID) + memcpy (buf, raw_buf, 1); + else + mark_value_bytes_unavailable (result_value, 0, + TYPE_LENGTH (value_type (result_value))); + } + } + else if (i386_dword_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->eax_regnum; + /* Extract (always little endian). */ + status = regcache_raw_read (regcache, gpnum, raw_buf); + if (status == REG_VALID) + memcpy (buf, raw_buf, 4); + else + mark_value_bytes_unavailable (result_value, 0, + TYPE_LENGTH (value_type (result_value))); + } + else + i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, + result_value); + + return result_value; +} + +static void +amd64_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int regnum, const gdb_byte *buf) +{ + gdb_byte raw_buf[MAX_REGISTER_SIZE]; + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + if (i386_byte_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->al_regnum; + + if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) + { + /* Read ... AH, BH, CH, DH. */ + regcache_raw_read (regcache, + gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf); + /* ... Modify ... (always little endian). */ + memcpy (raw_buf + 1, buf, 1); + /* ... Write. */ + regcache_raw_write (regcache, + gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf); + } + else + { + /* Read ... */ + regcache_raw_read (regcache, gpnum, raw_buf); + /* ... Modify ... (always little endian). */ + memcpy (raw_buf, buf, 1); + /* ... Write. */ + regcache_raw_write (regcache, gpnum, raw_buf); + } + } + else if (i386_dword_regnum_p (gdbarch, regnum)) + { + int gpnum = regnum - tdep->eax_regnum; + + /* Read ... */ + regcache_raw_read (regcache, gpnum, raw_buf); + /* ... Modify ... (always little endian). */ + memcpy (raw_buf, buf, 4); + /* ... Write. */ + regcache_raw_write (regcache, gpnum, raw_buf); + } + else + i386_pseudo_register_write (gdbarch, regcache, regnum, buf); +} + +/* Register classes as defined in the psABI. */ + +enum amd64_reg_class +{ + AMD64_INTEGER, + AMD64_SSE, + AMD64_SSEUP, + AMD64_X87, + AMD64_X87UP, + AMD64_COMPLEX_X87, + AMD64_NO_CLASS, + AMD64_MEMORY +}; + /* Return the union class of CLASS1 and CLASS2. See the psABI for details. */ @@ -287,6 +443,8 @@ amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) return AMD64_SSE; } +static void amd64_classify (struct type *type, enum amd64_reg_class class[2]); + /* Return non-zero if TYPE is a non-POD structure or union type. */ static int @@ -306,12 +464,10 @@ amd64_non_pod_p (struct type *type) static void amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) { - int len = TYPE_LENGTH (type); - /* 1. If the size of an object is larger than two eightbytes, or in C++, is a non-POD structure or union type, or contains unaligned fields, it has class memory. */ - if (len > 16 || amd64_non_pod_p (type)) + if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type)) { class[0] = class[1] = AMD64_MEMORY; return; @@ -331,7 +487,7 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) /* All fields in an array have the same type. */ amd64_classify (subtype, class); - if (len > 8 && class[1] == AMD64_NO_CLASS) + if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS) class[1] = class[0]; } else @@ -347,6 +503,12 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i)); int pos = TYPE_FIELD_BITPOS (type, i) / 64; enum amd64_reg_class subclass[2]; + int bitsize = TYPE_FIELD_BITSIZE (type, i); + int endpos; + + if (bitsize == 0) + bitsize = TYPE_LENGTH (subtype) * 8; + endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64; /* Ignore static fields. */ if (field_is_static (&TYPE_FIELD (type, i))) @@ -356,6 +518,30 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) amd64_classify (subtype, subclass); class[pos] = amd64_merge_classes (class[pos], subclass[0]); + if (bitsize <= 64 && pos == 0 && endpos == 1) + /* This is a bit of an odd case: We have a field that would + normally fit in one of the two eightbytes, except that + it is placed in a way that this field straddles them. + This has been seen with a structure containing an array. + + The ABI is a bit unclear in this case, but we assume that + this field's class (stored in subclass[0]) must also be merged + into class[1]. In other words, our field has a piece stored + in the second eight-byte, and thus its class applies to + the second eight-byte as well. + + In the case where the field length exceeds 8 bytes, + it should not be necessary to merge the field class + into class[1]. As LEN > 8, subclass[1] is necessarily + different from AMD64_NO_CLASS. If subclass[1] is equal + to subclass[0], then the normal class[1]/subclass[1] + merging will take care of everything. For subclass[1] + to be different from subclass[0], I can only see the case + where we have a SSE/SSEUP or X87/X87UP pair, which both + use up all 16 bytes of the aggregate, and are already + handled just fine (because each portion sits on its own + 8-byte). */ + class[1] = amd64_merge_classes (class[1], subclass[0]); if (pos == 0) class[1] = amd64_merge_classes (class[1], subclass[1]); } @@ -368,7 +554,7 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY) class[0] = class[1] = AMD64_MEMORY; - /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to + /* Rule (b): If SSEUP is not preceded by SSE, it is converted to SSE. */ if (class[0] == AMD64_SSEUP) class[0] = AMD64_SSE; @@ -378,7 +564,7 @@ amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2]) /* Classify TYPE, and store the result in CLASS. */ -void +static void amd64_classify (struct type *type, enum amd64_reg_class class[2]) { enum type_code code = TYPE_CODE (type); @@ -418,6 +604,23 @@ amd64_classify (struct type *type, enum amd64_reg_class class[2]) /* Class X87 and X87UP. */ class[0] = AMD64_X87, class[1] = AMD64_X87UP; + /* Arguments of complex T where T is one of the types float or + double get treated as if they are implemented as: + + struct complexT { + T real; + T imag; + }; */ + else if (code == TYPE_CODE_COMPLEX && len == 8) + class[0] = AMD64_SSE; + else if (code == TYPE_CODE_COMPLEX && len == 16) + class[0] = class[1] = AMD64_SSE; + + /* A variable of type complex long double is classified as type + COMPLEX_X87. */ + else if (code == TYPE_CODE_COMPLEX && len == 32) + class[0] = AMD64_COMPLEX_X87; + /* Aggregates. */ else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION) @@ -425,11 +628,10 @@ amd64_classify (struct type *type, enum amd64_reg_class class[2]) } static enum return_value_convention -amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, +amd64_return_value (struct gdbarch *gdbarch, struct value *function, struct type *type, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf) { - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum amd64_reg_class class[2]; int len = TYPE_LENGTH (type); static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; @@ -439,14 +641,13 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, int i; gdb_assert (!(readbuf && writebuf)); - gdb_assert (tdep->classify); /* 1. Classify the return type with the classification algorithm. */ - tdep->classify (type, class); + amd64_classify (type, class); /* 2. If the type has class MEMORY, then the caller provides space for the return value and passes the address of this storage in - %rdi as if it were the first argument to the function. In effect, + %rdi as if it were the first argument to the function. In effect, this address becomes a hidden first argument. On return %rax will contain the address that has been passed in @@ -468,6 +669,30 @@ amd64_return_value (struct gdbarch *gdbarch, struct type *func_type, return RETURN_VALUE_ABI_RETURNS_ADDRESS; } + /* 8. If the class is COMPLEX_X87, the real part of the value is + returned in %st0 and the imaginary part in %st1. */ + if (class[0] == AMD64_COMPLEX_X87) + { + if (readbuf) + { + regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf); + regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16); + } + + if (writebuf) + { + i387_return_value (gdbarch, regcache); + regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf); + regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16); + + /* Fix up the tag word such that both %st(0) and %st(1) are + marked as valid. */ + regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff); + } + + return RETURN_VALUE_REGISTER_CONVENTION; + } + gdb_assert (class[1] != AMD64_MEMORY); gdb_assert (len <= 16); @@ -540,10 +765,15 @@ static CORE_ADDR amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args, CORE_ADDR sp, int struct_return) { - struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache)); - int *integer_regs = tdep->call_dummy_integer_regs; - int num_integer_regs = tdep->call_dummy_num_integer_regs; - + static int integer_regnum[] = + { + AMD64_RDI_REGNUM, /* %rdi */ + AMD64_RSI_REGNUM, /* %rsi */ + AMD64_RDX_REGNUM, /* %rdx */ + AMD64_RCX_REGNUM, /* %rcx */ + AMD64_R8_REGNUM, /* %r8 */ + AMD64_R9_REGNUM /* %r9 */ + }; static int sse_regnum[] = { /* %xmm0 ... %xmm7 */ @@ -560,8 +790,6 @@ amd64_push_arguments (struct regcache *regcache, int nargs, int sse_reg = 0; int i; - gdb_assert (tdep->classify); - /* Reserve a register for the "hidden" argument. */ if (struct_return) integer_reg++; @@ -576,7 +804,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, int j; /* Classify argument. */ - tdep->classify (type, class); + amd64_classify (type, class); /* Calculate the number of integer and SSE registers needed for this argument. */ @@ -590,7 +818,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, /* Check whether enough registers are available, and if the argument should be passed in registers at all. */ - if (integer_reg + needed_integer_regs > num_integer_regs + if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) || (needed_integer_regs == 0 && needed_sse_regs == 0)) { @@ -614,7 +842,7 @@ amd64_push_arguments (struct regcache *regcache, int nargs, switch (class[j]) { case AMD64_INTEGER: - regnum = integer_regs[integer_reg++]; + regnum = integer_regnum[integer_reg++]; break; case AMD64_SSE: @@ -680,13 +908,8 @@ amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, /* Pass "hidden" argument". */ if (struct_return) { - struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); - /* The "hidden" argument is passed throught the first argument - register. */ - const int arg_regnum = tdep->call_dummy_integer_regs[0]; - store_unsigned_integer (buf, 8, byte_order, struct_addr); - regcache_cooked_write (regcache, arg_regnum, buf); + regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf); } /* Store return address. */ @@ -833,57 +1056,6 @@ amd64_skip_prefixes (gdb_byte *insn) return insn; } -/* fprintf-function for amd64_insn_length. - This function is a nop, we don't want to print anything, we just want to - compute the length of the insn. */ - -static int ATTR_FORMAT (printf, 2, 3) -amd64_insn_length_fprintf (void *stream, const char *format, ...) -{ - return 0; -} - -/* Initialize a struct disassemble_info for amd64_insn_length. */ - -static void -amd64_insn_length_init_dis (struct gdbarch *gdbarch, - struct disassemble_info *di, - const gdb_byte *insn, int max_len, - CORE_ADDR addr) -{ - init_disassemble_info (di, NULL, amd64_insn_length_fprintf); - - /* init_disassemble_info installs buffer_read_memory, etc. - so we don't need to do that here. - The cast is necessary until disassemble_info is const-ified. */ - di->buffer = (gdb_byte *) insn; - di->buffer_length = max_len; - di->buffer_vma = addr; - - di->arch = gdbarch_bfd_arch_info (gdbarch)->arch; - di->mach = gdbarch_bfd_arch_info (gdbarch)->mach; - di->endian = gdbarch_byte_order (gdbarch); - di->endian_code = gdbarch_byte_order_for_code (gdbarch); - - disassemble_init_for_target (di); -} - -/* Return the length in bytes of INSN. - MAX_LEN is the size of the buffer containing INSN. - libopcodes currently doesn't export a utility to compute the - instruction length, so use the disassembler until then. */ - -static int -amd64_insn_length (struct gdbarch *gdbarch, - const gdb_byte *insn, int max_len, CORE_ADDR addr) -{ - struct disassemble_info di; - - amd64_insn_length_init_dis (gdbarch, &di, insn, max_len, addr); - - return gdbarch_print_insn (gdbarch, addr, &di); -} - /* Return an integer register (other than RSP) that is unused as an input operand in INSN. In order to not require adding a rex prefix if the insn doesn't already @@ -930,9 +1102,9 @@ amd64_get_unused_input_int_reg (const struct amd64_insn *details) if (have_sib) { int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); - int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); + int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); used_regs_mask |= 1 << base; - used_regs_mask |= 1 << index; + used_regs_mask |= 1 << idx; } else { @@ -1049,7 +1221,8 @@ fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc, /* Compute the rip-relative address. */ disp = extract_signed_integer (insn, sizeof (int32_t), byte_order); - insn_length = amd64_insn_length (gdbarch, dsc->insn_buf, dsc->max_len, from); + insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf, + dsc->max_len, from); rip_base = from + insn_length; /* We need a register to hold the address. @@ -1107,7 +1280,7 @@ amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, struct regcache *regs) { int len = gdbarch_max_insn_length (gdbarch); - /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to + /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to continually watch for running off the end of the buffer. */ int fixup_sentinel_space = len; struct displaced_step_closure *dsc = @@ -1368,6 +1541,130 @@ amd64_displaced_step_fixup (struct gdbarch *gdbarch, paddress (gdbarch, retaddr)); } } + +/* If the instruction INSN uses RIP-relative addressing, return the + offset into the raw INSN where the displacement to be adjusted is + found. Returns 0 if the instruction doesn't use RIP-relative + addressing. */ + +static int +rip_relative_offset (struct amd64_insn *insn) +{ + if (insn->modrm_offset != -1) + { + gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; + + if ((modrm & 0xc7) == 0x05) + { + /* The displacement is found right after the ModRM byte. */ + return insn->modrm_offset + 1; + } + } + + return 0; +} + +static void +append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) +{ + target_write_memory (*to, buf, len); + *to += len; +} + +static void +amd64_relocate_instruction (struct gdbarch *gdbarch, + CORE_ADDR *to, CORE_ADDR oldloc) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int len = gdbarch_max_insn_length (gdbarch); + /* Extra space for sentinels. */ + int fixup_sentinel_space = len; + gdb_byte *buf = xmalloc (len + fixup_sentinel_space); + struct amd64_insn insn_details; + int offset = 0; + LONGEST rel32, newrel; + gdb_byte *insn; + int insn_length; + + read_memory (oldloc, buf, len); + + /* Set up the sentinel space so we don't have to worry about running + off the end of the buffer. An excessive number of leading prefixes + could otherwise cause this. */ + memset (buf + len, 0, fixup_sentinel_space); + + insn = buf; + amd64_get_insn_details (insn, &insn_details); + + insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); + + /* Skip legacy instruction prefixes. */ + insn = amd64_skip_prefixes (insn); + + /* Adjust calls with 32-bit relative addresses as push/jump, with + the address pushed being the location where the original call in + the user program would return to. */ + if (insn[0] == 0xe8) + { + gdb_byte push_buf[16]; + unsigned int ret_addr; + + /* Where "ret" in the original code will return to. */ + ret_addr = oldloc + insn_length; + push_buf[0] = 0x68; /* pushq $... */ + store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); + /* Push the push. */ + append_insns (to, 5, push_buf); + + /* Convert the relative call to a relative jump. */ + insn[0] = 0xe9; + + /* Adjust the destination offset. */ + rel32 = extract_signed_integer (insn + 1, 4, byte_order); + newrel = (oldloc - *to) + rel32; + store_signed_integer (insn + 1, 4, byte_order, newrel); + + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "Adjusted insn rel32=%s at %s to" + " rel32=%s at %s\n", + hex_string (rel32), paddress (gdbarch, oldloc), + hex_string (newrel), paddress (gdbarch, *to)); + + /* Write the adjusted jump into its displaced location. */ + append_insns (to, 5, insn); + return; + } + + offset = rip_relative_offset (&insn_details); + if (!offset) + { + /* Adjust jumps with 32-bit relative addresses. Calls are + already handled above. */ + if (insn[0] == 0xe9) + offset = 1; + /* Adjust conditional jumps. */ + else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) + offset = 2; + } + + if (offset) + { + rel32 = extract_signed_integer (insn + offset, 4, byte_order); + newrel = (oldloc - *to) + rel32; + store_signed_integer (insn + offset, 4, byte_order, newrel); + if (debug_displaced) + fprintf_unfiltered (gdb_stdlog, + "Adjusted insn rel32=%s at %s to" + " rel32=%s at %s\n", + hex_string (rel32), paddress (gdbarch, oldloc), + hex_string (newrel), paddress (gdbarch, *to)); + } + + /* Write the adjusted instruction into its displaced location. */ + append_insns (to, insn_length, buf); +} + /* The maximum number of saved registers. This should include %rip. */ #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS @@ -1376,6 +1673,7 @@ struct amd64_frame_cache { /* Base address. */ CORE_ADDR base; + int base_p; CORE_ADDR sp_offset; CORE_ADDR pc; @@ -1397,6 +1695,7 @@ amd64_init_frame_cache (struct amd64_frame_cache *cache) /* Base address. */ cache->base = 0; + cache->base_p = 0; cache->sp_offset = -8; cache->pc = 0; @@ -1462,7 +1761,7 @@ amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, int reg, r; int offset, offset_and; - if (target_read_memory (pc, buf, sizeof buf)) + if (target_read_code (pc, buf, sizeof buf)) return pc; /* Check caller-saved saved register. The first instruction has @@ -1581,106 +1880,402 @@ amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, return min (pc + offset + 2, current_pc); } -/* Do a limited analysis of the prologue at PC and update CACHE - accordingly. Bail out early if CURRENT_PC is reached. Return the - address where the analysis stopped. - - We will handle only functions beginning with: - - pushq %rbp 0x55 - movq %rsp, %rbp 0x48 0x89 0xe5 - - Any function that doesn't start with this sequence will be assumed - to have no prologue and thus no valid frame pointer in %rbp. */ +/* Similar to amd64_analyze_stack_align for x32. */ static CORE_ADDR -amd64_analyze_prologue (struct gdbarch *gdbarch, - CORE_ADDR pc, CORE_ADDR current_pc, - struct amd64_frame_cache *cache) +amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, + struct amd64_frame_cache *cache) { - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */ - gdb_byte buf[3]; - gdb_byte op; + /* There are 2 code sequences to re-align stack before the frame + gets set up: - if (current_pc <= pc) - return current_pc; + 1. Use a caller-saved saved register: - pc = amd64_analyze_stack_align (pc, current_pc, cache); + leaq 8(%rsp), %reg + andq $-XXX, %rsp + pushq -8(%reg) - op = read_memory_unsigned_integer (pc, 1, byte_order); + or - if (op == 0x55) /* pushq %rbp */ - { - /* Take into account that we've executed the `pushq %rbp' that - starts this instruction sequence. */ - cache->saved_regs[AMD64_RBP_REGNUM] = 0; - cache->sp_offset += 8; + [addr32] leal 8(%rsp), %reg + andl $-XXX, %esp + [addr32] pushq -8(%reg) - /* If that's all, return now. */ - if (current_pc <= pc + 1) - return current_pc; + 2. Use a callee-saved saved register: - /* Check for `movq %rsp, %rbp'. */ - read_memory (pc + 1, buf, 3); - if (memcmp (buf, proto, 3) != 0) - return pc + 1; + pushq %reg + leaq 16(%rsp), %reg + andq $-XXX, %rsp + pushq -8(%reg) - /* OK, we actually have a frame. */ - cache->frameless_p = 0; - return pc + 4; - } + or - return pc; -} + pushq %reg + [addr32] leal 16(%rsp), %reg + andl $-XXX, %esp + [addr32] pushq -8(%reg) -/* Return PC of first real instruction. */ + "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: + + 0x48 0x83 0xe4 0xf0 andq $-16, %rsp + 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp -static CORE_ADDR -amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) -{ - struct amd64_frame_cache cache; - CORE_ADDR pc; + "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: + + 0x83 0xe4 0xf0 andl $-16, %esp + 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp + */ - amd64_init_frame_cache (&cache); - pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, - &cache); - if (cache.frameless_p) - return start_pc; + gdb_byte buf[19]; + int reg, r; + int offset, offset_and; - return pc; -} - + if (target_read_memory (pc, buf, sizeof buf)) + return pc; -/* Normal frames. */ + /* Skip optional addr32 prefix. */ + offset = buf[0] == 0x67 ? 1 : 0; -static struct amd64_frame_cache * -amd64_frame_cache (struct frame_info *this_frame, void **this_cache) -{ - struct gdbarch *gdbarch = get_frame_arch (this_frame); - enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - struct amd64_frame_cache *cache; - gdb_byte buf[8]; - int i; + /* Check caller-saved saved register. The first instruction has + to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */ + if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40) + && buf[offset + 1] == 0x8d + && buf[offset + 3] == 0x24 + && buf[offset + 4] == 0x8) + { + /* MOD must be binary 10 and R/M must be binary 100. */ + if ((buf[offset + 2] & 0xc7) != 0x44) + return pc; - if (*this_cache) - return *this_cache; + /* REG has register number. */ + reg = (buf[offset + 2] >> 3) & 7; - cache = amd64_alloc_frame_cache (); - *this_cache = cache; + /* Check the REX.R bit. */ + if ((buf[offset] & 0x4) != 0) + reg += 8; + + offset += 5; + } + else + { + /* Check callee-saved saved register. The first instruction + has to be "pushq %reg". */ + reg = 0; + if ((buf[offset] & 0xf6) == 0x40 + && (buf[offset + 1] & 0xf8) == 0x50) + { + /* Check the REX.B bit. */ + if ((buf[offset] & 1) != 0) + reg = 8; + + offset += 1; + } + else if ((buf[offset] & 0xf8) != 0x50) + return pc; + + /* Get register. */ + reg += buf[offset] & 0x7; + + offset++; + + /* Skip optional addr32 prefix. */ + if (buf[offset] == 0x67) + offset++; + + /* The next instruction has to be "leaq 16(%rsp), %reg" or + "leal 16(%rsp), %reg". */ + if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40) + || buf[offset + 1] != 0x8d + || buf[offset + 3] != 0x24 + || buf[offset + 4] != 0x10) + return pc; + + /* MOD must be binary 10 and R/M must be binary 100. */ + if ((buf[offset + 2] & 0xc7) != 0x44) + return pc; + + /* REG has register number. */ + r = (buf[offset + 2] >> 3) & 7; + + /* Check the REX.R bit. */ + if ((buf[offset] & 0x4) != 0) + r += 8; + + /* Registers in pushq and leaq have to be the same. */ + if (reg != r) + return pc; + + offset += 5; + } + + /* Rigister can't be %rsp nor %rbp. */ + if (reg == 4 || reg == 5) + return pc; + + /* The next instruction may be "andq $-XXX, %rsp" or + "andl $-XXX, %esp". */ + if (buf[offset] != 0x48) + offset--; + + if (buf[offset + 2] != 0xe4 + || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) + return pc; + + offset_and = offset; + offset += buf[offset + 1] == 0x81 ? 7 : 4; + + /* Skip optional addr32 prefix. */ + if (buf[offset] == 0x67) + offset++; + + /* The next instruction has to be "pushq -8(%reg)". */ + r = 0; + if (buf[offset] == 0xff) + offset++; + else if ((buf[offset] & 0xf6) == 0x40 + && buf[offset + 1] == 0xff) + { + /* Check the REX.B bit. */ + if ((buf[offset] & 0x1) != 0) + r = 8; + offset += 2; + } + else + return pc; + + /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary + 01. */ + if (buf[offset + 1] != 0xf8 + || (buf[offset] & 0xf8) != 0x70) + return pc; + + /* R/M has register. */ + r += buf[offset] & 7; + + /* Registers in leaq and pushq have to be the same. */ + if (reg != r) + return pc; + + if (current_pc > pc + offset_and) + cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); + + return min (pc + offset + 2, current_pc); +} + +/* Do a limited analysis of the prologue at PC and update CACHE + accordingly. Bail out early if CURRENT_PC is reached. Return the + address where the analysis stopped. + + We will handle only functions beginning with: + + pushq %rbp 0x55 + movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec) + + or (for the X32 ABI): + + pushq %rbp 0x55 + movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec) + + Any function that doesn't start with one of these sequences will be + assumed to have no prologue and thus no valid frame pointer in + %rbp. */ + +static CORE_ADDR +amd64_analyze_prologue (struct gdbarch *gdbarch, + CORE_ADDR pc, CORE_ADDR current_pc, + struct amd64_frame_cache *cache) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + /* There are two variations of movq %rsp, %rbp. */ + static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 }; + static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec }; + /* Ditto for movl %esp, %ebp. */ + static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 }; + static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec }; + + gdb_byte buf[3]; + gdb_byte op; + + if (current_pc <= pc) + return current_pc; + + if (gdbarch_ptr_bit (gdbarch) == 32) + pc = amd64_x32_analyze_stack_align (pc, current_pc, cache); + else + pc = amd64_analyze_stack_align (pc, current_pc, cache); + + op = read_code_unsigned_integer (pc, 1, byte_order); + + if (op == 0x55) /* pushq %rbp */ + { + /* Take into account that we've executed the `pushq %rbp' that + starts this instruction sequence. */ + cache->saved_regs[AMD64_RBP_REGNUM] = 0; + cache->sp_offset += 8; + + /* If that's all, return now. */ + if (current_pc <= pc + 1) + return current_pc; + + read_code (pc + 1, buf, 3); + + /* Check for `movq %rsp, %rbp'. */ + if (memcmp (buf, mov_rsp_rbp_1, 3) == 0 + || memcmp (buf, mov_rsp_rbp_2, 3) == 0) + { + /* OK, we actually have a frame. */ + cache->frameless_p = 0; + return pc + 4; + } + + /* For X32, also check for `movq %esp, %ebp'. */ + if (gdbarch_ptr_bit (gdbarch) == 32) + { + if (memcmp (buf, mov_esp_ebp_1, 2) == 0 + || memcmp (buf, mov_esp_ebp_2, 2) == 0) + { + /* OK, we actually have a frame. */ + cache->frameless_p = 0; + return pc + 3; + } + } + + return pc + 1; + } + + return pc; +} + +/* Work around false termination of prologue - GCC PR debug/48827. + + START_PC is the first instruction of a function, PC is its minimal already + determined advanced address. Function returns PC if it has nothing to do. + + 84 c0 test %al,%al + 74 23 je after + <-- here is 0 lines advance - the false prologue end marker. + 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp) + 0f 29 4d 80 movaps %xmm1,-0x80(%rbp) + 0f 29 55 90 movaps %xmm2,-0x70(%rbp) + 0f 29 5d a0 movaps %xmm3,-0x60(%rbp) + 0f 29 65 b0 movaps %xmm4,-0x50(%rbp) + 0f 29 6d c0 movaps %xmm5,-0x40(%rbp) + 0f 29 75 d0 movaps %xmm6,-0x30(%rbp) + 0f 29 7d e0 movaps %xmm7,-0x20(%rbp) + after: */ + +static CORE_ADDR +amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) +{ + struct symtab_and_line start_pc_sal, next_sal; + gdb_byte buf[4 + 8 * 7]; + int offset, xmmreg; + + if (pc == start_pc) + return pc; + + start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); + if (start_pc_sal.symtab == NULL + || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6 + || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) + return pc; + + next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0); + if (next_sal.line != start_pc_sal.line) + return pc; + + /* START_PC can be from overlayed memory, ignored here. */ + if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0) + return pc; + + /* test %al,%al */ + if (buf[0] != 0x84 || buf[1] != 0xc0) + return pc; + /* je AFTER */ + if (buf[2] != 0x74) + return pc; + + offset = 4; + for (xmmreg = 0; xmmreg < 8; xmmreg++) + { + /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */ + if (buf[offset] != 0x0f || buf[offset + 1] != 0x29 + || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5)) + return pc; + + /* 0b01?????? */ + if ((buf[offset + 2] & 0xc0) == 0x40) + { + /* 8-bit displacement. */ + offset += 4; + } + /* 0b10?????? */ + else if ((buf[offset + 2] & 0xc0) == 0x80) + { + /* 32-bit displacement. */ + offset += 7; + } + else + return pc; + } + + /* je AFTER */ + if (offset - 4 != buf[3]) + return pc; + + return next_sal.end; +} + +/* Return PC of first real instruction. */ + +static CORE_ADDR +amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) +{ + struct amd64_frame_cache cache; + CORE_ADDR pc; + CORE_ADDR func_addr; + + if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) + { + CORE_ADDR post_prologue_pc + = skip_prologue_using_sal (gdbarch, func_addr); + struct symtab *s = find_pc_symtab (func_addr); + + /* Clang always emits a line note before the prologue and another + one after. We trust clang to emit usable line notes. */ + if (post_prologue_pc + && (s != NULL + && s->producer != NULL + && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0)) + return max (start_pc, post_prologue_pc); + } + + amd64_init_frame_cache (&cache); + pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, + &cache); + if (cache.frameless_p) + return start_pc; + + return amd64_skip_xmm_prologue (pc, start_pc); +} + + +/* Normal frames. */ + +static void +amd64_frame_cache_1 (struct frame_info *this_frame, + struct amd64_frame_cache *cache) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + gdb_byte buf[8]; + int i; cache->pc = get_frame_func (this_frame); if (cache->pc != 0) amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), cache); - if (cache->saved_sp_reg != -1) - { - /* Stack pointer has been saved. */ - get_frame_register (this_frame, cache->saved_sp_reg, buf); - cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order); - } - if (cache->frameless_p) { /* We didn't find a valid frame. If we're at the start of a @@ -1692,6 +2287,10 @@ amd64_frame_cache (struct frame_info *this_frame, void **this_cache) if (cache->saved_sp_reg != -1) { + /* Stack pointer has been saved. */ + get_frame_register (this_frame, cache->saved_sp_reg, buf); + cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); + /* We're halfway aligning the stack. */ cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; @@ -1729,21 +2328,64 @@ amd64_frame_cache (struct frame_info *this_frame, void **this_cache) if (cache->saved_regs[i] != -1) cache->saved_regs[i] += cache->base; + cache->base_p = 1; +} + +static struct amd64_frame_cache * +amd64_frame_cache (struct frame_info *this_frame, void **this_cache) +{ + volatile struct gdb_exception ex; + struct amd64_frame_cache *cache; + + if (*this_cache) + return *this_cache; + + cache = amd64_alloc_frame_cache (); + *this_cache = cache; + + TRY_CATCH (ex, RETURN_MASK_ERROR) + { + amd64_frame_cache_1 (this_frame, cache); + } + if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); + return cache; } -static void -amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, - struct frame_id *this_id) +static enum unwind_stop_reason +amd64_frame_unwind_stop_reason (struct frame_info *this_frame, + void **this_cache) { struct amd64_frame_cache *cache = amd64_frame_cache (this_frame, this_cache); + if (!cache->base_p) + return UNWIND_UNAVAILABLE; + /* This marks the outermost frame. */ if (cache->base == 0) - return; + return UNWIND_OUTERMOST; - (*this_id) = frame_id_build (cache->base + 16, cache->pc); + return UNWIND_NO_REASON; +} + +static void +amd64_frame_this_id (struct frame_info *this_frame, void **this_cache, + struct frame_id *this_id) +{ + struct amd64_frame_cache *cache = + amd64_frame_cache (this_frame, this_cache); + + if (!cache->base_p) + (*this_id) = frame_id_build_unavailable_stack (cache->pc); + else if (cache->base == 0) + { + /* This marks the outermost frame. */ + return; + } + else + (*this_id) = frame_id_build (cache->base + 16, cache->pc); } static struct value * @@ -1769,12 +2411,29 @@ amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache, static const struct frame_unwind amd64_frame_unwind = { NORMAL_FRAME, + amd64_frame_unwind_stop_reason, amd64_frame_this_id, amd64_frame_prev_register, NULL, default_frame_sniffer }; +/* Generate a bytecode expression to get the value of the saved PC. */ + +static void +amd64_gen_return_address (struct gdbarch *gdbarch, + struct agent_expr *ax, struct axs_value *value, + CORE_ADDR scope) +{ + /* The following sequence assumes the traditional use of the base + register. */ + ax_reg (ax, AMD64_RBP_REGNUM); + ax_const_l (ax, 8); + ax_simple (ax, aop_add); + value->type = register_type (gdbarch, AMD64_RIP_REGNUM); + value->kind = axs_lvalue_memory; +} + /* Signal trampolines. */ @@ -1788,6 +2447,7 @@ amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) struct gdbarch *gdbarch = get_frame_arch (this_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + volatile struct gdb_exception ex; struct amd64_frame_cache *cache; CORE_ADDR addr; gdb_byte buf[8]; @@ -1798,20 +2458,40 @@ amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) cache = amd64_alloc_frame_cache (); - get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); - cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; + TRY_CATCH (ex, RETURN_MASK_ERROR) + { + get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); + cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; - addr = tdep->sigcontext_addr (this_frame); - gdb_assert (tdep->sc_reg_offset); - gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); - for (i = 0; i < tdep->sc_num_regs; i++) - if (tdep->sc_reg_offset[i] != -1) - cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; + addr = tdep->sigcontext_addr (this_frame); + gdb_assert (tdep->sc_reg_offset); + gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); + for (i = 0; i < tdep->sc_num_regs; i++) + if (tdep->sc_reg_offset[i] != -1) + cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; + + cache->base_p = 1; + } + if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); *this_cache = cache; return cache; } +static enum unwind_stop_reason +amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame, + void **this_cache) +{ + struct amd64_frame_cache *cache = + amd64_sigtramp_frame_cache (this_frame, this_cache); + + if (!cache->base_p) + return UNWIND_UNAVAILABLE; + + return UNWIND_NO_REASON; +} + static void amd64_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache, struct frame_id *this_id) @@ -1819,7 +2499,15 @@ amd64_sigtramp_frame_this_id (struct frame_info *this_frame, struct amd64_frame_cache *cache = amd64_sigtramp_frame_cache (this_frame, this_cache); - (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); + if (!cache->base_p) + (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); + else if (cache->base == 0) + { + /* This marks the outermost frame. */ + return; + } + else + (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); } static struct value * @@ -1865,6 +2553,7 @@ amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, static const struct frame_unwind amd64_sigtramp_frame_unwind = { SIGTRAMP_FRAME, + amd64_sigtramp_frame_unwind_stop_reason, amd64_sigtramp_frame_this_id, amd64_sigtramp_frame_prev_register, NULL, @@ -1899,6 +2588,11 @@ static int amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) { gdb_byte insn; + struct symtab *symtab; + + symtab = find_pc_symtab (pc); + if (symtab && symtab->epilogue_unwind_valid) + return 0; if (target_read_memory (pc, &insn, 1)) return 0; /* Can't read memory at pc. */ @@ -1926,6 +2620,7 @@ amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) { struct gdbarch *gdbarch = get_frame_arch (this_frame); enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + volatile struct gdb_exception ex; struct amd64_frame_cache *cache; gdb_byte buf[8]; @@ -1935,23 +2630,43 @@ amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) cache = amd64_alloc_frame_cache (); *this_cache = cache; - /* Cache base will be %esp plus cache->sp_offset (-8). */ - get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); - cache->base = extract_unsigned_integer (buf, 8, - byte_order) + cache->sp_offset; + TRY_CATCH (ex, RETURN_MASK_ERROR) + { + /* Cache base will be %esp plus cache->sp_offset (-8). */ + get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); + cache->base = extract_unsigned_integer (buf, 8, + byte_order) + cache->sp_offset; + + /* Cache pc will be the frame func. */ + cache->pc = get_frame_pc (this_frame); - /* Cache pc will be the frame func. */ - cache->pc = get_frame_pc (this_frame); + /* The saved %esp will be at cache->base plus 16. */ + cache->saved_sp = cache->base + 16; - /* The saved %esp will be at cache->base plus 16. */ - cache->saved_sp = cache->base + 16; + /* The saved %eip will be at cache->base plus 8. */ + cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; - /* The saved %eip will be at cache->base plus 8. */ - cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; + cache->base_p = 1; + } + if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR) + throw_exception (ex); return cache; } +static enum unwind_stop_reason +amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame, + void **this_cache) +{ + struct amd64_frame_cache *cache + = amd64_epilogue_frame_cache (this_frame, this_cache); + + if (!cache->base_p) + return UNWIND_UNAVAILABLE; + + return UNWIND_NO_REASON; +} + static void amd64_epilogue_frame_this_id (struct frame_info *this_frame, void **this_cache, @@ -1960,12 +2675,16 @@ amd64_epilogue_frame_this_id (struct frame_info *this_frame, struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, this_cache); - (*this_id) = frame_id_build (cache->base + 8, cache->pc); + if (!cache->base_p) + (*this_id) = frame_id_build_unavailable_stack (cache->pc); + else + (*this_id) = frame_id_build (cache->base + 8, cache->pc); } static const struct frame_unwind amd64_epilogue_frame_unwind = { NORMAL_FRAME, + amd64_epilogue_frame_unwind_stop_reason, amd64_epilogue_frame_this_id, amd64_frame_prev_register, NULL, @@ -2021,6 +2740,26 @@ amd64_collect_fpregset (const struct regset *regset, amd64_collect_fxsave (regcache, regnum, fpregs); } +/* Similar to amd64_supply_fpregset, but use XSAVE extended state. */ + +static void +amd64_supply_xstateregset (const struct regset *regset, + struct regcache *regcache, int regnum, + const void *xstateregs, size_t len) +{ + amd64_supply_xsave (regcache, regnum, xstateregs); +} + +/* Similar to amd64_collect_fpregset, but use XSAVE extended state. */ + +static void +amd64_collect_xstateregset (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *xstateregs, size_t len) +{ + amd64_collect_xsave (regcache, regnum, xstateregs, 1); +} + /* Return the appropriate register set for the core section identified by SECT_NAME and SECT_SIZE. */ @@ -2039,6 +2778,16 @@ amd64_regset_from_core_section (struct gdbarch *gdbarch, return tdep->fpregset; } + if (strcmp (sect_name, ".reg-xstate") == 0) + { + if (tdep->xstateregset == NULL) + tdep->xstateregset = regset_alloc (gdbarch, + amd64_supply_xstateregset, + amd64_collect_xstateregset); + + return tdep->xstateregset; + } + return i386_regset_from_core_section (gdbarch, sect_name, sect_size); } @@ -2088,11 +2837,52 @@ void amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + const struct target_desc *tdesc = info.target_desc; + static const char *const stap_integer_prefixes[] = { "$", NULL }; + static const char *const stap_register_prefixes[] = { "%", NULL }; + static const char *const stap_register_indirection_prefixes[] = { "(", + NULL }; + static const char *const stap_register_indirection_suffixes[] = { ")", + NULL }; /* AMD64 generally uses `fxsave' instead of `fsave' for saving its floating-point registers. */ tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; + if (! tdesc_has_registers (tdesc)) + tdesc = tdesc_amd64; + tdep->tdesc = tdesc; + + tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; + tdep->register_names = amd64_register_names; + + if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL) + { + tdep->ymmh_register_names = amd64_ymmh_names; + tdep->num_ymm_regs = 16; + tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM; + } + + if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL) + { + tdep->mpx_register_names = amd64_mpx_names; + tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM; + tdep->bnd0r_regnum = AMD64_BND0R_REGNUM; + } + + tdep->num_byte_regs = 20; + tdep->num_word_regs = 16; + tdep->num_dword_regs = 16; + /* Avoid wiring in the MMX registers for now. */ + tdep->num_mmx_regs = 0; + + set_gdbarch_pseudo_register_read_value (gdbarch, + amd64_pseudo_register_read_value); + set_gdbarch_pseudo_register_write (gdbarch, + amd64_pseudo_register_write); + + set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); + /* AMD64 has an FPU and 16 SSE registers. */ tdep->st0_regnum = AMD64_ST0_REGNUM; tdep->num_xmm_regs = 16; @@ -2108,8 +2898,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) set_gdbarch_long_double_bit (gdbarch, 128); set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); - set_gdbarch_register_name (gdbarch, amd64_register_name); - set_gdbarch_register_type (gdbarch, amd64_register_type); /* Register numbers of various important registers. */ set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ @@ -2133,10 +2921,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); set_gdbarch_frame_align (gdbarch, amd64_frame_align); set_gdbarch_frame_red_zone_size (gdbarch, 128); - tdep->call_dummy_num_integer_regs = - ARRAY_SIZE (amd64_dummy_call_integer_regs); - tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs; - tdep->classify = amd64_classify; set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); set_gdbarch_register_to_value (gdbarch, i387_register_to_value); @@ -2146,10 +2930,6 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); - /* Avoid wiring in the MMX registers for now. */ - set_gdbarch_num_pseudo_regs (gdbarch, 0); - tdep->mm0_regnum = -1; - tdep->record_regmap = amd64_record_regmap; set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); @@ -2170,6 +2950,72 @@ amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) amd64_regset_from_core_section); set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); + + set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); + + set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address); + + /* SystemTap variables and functions. */ + set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); + set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); + set_gdbarch_stap_register_indirection_prefixes (gdbarch, + stap_register_indirection_prefixes); + set_gdbarch_stap_register_indirection_suffixes (gdbarch, + stap_register_indirection_suffixes); + set_gdbarch_stap_is_single_operand (gdbarch, + i386_stap_is_single_operand); + set_gdbarch_stap_parse_special_token (gdbarch, + i386_stap_parse_special_token); +} + + +static struct type * +amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + switch (regnum - tdep->eax_regnum) + { + case AMD64_RBP_REGNUM: /* %ebp */ + case AMD64_RSP_REGNUM: /* %esp */ + return builtin_type (gdbarch)->builtin_data_ptr; + case AMD64_RIP_REGNUM: /* %eip */ + return builtin_type (gdbarch)->builtin_func_ptr; + } + + return i386_pseudo_register_type (gdbarch, regnum); +} + +void +amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) +{ + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + const struct target_desc *tdesc = info.target_desc; + + amd64_init_abi (info, gdbarch); + + if (! tdesc_has_registers (tdesc)) + tdesc = tdesc_x32; + tdep->tdesc = tdesc; + + tdep->num_dword_regs = 17; + set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type); + + set_gdbarch_long_bit (gdbarch, 32); + set_gdbarch_ptr_bit (gdbarch, 32); +} + +/* Provide a prototype to silence -Wmissing-prototypes. */ +void _initialize_amd64_tdep (void); + +void +_initialize_amd64_tdep (void) +{ + initialize_tdesc_amd64 (); + initialize_tdesc_amd64_avx (); + initialize_tdesc_amd64_mpx (); + initialize_tdesc_x32 (); + initialize_tdesc_x32_avx (); } @@ -2194,7 +3040,8 @@ amd64_supply_fxsave (struct regcache *regcache, int regnum, i387_supply_fxsave (regcache, regnum, fxsave); - if (fxsave && gdbarch_ptr_bit (gdbarch) == 64) + if (fxsave + && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) { const gdb_byte *regs = fxsave; @@ -2205,6 +3052,31 @@ amd64_supply_fxsave (struct regcache *regcache, int regnum, } } +/* Similar to amd64_supply_fxsave, but use XSAVE extended state. */ + +void +amd64_supply_xsave (struct regcache *regcache, int regnum, + const void *xsave) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + i387_supply_xsave (regcache, regnum, xsave); + + if (xsave + && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) + { + const gdb_byte *regs = xsave; + + if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) + regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), + regs + 12); + if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) + regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), + regs + 20); + } +} + /* Fill register REGNUM (if it is a floating-point or SSE register) in *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for all registers. This function doesn't touch any of the reserved @@ -2220,7 +3092,7 @@ amd64_collect_fxsave (const struct regcache *regcache, int regnum, i387_collect_fxsave (regcache, regnum, fxsave); - if (gdbarch_ptr_bit (gdbarch) == 64) + if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) { if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12); @@ -2228,3 +3100,26 @@ amd64_collect_fxsave (const struct regcache *regcache, int regnum, regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20); } } + +/* Similar to amd64_collect_fxsave, but use XSAVE extended state. */ + +void +amd64_collect_xsave (const struct regcache *regcache, int regnum, + void *xsave, int gcore) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + gdb_byte *regs = xsave; + + i387_collect_xsave (regcache, regnum, xsave, gcore); + + if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) + { + if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) + regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), + regs + 12); + if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) + regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), + regs + 20); + } +}