X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=gdb%2Fm32r-tdep.c;h=e22ca9dd779d3d5a3dc21c73b3498cc429b3c5e1;hb=91158a569dc571a9916dfad98c6c95ce789ad18d;hp=93edbf99a2da6dca99db33f77d5e60366473d7aa;hpb=05d57f6f5fbacf6aa8c5d28964c65b2daa9fc58f;p=binutils-gdb.git diff --git a/gdb/m32r-tdep.c b/gdb/m32r-tdep.c index 93edbf99a2d..e22ca9dd779 100644 --- a/gdb/m32r-tdep.c +++ b/gdb/m32r-tdep.c @@ -1,708 +1,973 @@ -// OBSOLETE /* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger. -// OBSOLETE -// OBSOLETE Copyright 1996, 1998, 1999, 2000, 2001, 2003 Free Software -// OBSOLETE Foundation, Inc. -// OBSOLETE -// OBSOLETE This file is part of GDB. -// OBSOLETE -// OBSOLETE This program is free software; you can redistribute it and/or modify -// OBSOLETE it under the terms of the GNU General Public License as published by -// OBSOLETE the Free Software Foundation; either version 2 of the License, or -// OBSOLETE (at your option) any later version. -// OBSOLETE -// OBSOLETE This program is distributed in the hope that it will be useful, -// OBSOLETE but WITHOUT ANY WARRANTY; without even the implied warranty of -// OBSOLETE MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -// OBSOLETE GNU General Public License for more details. -// OBSOLETE -// OBSOLETE You should have received a copy of the GNU General Public License -// OBSOLETE along with this program; if not, write to the Free Software -// OBSOLETE Foundation, Inc., 59 Temple Place - Suite 330, -// OBSOLETE Boston, MA 02111-1307, USA. */ -// OBSOLETE -// OBSOLETE #include "defs.h" -// OBSOLETE #include "frame.h" -// OBSOLETE #include "inferior.h" -// OBSOLETE #include "target.h" -// OBSOLETE #include "value.h" -// OBSOLETE #include "bfd.h" -// OBSOLETE #include "gdb_string.h" -// OBSOLETE #include "gdbcore.h" -// OBSOLETE #include "symfile.h" -// OBSOLETE #include "regcache.h" -// OBSOLETE -// OBSOLETE /* Function: m32r_use_struct_convention -// OBSOLETE Return nonzero if call_function should allocate stack space for a -// OBSOLETE struct return? */ -// OBSOLETE int -// OBSOLETE m32r_use_struct_convention (int gcc_p, struct type *type) -// OBSOLETE { -// OBSOLETE return (TYPE_LENGTH (type) > 8); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: frame_find_saved_regs -// OBSOLETE Return the frame_saved_regs structure for the frame. -// OBSOLETE Doesn't really work for dummy frames, but it does pass back -// OBSOLETE an empty frame_saved_regs, so I guess that's better than total failure */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE m32r_frame_find_saved_regs (struct frame_info *fi, -// OBSOLETE struct frame_saved_regs *regaddr) -// OBSOLETE { -// OBSOLETE memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs)); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Turn this on if you want to see just how much instruction decoding -// OBSOLETE if being done, its quite a lot -// OBSOLETE */ -// OBSOLETE #if 0 -// OBSOLETE static void -// OBSOLETE dump_insn (char *commnt, CORE_ADDR pc, int insn) -// OBSOLETE { -// OBSOLETE printf_filtered (" %s %08x %08x ", -// OBSOLETE commnt, (unsigned int) pc, (unsigned int) insn); -// OBSOLETE TARGET_PRINT_INSN (pc, &tm_print_insn_info); -// OBSOLETE printf_filtered ("\n"); -// OBSOLETE } -// OBSOLETE #define insn_debug(args) { printf_filtered args; } -// OBSOLETE #else -// OBSOLETE #define dump_insn(a,b,c) {} -// OBSOLETE #define insn_debug(args) {} -// OBSOLETE #endif -// OBSOLETE -// OBSOLETE #define DEFAULT_SEARCH_LIMIT 44 -// OBSOLETE -// OBSOLETE /* Function: scan_prologue -// OBSOLETE This function decodes the target function prologue to determine -// OBSOLETE 1) the size of the stack frame, and 2) which registers are saved on it. -// OBSOLETE It saves the offsets of saved regs in the frame_saved_regs argument, -// OBSOLETE and returns the frame size. */ -// OBSOLETE -// OBSOLETE /* -// OBSOLETE The sequence it currently generates is: -// OBSOLETE -// OBSOLETE if (varargs function) { ddi sp,#n } -// OBSOLETE push registers -// OBSOLETE if (additional stack <= 256) { addi sp,#-stack } -// OBSOLETE else if (additional stack < 65k) { add3 sp,sp,#-stack -// OBSOLETE -// OBSOLETE } else if (additional stack) { -// OBSOLETE seth sp,#(stack & 0xffff0000) -// OBSOLETE or3 sp,sp,#(stack & 0x0000ffff) -// OBSOLETE sub sp,r4 -// OBSOLETE } -// OBSOLETE if (frame pointer) { -// OBSOLETE mv sp,fp -// OBSOLETE } -// OBSOLETE -// OBSOLETE These instructions are scheduled like everything else, so you should stop at -// OBSOLETE the first branch instruction. -// OBSOLETE -// OBSOLETE */ -// OBSOLETE -// OBSOLETE /* This is required by skip prologue and by m32r_init_extra_frame_info. -// OBSOLETE The results of decoding a prologue should be cached because this -// OBSOLETE thrashing is getting nuts. -// OBSOLETE I am thinking of making a container class with two indexes, name and -// OBSOLETE address. It may be better to extend the symbol table. -// OBSOLETE */ -// OBSOLETE -// OBSOLETE static void -// OBSOLETE decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, CORE_ADDR *pl_endptr, /* var parameter */ -// OBSOLETE unsigned long *framelength, struct frame_info *fi, -// OBSOLETE struct frame_saved_regs *fsr) -// OBSOLETE { -// OBSOLETE unsigned long framesize; -// OBSOLETE int insn; -// OBSOLETE int op1; -// OBSOLETE int maybe_one_more = 0; -// OBSOLETE CORE_ADDR after_prologue = 0; -// OBSOLETE CORE_ADDR after_stack_adjust = 0; -// OBSOLETE CORE_ADDR current_pc; -// OBSOLETE -// OBSOLETE -// OBSOLETE framesize = 0; -// OBSOLETE after_prologue = 0; -// OBSOLETE insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc)); -// OBSOLETE -// OBSOLETE for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) -// OBSOLETE { -// OBSOLETE -// OBSOLETE insn = read_memory_unsigned_integer (current_pc, 2); -// OBSOLETE dump_insn ("insn-1", current_pc, insn); /* MTZ */ -// OBSOLETE -// OBSOLETE /* If this is a 32 bit instruction, we dont want to examine its -// OBSOLETE immediate data as though it were an instruction */ -// OBSOLETE if (current_pc & 0x02) -// OBSOLETE { /* Clear the parallel execution bit from 16 bit instruction */ -// OBSOLETE if (maybe_one_more) -// OBSOLETE { /* The last instruction was a branch, usually terminates -// OBSOLETE the series, but if this is a parallel instruction, -// OBSOLETE it may be a stack framing instruction */ -// OBSOLETE if (!(insn & 0x8000)) -// OBSOLETE { -// OBSOLETE insn_debug (("Really done")); -// OBSOLETE break; /* nope, we are really done */ -// OBSOLETE } -// OBSOLETE } -// OBSOLETE insn &= 0x7fff; /* decode this instruction further */ -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE if (maybe_one_more) -// OBSOLETE break; /* This isnt the one more */ -// OBSOLETE if (insn & 0x8000) -// OBSOLETE { -// OBSOLETE insn_debug (("32 bit insn\n")); -// OBSOLETE if (current_pc == scan_limit) -// OBSOLETE scan_limit += 2; /* extend the search */ -// OBSOLETE current_pc += 2; /* skip the immediate data */ -// OBSOLETE if (insn == 0x8faf) /* add3 sp, sp, xxxx */ -// OBSOLETE /* add 16 bit sign-extended offset */ -// OBSOLETE { -// OBSOLETE insn_debug (("stack increment\n")); -// OBSOLETE framesize += -((short) read_memory_unsigned_integer (current_pc, 2)); -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */ -// OBSOLETE read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24) -// OBSOLETE { /* subtract 24 bit sign-extended negative-offset */ -// OBSOLETE dump_insn ("insn-2", current_pc + 2, insn); -// OBSOLETE insn = read_memory_unsigned_integer (current_pc - 2, 4); -// OBSOLETE dump_insn ("insn-3(l4)", current_pc - 2, insn); -// OBSOLETE if (insn & 0x00800000) /* sign extend */ -// OBSOLETE insn |= 0xff000000; /* negative */ -// OBSOLETE else -// OBSOLETE insn &= 0x00ffffff; /* positive */ -// OBSOLETE framesize += insn; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE after_prologue = current_pc; -// OBSOLETE continue; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE op1 = insn & 0xf000; /* isolate just the first nibble */ -// OBSOLETE -// OBSOLETE if ((insn & 0xf0ff) == 0x207f) -// OBSOLETE { /* st reg, @-sp */ -// OBSOLETE int regno; -// OBSOLETE insn_debug (("push\n")); -// OBSOLETE #if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */ -// OBSOLETE if (((insn & 0xffff) == 0x2d7f) && fi) -// OBSOLETE fi->using_frame_pointer = 1; -// OBSOLETE #endif -// OBSOLETE framesize += 4; -// OBSOLETE #if 0 -// OBSOLETE /* Why should we increase the scan limit, just because we did a push? -// OBSOLETE And if there is a reason, surely we would only want to do it if we -// OBSOLETE had already reached the scan limit... */ -// OBSOLETE if (current_pc == scan_limit) -// OBSOLETE scan_limit += 2; -// OBSOLETE #endif -// OBSOLETE regno = ((insn >> 8) & 0xf); -// OBSOLETE if (fsr) /* save_regs offset */ -// OBSOLETE fsr->regs[regno] = framesize; -// OBSOLETE after_prologue = 0; -// OBSOLETE continue; -// OBSOLETE } -// OBSOLETE if ((insn >> 8) == 0x4f) /* addi sp, xx */ -// OBSOLETE /* add 8 bit sign-extended offset */ -// OBSOLETE { -// OBSOLETE int stack_adjust = (char) (insn & 0xff); -// OBSOLETE -// OBSOLETE /* there are probably two of these stack adjustments: -// OBSOLETE 1) A negative one in the prologue, and -// OBSOLETE 2) A positive one in the epilogue. -// OBSOLETE We are only interested in the first one. */ -// OBSOLETE -// OBSOLETE if (stack_adjust < 0) -// OBSOLETE { -// OBSOLETE framesize -= stack_adjust; -// OBSOLETE after_prologue = 0; -// OBSOLETE /* A frameless function may have no "mv fp, sp". -// OBSOLETE In that case, this is the end of the prologue. */ -// OBSOLETE after_stack_adjust = current_pc + 2; -// OBSOLETE } -// OBSOLETE continue; -// OBSOLETE } -// OBSOLETE if (insn == 0x1d8f) -// OBSOLETE { /* mv fp, sp */ -// OBSOLETE if (fi) -// OBSOLETE fi->using_frame_pointer = 1; /* fp is now valid */ -// OBSOLETE insn_debug (("done fp found\n")); -// OBSOLETE after_prologue = current_pc + 2; -// OBSOLETE break; /* end of stack adjustments */ -// OBSOLETE } -// OBSOLETE if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */ -// OBSOLETE { -// OBSOLETE insn_debug (("nop\n")); -// OBSOLETE after_prologue = current_pc + 2; -// OBSOLETE continue; /* nop occurs between pushes */ -// OBSOLETE } -// OBSOLETE /* End of prolog if any of these are branch instructions */ -// OBSOLETE if ((op1 == 0x7000) -// OBSOLETE || (op1 == 0xb000) -// OBSOLETE || (op1 == 0xf000)) -// OBSOLETE { -// OBSOLETE after_prologue = current_pc; -// OBSOLETE insn_debug (("Done: branch\n")); -// OBSOLETE maybe_one_more = 1; -// OBSOLETE continue; -// OBSOLETE } -// OBSOLETE /* Some of the branch instructions are mixed with other types */ -// OBSOLETE if (op1 == 0x1000) -// OBSOLETE { -// OBSOLETE int subop = insn & 0x0ff0; -// OBSOLETE if ((subop == 0x0ec0) || (subop == 0x0fc0)) -// OBSOLETE { -// OBSOLETE insn_debug (("done: jmp\n")); -// OBSOLETE after_prologue = current_pc; -// OBSOLETE maybe_one_more = 1; -// OBSOLETE continue; /* jmp , jl */ -// OBSOLETE } -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE if (current_pc >= scan_limit) -// OBSOLETE { -// OBSOLETE if (pl_endptr) -// OBSOLETE { -// OBSOLETE #if 1 -// OBSOLETE if (after_stack_adjust != 0) -// OBSOLETE /* We did not find a "mv fp,sp", but we DID find -// OBSOLETE a stack_adjust. Is it safe to use that as the -// OBSOLETE end of the prologue? I just don't know. */ -// OBSOLETE { -// OBSOLETE *pl_endptr = after_stack_adjust; -// OBSOLETE if (framelength) -// OBSOLETE *framelength = framesize; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE #endif -// OBSOLETE /* We reached the end of the loop without finding the end -// OBSOLETE of the prologue. No way to win -- we should report failure. -// OBSOLETE The way we do that is to return the original start_pc. -// OBSOLETE GDB will set a breakpoint at the start of the function (etc.) */ -// OBSOLETE *pl_endptr = start_pc; -// OBSOLETE } -// OBSOLETE return; -// OBSOLETE } -// OBSOLETE if (after_prologue == 0) -// OBSOLETE after_prologue = current_pc; -// OBSOLETE -// OBSOLETE insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue)); -// OBSOLETE if (framelength) -// OBSOLETE *framelength = framesize; -// OBSOLETE if (pl_endptr) -// OBSOLETE *pl_endptr = after_prologue; -// OBSOLETE } /* decode_prologue */ -// OBSOLETE -// OBSOLETE /* Function: skip_prologue -// OBSOLETE Find end of function prologue */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_skip_prologue (CORE_ADDR pc) -// OBSOLETE { -// OBSOLETE CORE_ADDR func_addr, func_end; -// OBSOLETE struct symtab_and_line sal; -// OBSOLETE -// OBSOLETE /* See what the symbol table says */ -// OBSOLETE -// OBSOLETE if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) -// OBSOLETE { -// OBSOLETE sal = find_pc_line (func_addr, 0); -// OBSOLETE -// OBSOLETE if (sal.line != 0 && sal.end <= func_end) -// OBSOLETE { -// OBSOLETE -// OBSOLETE insn_debug (("BP after prologue %08x\n", sal.end)); -// OBSOLETE func_end = sal.end; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE /* Either there's no line info, or the line after the prologue is after -// OBSOLETE the end of the function. In this case, there probably isn't a -// OBSOLETE prologue. */ -// OBSOLETE { -// OBSOLETE insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n", -// OBSOLETE sal.line, sal.end, func_end)); -// OBSOLETE func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE else -// OBSOLETE func_end = pc + DEFAULT_SEARCH_LIMIT; -// OBSOLETE decode_prologue (pc, func_end, &sal.end, 0, 0, 0); -// OBSOLETE return sal.end; -// OBSOLETE } -// OBSOLETE -// OBSOLETE static unsigned long -// OBSOLETE m32r_scan_prologue (struct frame_info *fi, struct frame_saved_regs *fsr) -// OBSOLETE { -// OBSOLETE struct symtab_and_line sal; -// OBSOLETE CORE_ADDR prologue_start, prologue_end, current_pc; -// OBSOLETE unsigned long framesize = 0; -// OBSOLETE -// OBSOLETE /* this code essentially duplicates skip_prologue, -// OBSOLETE but we need the start address below. */ -// OBSOLETE -// OBSOLETE if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end)) -// OBSOLETE { -// OBSOLETE sal = find_pc_line (prologue_start, 0); -// OBSOLETE -// OBSOLETE if (sal.line == 0) /* no line info, use current PC */ -// OBSOLETE if (prologue_start == entry_point_address ()) -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE prologue_start = fi->pc; -// OBSOLETE prologue_end = prologue_start + 48; /* We're in the boondocks: -// OBSOLETE allow for 16 pushes, an add, -// OBSOLETE and "mv fp,sp" */ -// OBSOLETE } -// OBSOLETE #if 0 -// OBSOLETE prologue_end = min (prologue_end, fi->pc); -// OBSOLETE #endif -// OBSOLETE insn_debug (("fipc(%08x) start(%08x) end(%08x)\n", -// OBSOLETE fi->pc, prologue_start, prologue_end)); -// OBSOLETE prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT); -// OBSOLETE decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize, -// OBSOLETE fi, fsr); -// OBSOLETE return framesize; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: init_extra_frame_info -// OBSOLETE This function actually figures out the frame address for a given pc and -// OBSOLETE sp. This is tricky on the m32r because we sometimes don't use an explicit -// OBSOLETE frame pointer, and the previous stack pointer isn't necessarily recorded -// OBSOLETE on the stack. The only reliable way to get this info is to -// OBSOLETE examine the prologue. */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE m32r_init_extra_frame_info (struct frame_info *fi) -// OBSOLETE { -// OBSOLETE int reg; -// OBSOLETE -// OBSOLETE if (fi->next) -// OBSOLETE fi->pc = FRAME_SAVED_PC (fi->next); -// OBSOLETE -// OBSOLETE memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs); -// OBSOLETE -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) -// OBSOLETE { -// OBSOLETE /* We need to setup fi->frame here because run_stack_dummy gets it wrong -// OBSOLETE by assuming it's always FP. */ -// OBSOLETE fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame, -// OBSOLETE SP_REGNUM); -// OBSOLETE fi->framesize = 0; -// OBSOLETE return; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE fi->using_frame_pointer = 0; -// OBSOLETE fi->framesize = m32r_scan_prologue (fi, &fi->fsr); -// OBSOLETE -// OBSOLETE if (!fi->next) -// OBSOLETE if (fi->using_frame_pointer) -// OBSOLETE { -// OBSOLETE fi->frame = read_register (FP_REGNUM); -// OBSOLETE } -// OBSOLETE else -// OBSOLETE fi->frame = read_register (SP_REGNUM); -// OBSOLETE else -// OBSOLETE /* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer) -// OBSOLETE /* we have an FP */ -// OBSOLETE if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */ -// OBSOLETE fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4); -// OBSOLETE for (reg = 0; reg < NUM_REGS; reg++) -// OBSOLETE if (fi->fsr.regs[reg] != 0) -// OBSOLETE fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg]; -// OBSOLETE } -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: m32r_virtual_frame_pointer -// OBSOLETE Return the register that the function uses for a frame pointer, -// OBSOLETE plus any necessary offset to be applied to the register before -// OBSOLETE any frame pointer offsets. */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE m32r_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset) -// OBSOLETE { -// OBSOLETE struct frame_info *fi = deprecated_frame_xmalloc (); -// OBSOLETE struct cleanup *old_chain = make_cleanup (xfree, fi); -// OBSOLETE -// OBSOLETE /* Set up a dummy frame_info. */ -// OBSOLETE fi->next = NULL; -// OBSOLETE fi->prev = NULL; -// OBSOLETE fi->frame = 0; -// OBSOLETE fi->pc = pc; -// OBSOLETE -// OBSOLETE /* Analyze the prolog and fill in the extra info. */ -// OBSOLETE m32r_init_extra_frame_info (fi); -// OBSOLETE -// OBSOLETE /* Results will tell us which type of frame it uses. */ -// OBSOLETE if (fi->using_frame_pointer) -// OBSOLETE { -// OBSOLETE *reg = FP_REGNUM; -// OBSOLETE *offset = 0; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE { -// OBSOLETE *reg = SP_REGNUM; -// OBSOLETE *offset = 0; -// OBSOLETE } -// OBSOLETE do_cleanups (old_chain); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: find_callers_reg -// OBSOLETE Find REGNUM on the stack. Otherwise, it's in an active register. One thing -// OBSOLETE we might want to do here is to check REGNUM against the clobber mask, and -// OBSOLETE somehow flag it as invalid if it isn't saved on the stack somewhere. This -// OBSOLETE would provide a graceful failure mode when trying to get the value of -// OBSOLETE caller-saves registers for an inner frame. */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_find_callers_reg (struct frame_info *fi, int regnum) -// OBSOLETE { -// OBSOLETE for (; fi; fi = fi->next) -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) -// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, regnum); -// OBSOLETE else if (fi->fsr.regs[regnum] != 0) -// OBSOLETE return read_memory_integer (fi->fsr.regs[regnum], -// OBSOLETE REGISTER_RAW_SIZE (regnum)); -// OBSOLETE return read_register (regnum); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: frame_chain Given a GDB frame, determine the address of -// OBSOLETE the calling function's frame. This will be used to create a new -// OBSOLETE GDB frame struct, and then INIT_EXTRA_FRAME_INFO and -// OBSOLETE DEPRECATED_INIT_FRAME_PC will be called for the new frame. For -// OBSOLETE m32r, we save the frame size when we initialize the frame_info. */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_frame_chain (struct frame_info *fi) -// OBSOLETE { -// OBSOLETE CORE_ADDR fn_start, callers_pc, fp; -// OBSOLETE -// OBSOLETE /* is this a dummy frame? */ -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) -// OBSOLETE return fi->frame; /* dummy frame same as caller's frame */ -// OBSOLETE -// OBSOLETE /* is caller-of-this a dummy frame? */ -// OBSOLETE callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */ -// OBSOLETE fp = m32r_find_callers_reg (fi, FP_REGNUM); -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (callers_pc, fp, fp)) -// OBSOLETE return fp; /* dummy frame's frame may bear no relation to ours */ -// OBSOLETE -// OBSOLETE if (find_pc_partial_function (fi->pc, 0, &fn_start, 0)) -// OBSOLETE if (fn_start == entry_point_address ()) -// OBSOLETE return 0; /* in _start fn, don't chain further */ -// OBSOLETE if (fi->framesize == 0) -// OBSOLETE { -// OBSOLETE printf_filtered ("cannot determine frame size @ %s , pc(%s)\n", -// OBSOLETE paddr (fi->frame), -// OBSOLETE paddr (fi->pc)); -// OBSOLETE return 0; -// OBSOLETE } -// OBSOLETE insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize)); -// OBSOLETE return fi->frame + fi->framesize; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: push_return_address (pc) -// OBSOLETE Set up the return address for the inferior function call. -// OBSOLETE Necessary for targets that don't actually execute a JSR/BSR instruction -// OBSOLETE (ie. when using an empty CALL_DUMMY) */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_push_return_address (CORE_ADDR pc, CORE_ADDR sp) -// OBSOLETE { -// OBSOLETE write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ()); -// OBSOLETE return sp; -// OBSOLETE } -// OBSOLETE -// OBSOLETE -// OBSOLETE /* Function: pop_frame -// OBSOLETE Discard from the stack the innermost frame, -// OBSOLETE restoring all saved registers. */ -// OBSOLETE -// OBSOLETE struct frame_info * -// OBSOLETE m32r_pop_frame (struct frame_info *frame) -// OBSOLETE { -// OBSOLETE int regnum; -// OBSOLETE -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) -// OBSOLETE generic_pop_dummy_frame (); -// OBSOLETE else -// OBSOLETE { -// OBSOLETE for (regnum = 0; regnum < NUM_REGS; regnum++) -// OBSOLETE if (frame->fsr.regs[regnum] != 0) -// OBSOLETE write_register (regnum, -// OBSOLETE read_memory_integer (frame->fsr.regs[regnum], 4)); -// OBSOLETE -// OBSOLETE write_register (PC_REGNUM, FRAME_SAVED_PC (frame)); -// OBSOLETE write_register (SP_REGNUM, read_register (FP_REGNUM)); -// OBSOLETE if (read_register (PSW_REGNUM) & 0x80) -// OBSOLETE write_register (SPU_REGNUM, read_register (SP_REGNUM)); -// OBSOLETE else -// OBSOLETE write_register (SPI_REGNUM, read_register (SP_REGNUM)); -// OBSOLETE } -// OBSOLETE flush_cached_frames (); -// OBSOLETE return NULL; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: frame_saved_pc -// OBSOLETE Find the caller of this frame. We do this by seeing if RP_REGNUM is saved -// OBSOLETE in the stack anywhere, otherwise we get it from the registers. */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_frame_saved_pc (struct frame_info *fi) -// OBSOLETE { -// OBSOLETE if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) -// OBSOLETE return deprecated_read_register_dummy (fi->pc, fi->frame, PC_REGNUM); -// OBSOLETE else -// OBSOLETE return m32r_find_callers_reg (fi, RP_REGNUM); -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: push_arguments -// OBSOLETE Setup the function arguments for calling a function in the inferior. -// OBSOLETE -// OBSOLETE On the Mitsubishi M32R architecture, there are four registers (R0 to R3) -// OBSOLETE which are dedicated for passing function arguments. Up to the first -// OBSOLETE four arguments (depending on size) may go into these registers. -// OBSOLETE The rest go on the stack. -// OBSOLETE -// OBSOLETE Arguments that are smaller than 4 bytes will still take up a whole -// OBSOLETE register or a whole 32-bit word on the stack, and will be -// OBSOLETE right-justified in the register or the stack word. This includes -// OBSOLETE chars, shorts, and small aggregate types. -// OBSOLETE -// OBSOLETE Arguments of 8 bytes size are split between two registers, if -// OBSOLETE available. If only one register is available, the argument will -// OBSOLETE be split between the register and the stack. Otherwise it is -// OBSOLETE passed entirely on the stack. Aggregate types with sizes between -// OBSOLETE 4 and 8 bytes are passed entirely on the stack, and are left-justified -// OBSOLETE within the double-word (as opposed to aggregates smaller than 4 bytes -// OBSOLETE which are right-justified). -// OBSOLETE -// OBSOLETE Aggregates of greater than 8 bytes are first copied onto the stack, -// OBSOLETE and then a pointer to the copy is passed in the place of the normal -// OBSOLETE argument (either in a register if available, or on the stack). -// OBSOLETE -// OBSOLETE Functions that must return an aggregate type can return it in the -// OBSOLETE normal return value registers (R0 and R1) if its size is 8 bytes or -// OBSOLETE less. For larger return values, the caller must allocate space for -// OBSOLETE the callee to copy the return value to. A pointer to this space is -// OBSOLETE passed as an implicit first argument, always in R0. */ -// OBSOLETE -// OBSOLETE CORE_ADDR -// OBSOLETE m32r_push_arguments (int nargs, struct value **args, CORE_ADDR sp, -// OBSOLETE unsigned char struct_return, CORE_ADDR struct_addr) -// OBSOLETE { -// OBSOLETE int stack_offset, stack_alloc; -// OBSOLETE int argreg; -// OBSOLETE int argnum; -// OBSOLETE struct type *type; -// OBSOLETE CORE_ADDR regval; -// OBSOLETE char *val; -// OBSOLETE char valbuf[4]; -// OBSOLETE int len; -// OBSOLETE int odd_sized_struct; -// OBSOLETE -// OBSOLETE /* first force sp to a 4-byte alignment */ -// OBSOLETE sp = sp & ~3; -// OBSOLETE -// OBSOLETE argreg = ARG0_REGNUM; -// OBSOLETE /* The "struct return pointer" pseudo-argument goes in R0 */ -// OBSOLETE if (struct_return) -// OBSOLETE write_register (argreg++, struct_addr); -// OBSOLETE -// OBSOLETE /* Now make sure there's space on the stack */ -// OBSOLETE for (argnum = 0, stack_alloc = 0; -// OBSOLETE argnum < nargs; argnum++) -// OBSOLETE stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); -// OBSOLETE sp -= stack_alloc; /* make room on stack for args */ -// OBSOLETE -// OBSOLETE -// OBSOLETE /* Now load as many as possible of the first arguments into -// OBSOLETE registers, and push the rest onto the stack. There are 16 bytes -// OBSOLETE in four registers available. Loop thru args from first to last. */ -// OBSOLETE -// OBSOLETE argreg = ARG0_REGNUM; -// OBSOLETE for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) -// OBSOLETE { -// OBSOLETE type = VALUE_TYPE (args[argnum]); -// OBSOLETE len = TYPE_LENGTH (type); -// OBSOLETE memset (valbuf, 0, sizeof (valbuf)); -// OBSOLETE if (len < 4) -// OBSOLETE { /* value gets right-justified in the register or stack word */ -// OBSOLETE memcpy (valbuf + (4 - len), -// OBSOLETE (char *) VALUE_CONTENTS (args[argnum]), len); -// OBSOLETE val = valbuf; -// OBSOLETE } -// OBSOLETE else -// OBSOLETE val = (char *) VALUE_CONTENTS (args[argnum]); -// OBSOLETE -// OBSOLETE if (len > 4 && (len & 3) != 0) -// OBSOLETE odd_sized_struct = 1; /* such structs go entirely on stack */ -// OBSOLETE else -// OBSOLETE odd_sized_struct = 0; -// OBSOLETE while (len > 0) -// OBSOLETE { -// OBSOLETE if (argreg > ARGLAST_REGNUM || odd_sized_struct) -// OBSOLETE { /* must go on the stack */ -// OBSOLETE write_memory (sp + stack_offset, val, 4); -// OBSOLETE stack_offset += 4; -// OBSOLETE } -// OBSOLETE /* NOTE WELL!!!!! This is not an "else if" clause!!! -// OBSOLETE That's because some *&^%$ things get passed on the stack -// OBSOLETE AND in the registers! */ -// OBSOLETE if (argreg <= ARGLAST_REGNUM) -// OBSOLETE { /* there's room in a register */ -// OBSOLETE regval = extract_address (val, REGISTER_RAW_SIZE (argreg)); -// OBSOLETE write_register (argreg++, regval); -// OBSOLETE } -// OBSOLETE /* Store the value 4 bytes at a time. This means that things -// OBSOLETE larger than 4 bytes may go partly in registers and partly -// OBSOLETE on the stack. */ -// OBSOLETE len -= REGISTER_RAW_SIZE (argreg); -// OBSOLETE val += REGISTER_RAW_SIZE (argreg); -// OBSOLETE } -// OBSOLETE } -// OBSOLETE return sp; -// OBSOLETE } -// OBSOLETE -// OBSOLETE /* Function: fix_call_dummy -// OBSOLETE If there is real CALL_DUMMY code (eg. on the stack), this function -// OBSOLETE has the responsability to insert the address of the actual code that -// OBSOLETE is the target of the target function call. */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE m32r_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs, -// OBSOLETE struct value **args, struct type *type, int gcc_p) -// OBSOLETE { -// OBSOLETE /* ld24 r8, <(imm24) fun> */ -// OBSOLETE *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000; -// OBSOLETE } -// OBSOLETE -// OBSOLETE -// OBSOLETE /* Function: m32r_write_sp -// OBSOLETE Because SP is really a read-only register that mirrors either SPU or SPI, -// OBSOLETE we must actually write one of those two as well, depending on PSW. */ -// OBSOLETE -// OBSOLETE void -// OBSOLETE m32r_write_sp (CORE_ADDR val) -// OBSOLETE { -// OBSOLETE unsigned long psw = read_register (PSW_REGNUM); -// OBSOLETE -// OBSOLETE if (psw & 0x80) /* stack mode: user or interrupt */ -// OBSOLETE write_register (SPU_REGNUM, val); -// OBSOLETE else -// OBSOLETE write_register (SPI_REGNUM, val); -// OBSOLETE write_register (SP_REGNUM, val); -// OBSOLETE } -// OBSOLETE -// OBSOLETE void -// OBSOLETE _initialize_m32r_tdep (void) -// OBSOLETE { -// OBSOLETE tm_print_insn = print_insn_m32r; -// OBSOLETE } +/* Target-dependent code for Renesas M32R, for GDB. + + Copyright (C) 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, + 2008, 2009, 2010 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . */ + +#include "defs.h" +#include "frame.h" +#include "frame-unwind.h" +#include "frame-base.h" +#include "symtab.h" +#include "gdbtypes.h" +#include "gdbcmd.h" +#include "gdbcore.h" +#include "gdb_string.h" +#include "value.h" +#include "inferior.h" +#include "symfile.h" +#include "objfiles.h" +#include "osabi.h" +#include "language.h" +#include "arch-utils.h" +#include "regcache.h" +#include "trad-frame.h" +#include "dis-asm.h" + +#include "gdb_assert.h" + +#include "m32r-tdep.h" + +/* Local functions */ + +extern void _initialize_m32r_tdep (void); + +static CORE_ADDR +m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) +{ + /* Align to the size of an instruction (so that they can safely be + pushed onto the stack. */ + return sp & ~3; +} + + +/* Breakpoints + + The little endian mode of M32R is unique. In most of architectures, + two 16-bit instructions, A and B, are placed as the following: + + Big endian: + A0 A1 B0 B1 + + Little endian: + A1 A0 B1 B0 + + In M32R, they are placed like this: + + Big endian: + A0 A1 B0 B1 + + Little endian: + B1 B0 A1 A0 + + This is because M32R always fetches instructions in 32-bit. + + The following functions take care of this behavior. */ + +static int +m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, + struct bp_target_info *bp_tgt) +{ + CORE_ADDR addr = bp_tgt->placed_address; + int val; + gdb_byte buf[4]; + gdb_byte *contents_cache = bp_tgt->shadow_contents; + gdb_byte bp_entry[] = { 0x10, 0xf1 }; /* dpt */ + + /* Save the memory contents. */ + val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); + if (val != 0) + return val; /* return error */ + + bp_tgt->placed_size = bp_tgt->shadow_len = 4; + + /* Determine appropriate breakpoint contents and size for this address. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + if ((addr & 3) == 0) + { + buf[0] = bp_entry[0]; + buf[1] = bp_entry[1]; + buf[2] = contents_cache[2] & 0x7f; + buf[3] = contents_cache[3]; + } + else + { + buf[0] = contents_cache[0]; + buf[1] = contents_cache[1]; + buf[2] = bp_entry[0]; + buf[3] = bp_entry[1]; + } + } + else /* little-endian */ + { + if ((addr & 3) == 0) + { + buf[0] = contents_cache[0]; + buf[1] = contents_cache[1] & 0x7f; + buf[2] = bp_entry[1]; + buf[3] = bp_entry[0]; + } + else + { + buf[0] = bp_entry[1]; + buf[1] = bp_entry[0]; + buf[2] = contents_cache[2]; + buf[3] = contents_cache[3]; + } + } + + /* Write the breakpoint. */ + val = target_write_memory (addr & 0xfffffffc, buf, 4); + return val; +} + +static int +m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, + struct bp_target_info *bp_tgt) +{ + CORE_ADDR addr = bp_tgt->placed_address; + int val; + gdb_byte buf[4]; + gdb_byte *contents_cache = bp_tgt->shadow_contents; + + buf[0] = contents_cache[0]; + buf[1] = contents_cache[1]; + buf[2] = contents_cache[2]; + buf[3] = contents_cache[3]; + + /* Remove parallel bit. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) + buf[2] &= 0x7f; + } + else /* little-endian */ + { + if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) + buf[1] &= 0x7f; + } + + /* Write contents. */ + val = target_write_memory (addr & 0xfffffffc, buf, 4); + return val; +} + +static const gdb_byte * +m32r_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) +{ + static gdb_byte be_bp_entry[] = { 0x10, 0xf1, 0x70, 0x00 }; /* dpt -> nop */ + static gdb_byte le_bp_entry[] = { 0x00, 0x70, 0xf1, 0x10 }; /* dpt -> nop */ + gdb_byte *bp; + + /* Determine appropriate breakpoint. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) + { + if ((*pcptr & 3) == 0) + { + bp = be_bp_entry; + *lenptr = 4; + } + else + { + bp = be_bp_entry; + *lenptr = 2; + } + } + else + { + if ((*pcptr & 3) == 0) + { + bp = le_bp_entry; + *lenptr = 4; + } + else + { + bp = le_bp_entry + 2; + *lenptr = 2; + } + } + + return bp; +} + + +char *m32r_register_names[] = { + "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", + "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", + "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", + "evb" +}; + +static const char * +m32r_register_name (struct gdbarch *gdbarch, int reg_nr) +{ + if (reg_nr < 0) + return NULL; + if (reg_nr >= M32R_NUM_REGS) + return NULL; + return m32r_register_names[reg_nr]; +} + + +/* Return the GDB type object for the "standard" data type + of data in register N. */ + +static struct type * +m32r_register_type (struct gdbarch *gdbarch, int reg_nr) +{ + if (reg_nr == M32R_PC_REGNUM) + return builtin_type (gdbarch)->builtin_func_ptr; + else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) + return builtin_type (gdbarch)->builtin_data_ptr; + else + return builtin_type (gdbarch)->builtin_int32; +} + + +/* Write into appropriate registers a function return value + of type TYPE, given in virtual format. + + Things always get returned in RET1_REGNUM, RET2_REGNUM. */ + +static void +m32r_store_return_value (struct type *type, struct regcache *regcache, + const void *valbuf) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR regval; + int len = TYPE_LENGTH (type); + + regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); + regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); + + if (len > 4) + { + regval = extract_unsigned_integer ((gdb_byte *) valbuf + 4, + len - 4, byte_order); + regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); + } +} + +/* This is required by skip_prologue. The results of decoding a prologue + should be cached because this thrashing is getting nuts. */ + +static int +decode_prologue (struct gdbarch *gdbarch, + CORE_ADDR start_pc, CORE_ADDR scan_limit, + CORE_ADDR *pl_endptr, unsigned long *framelength) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + unsigned long framesize; + int insn; + int op1; + CORE_ADDR after_prologue = 0; + CORE_ADDR after_push = 0; + CORE_ADDR after_stack_adjust = 0; + CORE_ADDR current_pc; + LONGEST return_value; + + framesize = 0; + after_prologue = 0; + + for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) + { + /* Check if current pc's location is readable. */ + if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) + return -1; + + insn = read_memory_unsigned_integer (current_pc, 2, byte_order); + + if (insn == 0x0000) + break; + + /* If this is a 32 bit instruction, we dont want to examine its + immediate data as though it were an instruction */ + if (current_pc & 0x02) + { + /* decode this instruction further */ + insn &= 0x7fff; + } + else + { + if (insn & 0x8000) + { + if (current_pc == scan_limit) + scan_limit += 2; /* extend the search */ + + current_pc += 2; /* skip the immediate data */ + + /* Check if current pc's location is readable. */ + if (!safe_read_memory_integer (current_pc, 2, byte_order, + &return_value)) + return -1; + + if (insn == 0x8faf) /* add3 sp, sp, xxxx */ + /* add 16 bit sign-extended offset */ + { + framesize += + -((short) read_memory_unsigned_integer (current_pc, + 2, byte_order)); + } + else + { + if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ + && safe_read_memory_integer (current_pc + 2, + 2, byte_order, + &return_value) + && read_memory_unsigned_integer (current_pc + 2, + 2, byte_order) + == 0x0f24) + /* subtract 24 bit sign-extended negative-offset */ + { + insn = read_memory_unsigned_integer (current_pc - 2, + 4, byte_order); + if (insn & 0x00800000) /* sign extend */ + insn |= 0xff000000; /* negative */ + else + insn &= 0x00ffffff; /* positive */ + framesize += insn; + } + } + after_push = current_pc + 2; + continue; + } + } + op1 = insn & 0xf000; /* isolate just the first nibble */ + + if ((insn & 0xf0ff) == 0x207f) + { /* st reg, @-sp */ + int regno; + framesize += 4; + regno = ((insn >> 8) & 0xf); + after_prologue = 0; + continue; + } + if ((insn >> 8) == 0x4f) /* addi sp, xx */ + /* add 8 bit sign-extended offset */ + { + int stack_adjust = (signed char) (insn & 0xff); + + /* there are probably two of these stack adjustments: + 1) A negative one in the prologue, and + 2) A positive one in the epilogue. + We are only interested in the first one. */ + + if (stack_adjust < 0) + { + framesize -= stack_adjust; + after_prologue = 0; + /* A frameless function may have no "mv fp, sp". + In that case, this is the end of the prologue. */ + after_stack_adjust = current_pc + 2; + } + continue; + } + if (insn == 0x1d8f) + { /* mv fp, sp */ + after_prologue = current_pc + 2; + break; /* end of stack adjustments */ + } + + /* Nop looks like a branch, continue explicitly */ + if (insn == 0x7000) + { + after_prologue = current_pc + 2; + continue; /* nop occurs between pushes */ + } + /* End of prolog if any of these are trap instructions */ + if ((insn & 0xfff0) == 0x10f0) + { + after_prologue = current_pc; + break; + } + /* End of prolog if any of these are branch instructions */ + if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) + { + after_prologue = current_pc; + continue; + } + /* Some of the branch instructions are mixed with other types */ + if (op1 == 0x1000) + { + int subop = insn & 0x0ff0; + if ((subop == 0x0ec0) || (subop == 0x0fc0)) + { + after_prologue = current_pc; + continue; /* jmp , jl */ + } + } + } + + if (framelength) + *framelength = framesize; + + if (current_pc >= scan_limit) + { + if (pl_endptr) + { + if (after_stack_adjust != 0) + /* We did not find a "mv fp,sp", but we DID find + a stack_adjust. Is it safe to use that as the + end of the prologue? I just don't know. */ + { + *pl_endptr = after_stack_adjust; + } + else if (after_push != 0) + /* We did not find a "mv fp,sp", but we DID find + a push. Is it safe to use that as the + end of the prologue? I just don't know. */ + { + *pl_endptr = after_push; + } + else + /* We reached the end of the loop without finding the end + of the prologue. No way to win -- we should report failure. + The way we do that is to return the original start_pc. + GDB will set a breakpoint at the start of the function (etc.) */ + *pl_endptr = start_pc; + } + return 0; + } + + if (after_prologue == 0) + after_prologue = current_pc; + + if (pl_endptr) + *pl_endptr = after_prologue; + + return 0; +} /* decode_prologue */ + +/* Function: skip_prologue + Find end of function prologue */ + +#define DEFAULT_SEARCH_LIMIT 128 + +static CORE_ADDR +m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + CORE_ADDR func_addr, func_end; + struct symtab_and_line sal; + LONGEST return_value; + + /* See what the symbol table says */ + + if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) + { + sal = find_pc_line (func_addr, 0); + + if (sal.line != 0 && sal.end <= func_end) + { + func_end = sal.end; + } + else + /* Either there's no line info, or the line after the prologue is after + the end of the function. In this case, there probably isn't a + prologue. */ + { + func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); + } + } + else + func_end = pc + DEFAULT_SEARCH_LIMIT; + + /* If pc's location is not readable, just quit. */ + if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) + return pc; + + /* Find the end of prologue. */ + if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) + return pc; + + return sal.end; +} + +struct m32r_unwind_cache +{ + /* The previous frame's inner most stack address. Used as this + frame ID's stack_addr. */ + CORE_ADDR prev_sp; + /* The frame's base, optionally used by the high-level debug info. */ + CORE_ADDR base; + int size; + /* How far the SP and r13 (FP) have been offset from the start of + the stack frame (as defined by the previous frame's stack + pointer). */ + LONGEST sp_offset; + LONGEST r13_offset; + int uses_frame; + /* Table indicating the location of each and every register. */ + struct trad_frame_saved_reg *saved_regs; +}; + +/* Put here the code to store, into fi->saved_regs, the addresses of + the saved registers of frame described by FRAME_INFO. This + includes special registers such as pc and fp saved in special ways + in the stack frame. sp is even more special: the address we return + for it IS the sp for the next frame. */ + +static struct m32r_unwind_cache * +m32r_frame_unwind_cache (struct frame_info *this_frame, + void **this_prologue_cache) +{ + CORE_ADDR pc, scan_limit; + ULONGEST prev_sp; + ULONGEST this_base; + unsigned long op, op2; + int i; + struct m32r_unwind_cache *info; + + + if ((*this_prologue_cache)) + return (*this_prologue_cache); + + info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); + (*this_prologue_cache) = info; + info->saved_regs = trad_frame_alloc_saved_regs (this_frame); + + info->size = 0; + info->sp_offset = 0; + info->uses_frame = 0; + + scan_limit = get_frame_pc (this_frame); + for (pc = get_frame_func (this_frame); + pc > 0 && pc < scan_limit; pc += 2) + { + if ((pc & 2) == 0) + { + op = get_frame_memory_unsigned (this_frame, pc, 4); + if ((op & 0x80000000) == 0x80000000) + { + /* 32-bit instruction */ + if ((op & 0xffff0000) == 0x8faf0000) + { + /* add3 sp,sp,xxxx */ + short n = op & 0xffff; + info->sp_offset += n; + } + else if (((op >> 8) == 0xe4) + && get_frame_memory_unsigned (this_frame, pc + 2, + 2) == 0x0f24) + { + /* ld24 r4, xxxxxx; sub sp, r4 */ + unsigned long n = op & 0xffffff; + info->sp_offset += n; + pc += 2; /* skip sub instruction */ + } + + if (pc == scan_limit) + scan_limit += 2; /* extend the search */ + pc += 2; /* skip the immediate data */ + continue; + } + } + + /* 16-bit instructions */ + op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; + if ((op & 0xf0ff) == 0x207f) + { + /* st rn, @-sp */ + int regno = ((op >> 8) & 0xf); + info->sp_offset -= 4; + info->saved_regs[regno].addr = info->sp_offset; + } + else if ((op & 0xff00) == 0x4f00) + { + /* addi sp, xx */ + int n = (signed char) (op & 0xff); + info->sp_offset += n; + } + else if (op == 0x1d8f) + { + /* mv fp, sp */ + info->uses_frame = 1; + info->r13_offset = info->sp_offset; + break; /* end of stack adjustments */ + } + else if ((op & 0xfff0) == 0x10f0) + { + /* end of prologue if this is a trap instruction */ + break; /* end of stack adjustments */ + } + } + + info->size = -info->sp_offset; + + /* Compute the previous frame's stack pointer (which is also the + frame's ID's stack address), and this frame's base pointer. */ + if (info->uses_frame) + { + /* The SP was moved to the FP. This indicates that a new frame + was created. Get THIS frame's FP value by unwinding it from + the next frame. */ + this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); + /* The FP points at the last saved register. Adjust the FP back + to before the first saved register giving the SP. */ + prev_sp = this_base + info->size; + } + else + { + /* Assume that the FP is this frame's SP but with that pushed + stack space added back. */ + this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); + prev_sp = this_base + info->size; + } + + /* Convert that SP/BASE into real addresses. */ + info->prev_sp = prev_sp; + info->base = this_base; + + /* Adjust all the saved registers so that they contain addresses and + not offsets. */ + for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) + if (trad_frame_addr_p (info->saved_regs, i)) + info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); + + /* The call instruction moves the caller's PC in the callee's LR. + Since this is an unwind, do the reverse. Copy the location of LR + into PC (the address / regnum) so that a request for PC will be + converted into a request for the LR. */ + info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; + + /* The previous frame's SP needed to be computed. Save the computed + value. */ + trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); + + return info; +} + +static CORE_ADDR +m32r_read_pc (struct regcache *regcache) +{ + ULONGEST pc; + regcache_cooked_read_unsigned (regcache, M32R_PC_REGNUM, &pc); + return pc; +} + +static void +m32r_write_pc (struct regcache *regcache, CORE_ADDR val) +{ + regcache_cooked_write_unsigned (regcache, M32R_PC_REGNUM, val); +} + +static CORE_ADDR +m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); +} + + +static CORE_ADDR +m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, + struct regcache *regcache, CORE_ADDR bp_addr, int nargs, + struct value **args, CORE_ADDR sp, int struct_return, + CORE_ADDR struct_addr) +{ + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + int stack_offset, stack_alloc; + int argreg = ARG1_REGNUM; + int argnum; + struct type *type; + enum type_code typecode; + CORE_ADDR regval; + gdb_byte *val; + gdb_byte valbuf[MAX_REGISTER_SIZE]; + int len; + int odd_sized_struct; + + /* first force sp to a 4-byte alignment */ + sp = sp & ~3; + + /* Set the return address. For the m32r, the return breakpoint is + always at BP_ADDR. */ + regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); + + /* If STRUCT_RETURN is true, then the struct return address (in + STRUCT_ADDR) will consume the first argument-passing register. + Both adjust the register count and store that value. */ + if (struct_return) + { + regcache_cooked_write_unsigned (regcache, argreg, struct_addr); + argreg++; + } + + /* Now make sure there's space on the stack */ + for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) + stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3); + sp -= stack_alloc; /* make room on stack for args */ + + for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) + { + type = value_type (args[argnum]); + typecode = TYPE_CODE (type); + len = TYPE_LENGTH (type); + + memset (valbuf, 0, sizeof (valbuf)); + + /* Passes structures that do not fit in 2 registers by reference. */ + if (len > 8 + && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) + { + store_unsigned_integer (valbuf, 4, byte_order, + value_address (args[argnum])); + typecode = TYPE_CODE_PTR; + len = 4; + val = valbuf; + } + else if (len < 4) + { + /* value gets right-justified in the register or stack word */ + memcpy (valbuf + (register_size (gdbarch, argreg) - len), + (gdb_byte *) value_contents (args[argnum]), len); + val = valbuf; + } + else + val = (gdb_byte *) value_contents (args[argnum]); + + while (len > 0) + { + if (argreg > ARGN_REGNUM) + { + /* must go on the stack */ + write_memory (sp + stack_offset, val, 4); + stack_offset += 4; + } + else if (argreg <= ARGN_REGNUM) + { + /* there's room in a register */ + regval = + extract_unsigned_integer (val, + register_size (gdbarch, argreg), + byte_order); + regcache_cooked_write_unsigned (regcache, argreg++, regval); + } + + /* Store the value 4 bytes at a time. This means that things + larger than 4 bytes may go partly in registers and partly + on the stack. */ + len -= register_size (gdbarch, argreg); + val += register_size (gdbarch, argreg); + } + } + + /* Finally, update the SP register. */ + regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); + + return sp; +} + + +/* Given a return value in `regbuf' with a type `valtype', + extract and copy its value into `valbuf'. */ + +static void +m32r_extract_return_value (struct type *type, struct regcache *regcache, + void *dst) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + bfd_byte *valbuf = dst; + int len = TYPE_LENGTH (type); + ULONGEST tmp; + + /* By using store_unsigned_integer we avoid having to do + anything special for small big-endian values. */ + regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); + store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp); + + /* Ignore return values more than 8 bytes in size because the m32r + returns anything more than 8 bytes in the stack. */ + if (len > 4) + { + regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); + store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp); + } +} + +static enum return_value_convention +m32r_return_value (struct gdbarch *gdbarch, struct type *func_type, + struct type *valtype, struct regcache *regcache, + gdb_byte *readbuf, const gdb_byte *writebuf) +{ + if (TYPE_LENGTH (valtype) > 8) + return RETURN_VALUE_STRUCT_CONVENTION; + else + { + if (readbuf != NULL) + m32r_extract_return_value (valtype, regcache, readbuf); + if (writebuf != NULL) + m32r_store_return_value (valtype, regcache, writebuf); + return RETURN_VALUE_REGISTER_CONVENTION; + } +} + + + +static CORE_ADDR +m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); +} + +/* Given a GDB frame, determine the address of the calling function's + frame. This will be used to create a new GDB frame struct. */ + +static void +m32r_frame_this_id (struct frame_info *this_frame, + void **this_prologue_cache, struct frame_id *this_id) +{ + struct m32r_unwind_cache *info + = m32r_frame_unwind_cache (this_frame, this_prologue_cache); + CORE_ADDR base; + CORE_ADDR func; + struct minimal_symbol *msym_stack; + struct frame_id id; + + /* The FUNC is easy. */ + func = get_frame_func (this_frame); + + /* Check if the stack is empty. */ + msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); + if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) + return; + + /* Hopefully the prologue analysis either correctly determined the + frame's base (which is the SP from the previous frame), or set + that base to "NULL". */ + base = info->prev_sp; + if (base == 0) + return; + + id = frame_id_build (base, func); + (*this_id) = id; +} + +static struct value * +m32r_frame_prev_register (struct frame_info *this_frame, + void **this_prologue_cache, int regnum) +{ + struct m32r_unwind_cache *info + = m32r_frame_unwind_cache (this_frame, this_prologue_cache); + return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); +} + +static const struct frame_unwind m32r_frame_unwind = { + NORMAL_FRAME, + m32r_frame_this_id, + m32r_frame_prev_register, + NULL, + default_frame_sniffer +}; + +static CORE_ADDR +m32r_frame_base_address (struct frame_info *this_frame, void **this_cache) +{ + struct m32r_unwind_cache *info + = m32r_frame_unwind_cache (this_frame, this_cache); + return info->base; +} + +static const struct frame_base m32r_frame_base = { + &m32r_frame_unwind, + m32r_frame_base_address, + m32r_frame_base_address, + m32r_frame_base_address +}; + +/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy + frame. The frame ID's base needs to match the TOS value saved by + save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ + +static struct frame_id +m32r_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) +{ + CORE_ADDR sp = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); + return frame_id_build (sp, get_frame_pc (this_frame)); +} + + +static gdbarch_init_ftype m32r_gdbarch_init; + +static struct gdbarch * +m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch *gdbarch; + struct gdbarch_tdep *tdep; + + /* If there is already a candidate, use it. */ + arches = gdbarch_list_lookup_by_info (arches, &info); + if (arches != NULL) + return arches->gdbarch; + + /* Allocate space for the new architecture. */ + tdep = XMALLOC (struct gdbarch_tdep); + gdbarch = gdbarch_alloc (&info, tdep); + + set_gdbarch_read_pc (gdbarch, m32r_read_pc); + set_gdbarch_write_pc (gdbarch, m32r_write_pc); + set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); + + set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); + set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); + set_gdbarch_register_name (gdbarch, m32r_register_name); + set_gdbarch_register_type (gdbarch, m32r_register_type); + + set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); + set_gdbarch_return_value (gdbarch, m32r_return_value); + + set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); + set_gdbarch_memory_insert_breakpoint (gdbarch, + m32r_memory_insert_breakpoint); + set_gdbarch_memory_remove_breakpoint (gdbarch, + m32r_memory_remove_breakpoint); + + set_gdbarch_frame_align (gdbarch, m32r_frame_align); + + frame_base_set_default (gdbarch, &m32r_frame_base); + + /* Methods for saving / extracting a dummy frame's ID. The ID's + stack address must match the SP value returned by + PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ + set_gdbarch_dummy_id (gdbarch, m32r_dummy_id); + + /* Return the unwound PC value. */ + set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); + + set_gdbarch_print_insn (gdbarch, print_insn_m32r); + + /* Hook in ABI-specific overrides, if they have been registered. */ + gdbarch_init_osabi (info, gdbarch); + + /* Hook in the default unwinders. */ + frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); + + /* Support simple overlay manager. */ + set_gdbarch_overlay_update (gdbarch, simple_overlay_update); + + return gdbarch; +} + +void +_initialize_m32r_tdep (void) +{ + register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); +}