X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=gdb%2Fppc-linux-tdep.c;h=8fc85125d63f3de8e57e376b84f4be30fcc7ab77;hb=91158a569dc571a9916dfad98c6c95ce789ad18d;hp=50d9c39eeefdcab914c00797acf7681c998bea3e;hpb=60f140f9b6be487aa80c683a38096c02672def04;p=binutils-gdb.git diff --git a/gdb/ppc-linux-tdep.c b/gdb/ppc-linux-tdep.c index 50d9c39eeef..8fc85125d63 100644 --- a/gdb/ppc-linux-tdep.c +++ b/gdb/ppc-linux-tdep.c @@ -1,14 +1,14 @@ /* Target-dependent code for GDB, the GNU debugger. - Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, - 1997, 2000, 2001, 2002, 2003, 2004, 2005, 2006 + Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, + 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or + the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, @@ -17,9 +17,7 @@ GNU General Public License for more details. You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 51 Franklin Street, Fifth Floor, - Boston, MA 02110-1301, USA. */ + along with this program. If not, see . */ #include "defs.h" #include "frame.h" @@ -35,302 +33,41 @@ #include "osabi.h" #include "regset.h" #include "solib-svr4.h" +#include "solib-spu.h" +#include "solib.h" +#include "solist.h" #include "ppc-tdep.h" +#include "ppc-linux-tdep.h" #include "trad-frame.h" #include "frame-unwind.h" #include "tramp-frame.h" - -/* The following instructions are used in the signal trampoline code - on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and - 0x7777 but now uses the sigreturn syscalls. We check for both. */ -#define INSTR_LI_R0_0x6666 0x38006666 -#define INSTR_LI_R0_0x7777 0x38007777 -#define INSTR_LI_R0_NR_sigreturn 0x38000077 -#define INSTR_LI_R0_NR_rt_sigreturn 0x380000AC - -#define INSTR_SC 0x44000002 - -/* Since the *-tdep.c files are platform independent (i.e, they may be - used to build cross platform debuggers), we can't include system - headers. Therefore, details concerning the sigcontext structure - must be painstakingly rerecorded. What's worse, if these details - ever change in the header files, they'll have to be changed here - as well. */ - -/* __SIGNAL_FRAMESIZE from */ -#define PPC_LINUX_SIGNAL_FRAMESIZE 64 - -/* From , offsetof(struct sigcontext_struct, regs) == 0x1c */ -#define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c) - -/* From , - offsetof(struct sigcontext_struct, handler) == 0x14 */ -#define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14) - -/* From , values for PT_NIP, PT_R1, and PT_LNK */ -#define PPC_LINUX_PT_R0 0 -#define PPC_LINUX_PT_R1 1 -#define PPC_LINUX_PT_R2 2 -#define PPC_LINUX_PT_R3 3 -#define PPC_LINUX_PT_R4 4 -#define PPC_LINUX_PT_R5 5 -#define PPC_LINUX_PT_R6 6 -#define PPC_LINUX_PT_R7 7 -#define PPC_LINUX_PT_R8 8 -#define PPC_LINUX_PT_R9 9 -#define PPC_LINUX_PT_R10 10 -#define PPC_LINUX_PT_R11 11 -#define PPC_LINUX_PT_R12 12 -#define PPC_LINUX_PT_R13 13 -#define PPC_LINUX_PT_R14 14 -#define PPC_LINUX_PT_R15 15 -#define PPC_LINUX_PT_R16 16 -#define PPC_LINUX_PT_R17 17 -#define PPC_LINUX_PT_R18 18 -#define PPC_LINUX_PT_R19 19 -#define PPC_LINUX_PT_R20 20 -#define PPC_LINUX_PT_R21 21 -#define PPC_LINUX_PT_R22 22 -#define PPC_LINUX_PT_R23 23 -#define PPC_LINUX_PT_R24 24 -#define PPC_LINUX_PT_R25 25 -#define PPC_LINUX_PT_R26 26 -#define PPC_LINUX_PT_R27 27 -#define PPC_LINUX_PT_R28 28 -#define PPC_LINUX_PT_R29 29 -#define PPC_LINUX_PT_R30 30 -#define PPC_LINUX_PT_R31 31 -#define PPC_LINUX_PT_NIP 32 -#define PPC_LINUX_PT_MSR 33 -#define PPC_LINUX_PT_CTR 35 -#define PPC_LINUX_PT_LNK 36 -#define PPC_LINUX_PT_XER 37 -#define PPC_LINUX_PT_CCR 38 -#define PPC_LINUX_PT_MQ 39 -#define PPC_LINUX_PT_FPR0 48 /* each FP reg occupies 2 slots in this space */ -#define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31) -#define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1) - -static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc); - -/* Determine if pc is in a signal trampoline... - - Ha! That's not what this does at all. wait_for_inferior in - infrun.c calls get_frame_type() in order to detect entry into a - signal trampoline just after delivery of a signal. But on - GNU/Linux, signal trampolines are used for the return path only. - The kernel sets things up so that the signal handler is called - directly. - - If we use in_sigtramp2() in place of in_sigtramp() (see below) - we'll (often) end up with stop_pc in the trampoline and prev_pc in - the (now exited) handler. The code there will cause a temporary - breakpoint to be set on prev_pc which is not very likely to get hit - again. - - If this is confusing, think of it this way... the code in - wait_for_inferior() needs to be able to detect entry into a signal - trampoline just after a signal is delivered, not after the handler - has been run. - - So, we define in_sigtramp() below to return 1 if the following is - true: - - 1) The previous frame is a real signal trampoline. - - - and - - - 2) pc is at the first or second instruction of the corresponding - handler. - - Why the second instruction? It seems that wait_for_inferior() - never sees the first instruction when single stepping. When a - signal is delivered while stepping, the next instruction that - would've been stepped over isn't, instead a signal is delivered and - the first instruction of the handler is stepped over instead. That - puts us on the second instruction. (I added the test for the first - instruction long after the fact, just in case the observed behavior - is ever fixed.) */ - -int -ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name) -{ - CORE_ADDR lr; - CORE_ADDR sp; - CORE_ADDR tramp_sp; - gdb_byte buf[4]; - CORE_ADDR handler; - - lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum); - if (!ppc_linux_at_sigtramp_return_path (lr)) - return 0; - - sp = read_register (SP_REGNUM); - - if (target_read_memory (sp, buf, sizeof (buf)) != 0) - return 0; - - tramp_sp = extract_unsigned_integer (buf, 4); - - if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf, - sizeof (buf)) != 0) - return 0; - - handler = extract_unsigned_integer (buf, 4); - - return (pc == handler || pc == handler + 4); -} - -static int -insn_is_sigreturn (unsigned long pcinsn) -{ - switch(pcinsn) - { - case INSTR_LI_R0_0x6666: - case INSTR_LI_R0_0x7777: - case INSTR_LI_R0_NR_sigreturn: - case INSTR_LI_R0_NR_rt_sigreturn: - return 1; - default: - return 0; - } -} - -/* - * The signal handler trampoline is on the stack and consists of exactly - * two instructions. The easiest and most accurate way of determining - * whether the pc is in one of these trampolines is by inspecting the - * instructions. It'd be faster though if we could find a way to do this - * via some simple address comparisons. - */ -static int -ppc_linux_at_sigtramp_return_path (CORE_ADDR pc) -{ - gdb_byte buf[12]; - unsigned long pcinsn; - if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0) - return 0; - - /* extract the instruction at the pc */ - pcinsn = extract_unsigned_integer (buf + 4, 4); - - return ( - (insn_is_sigreturn (pcinsn) - && extract_unsigned_integer (buf + 8, 4) == INSTR_SC) - || - (pcinsn == INSTR_SC - && insn_is_sigreturn (extract_unsigned_integer (buf, 4)))); -} - -static CORE_ADDR -ppc_linux_skip_trampoline_code (CORE_ADDR pc) -{ - gdb_byte buf[4]; - struct obj_section *sect; - struct objfile *objfile; - unsigned long insn; - CORE_ADDR plt_start = 0; - CORE_ADDR symtab = 0; - CORE_ADDR strtab = 0; - int num_slots = -1; - int reloc_index = -1; - CORE_ADDR plt_table; - CORE_ADDR reloc; - CORE_ADDR sym; - long symidx; - char symname[1024]; - struct minimal_symbol *msymbol; - - /* Find the section pc is in; return if not in .plt */ - sect = find_pc_section (pc); - if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0) - return 0; - - objfile = sect->objfile; - - /* Pick up the instruction at pc. It had better be of the - form - li r11, IDX - - where IDX is an index into the plt_table. */ - - if (target_read_memory (pc, buf, 4) != 0) - return 0; - insn = extract_unsigned_integer (buf, 4); - - if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ ) - return 0; - - reloc_index = (insn << 16) >> 16; - - /* Find the objfile that pc is in and obtain the information - necessary for finding the symbol name. */ - for (sect = objfile->sections; sect < objfile->sections_end; ++sect) - { - const char *secname = sect->the_bfd_section->name; - if (strcmp (secname, ".plt") == 0) - plt_start = sect->addr; - else if (strcmp (secname, ".rela.plt") == 0) - num_slots = ((int) sect->endaddr - (int) sect->addr) / 12; - else if (strcmp (secname, ".dynsym") == 0) - symtab = sect->addr; - else if (strcmp (secname, ".dynstr") == 0) - strtab = sect->addr; - } - - /* Make sure we have all the information we need. */ - if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0) - return 0; - - /* Compute the value of the plt table */ - plt_table = plt_start + 72 + 8 * num_slots; - - /* Get address of the relocation entry (Elf32_Rela) */ - if (target_read_memory (plt_table + reloc_index, buf, 4) != 0) - return 0; - reloc = extract_unsigned_integer (buf, 4); - - sect = find_pc_section (reloc); - if (!sect) - return 0; - - if (strcmp (sect->the_bfd_section->name, ".text") == 0) - return reloc; - - /* Now get the r_info field which is the relocation type and symbol - index. */ - if (target_read_memory (reloc + 4, buf, 4) != 0) - return 0; - symidx = extract_unsigned_integer (buf, 4); - - /* Shift out the relocation type leaving just the symbol index */ - /* symidx = ELF32_R_SYM(symidx); */ - symidx = symidx >> 8; - - /* compute the address of the symbol */ - sym = symtab + symidx * 4; - - /* Fetch the string table index */ - if (target_read_memory (sym, buf, 4) != 0) - return 0; - symidx = extract_unsigned_integer (buf, 4); - - /* Fetch the string; we don't know how long it is. Is it possible - that the following will fail because we're trying to fetch too - much? */ - if (target_read_memory (strtab + symidx, (gdb_byte *) symname, - sizeof (symname)) != 0) - return 0; - - /* This might not work right if we have multiple symbols with the - same name; the only way to really get it right is to perform - the same sort of lookup as the dynamic linker. */ - msymbol = lookup_minimal_symbol_text (symname, NULL); - if (!msymbol) - return 0; - - return SYMBOL_VALUE_ADDRESS (msymbol); -} +#include "observer.h" +#include "auxv.h" +#include "elf/common.h" +#include "exceptions.h" +#include "arch-utils.h" +#include "spu-tdep.h" +#include "xml-syscall.h" + +#include "features/rs6000/powerpc-32l.c" +#include "features/rs6000/powerpc-altivec32l.c" +#include "features/rs6000/powerpc-cell32l.c" +#include "features/rs6000/powerpc-vsx32l.c" +#include "features/rs6000/powerpc-isa205-32l.c" +#include "features/rs6000/powerpc-isa205-altivec32l.c" +#include "features/rs6000/powerpc-isa205-vsx32l.c" +#include "features/rs6000/powerpc-64l.c" +#include "features/rs6000/powerpc-altivec64l.c" +#include "features/rs6000/powerpc-cell64l.c" +#include "features/rs6000/powerpc-vsx64l.c" +#include "features/rs6000/powerpc-isa205-64l.c" +#include "features/rs6000/powerpc-isa205-altivec64l.c" +#include "features/rs6000/powerpc-isa205-vsx64l.c" +#include "features/rs6000/powerpc-e500l.c" + +/* The syscall's XML filename for PPC and PPC64. */ +#define XML_SYSCALL_FILENAME_PPC "syscalls/ppc-linux.xml" +#define XML_SYSCALL_FILENAME_PPC64 "syscalls/ppc64-linux.xml" /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint in much the same fashion as memory_remove_breakpoint in mem-break.c, @@ -456,20 +193,24 @@ ppc_linux_skip_trampoline_code (CORE_ADDR pc) else in the event that some other platform has similar needs with regard to removing breakpoints in some potentially self modifying code. */ -int -ppc_linux_memory_remove_breakpoint (struct bp_target_info *bp_tgt) +static int +ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch, + struct bp_target_info *bp_tgt) { CORE_ADDR addr = bp_tgt->placed_address; const unsigned char *bp; int val; int bplen; gdb_byte old_contents[BREAKPOINT_MAX]; + struct cleanup *cleanup; /* Determine appropriate breakpoint contents and size for this address. */ - bp = BREAKPOINT_FROM_PC (&addr, &bplen); + bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen); if (bp == NULL) error (_("Software breakpoints not implemented for this target.")); + /* Make sure we see the memory breakpoints. */ + cleanup = make_show_memory_breakpoints_cleanup (1); val = target_read_memory (addr, old_contents, bplen); /* If our breakpoint is no longer at the address, this means that the @@ -478,6 +219,7 @@ ppc_linux_memory_remove_breakpoint (struct bp_target_info *bp_tgt) if (val == 0 && memcmp (bp, old_contents, bplen) == 0) val = target_write_memory (addr, bp_tgt->shadow_contents, bplen); + do_cleanups (cleanup); return val; } @@ -487,9 +229,9 @@ ppc_linux_memory_remove_breakpoint (struct bp_target_info *bp_tgt) which were added later, do get returned in a register though. */ static enum return_value_convention -ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype, - struct regcache *regcache, gdb_byte *readbuf, - const gdb_byte *writebuf) +ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type, + struct type *valtype, struct regcache *regcache, + gdb_byte *readbuf, const gdb_byte *writebuf) { if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT || TYPE_CODE (valtype) == TYPE_CODE_UNION) @@ -497,8 +239,8 @@ ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype, && TYPE_VECTOR (valtype))) return RETURN_VALUE_STRUCT_CONVENTION; else - return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf, - writebuf); + return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache, + readbuf, writebuf); } /* Macros for matching instructions. Note that, since all the @@ -602,17 +344,18 @@ insn_ds_field (unsigned int insn) /* If DESC is the address of a 64-bit PowerPC GNU/Linux function descriptor, return the descriptor's entry point. */ static CORE_ADDR -ppc64_desc_entry_point (CORE_ADDR desc) +ppc64_desc_entry_point (struct gdbarch *gdbarch, CORE_ADDR desc) { + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); /* The first word of the descriptor is the entry point. */ - return (CORE_ADDR) read_memory_unsigned_integer (desc, 8); + return (CORE_ADDR) read_memory_unsigned_integer (desc, 8, byte_order); } /* Pattern for the standard linkage function. These are built by build_plt_stub in elf64-ppc.c, whose GLINK argument is always zero. */ -static struct insn_pattern ppc64_standard_linkage[] = +static struct insn_pattern ppc64_standard_linkage1[] = { /* addis r12, r2, */ { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 }, @@ -624,17 +367,47 @@ static struct insn_pattern ppc64_standard_linkage[] = { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ - { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, + { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 }, /* ld r2, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 }, /* addis r12, r12, 1 */ - { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 }, + { insn_d (-1, -1, -1, -1), insn_d (15, 12, 12, 1), 1 }, /* mtctr r11 */ - { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), - 0 }, + { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 }, + + /* ld r11, (r12) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, + + /* bctr */ + { -1, 0x4e800420, 0 }, + + { 0, 0, 0 } + }; +#define PPC64_STANDARD_LINKAGE1_LEN \ + (sizeof (ppc64_standard_linkage1) / sizeof (ppc64_standard_linkage1[0])) + +static struct insn_pattern ppc64_standard_linkage2[] = + { + /* addis r12, r2, */ + { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 }, + + /* std r2, 40(r1) */ + { -1, insn_ds (62, 2, 1, 40, 0), 0 }, + + /* ld r11, (r12) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, + + /* addi r12, r12, */ + { insn_d (-1, -1, -1, 0), insn_d (14, 12, 12, 0), 1 }, + + /* mtctr r11 */ + { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 }, + + /* ld r2, (r12) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 }, /* ld r11, (r12) */ { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 }, @@ -644,8 +417,37 @@ static struct insn_pattern ppc64_standard_linkage[] = { 0, 0, 0 } }; -#define PPC64_STANDARD_LINKAGE_LEN \ - (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0])) +#define PPC64_STANDARD_LINKAGE2_LEN \ + (sizeof (ppc64_standard_linkage2) / sizeof (ppc64_standard_linkage2[0])) + +static struct insn_pattern ppc64_standard_linkage3[] = + { + /* std r2, 40(r1) */ + { -1, insn_ds (62, 2, 1, 40, 0), 0 }, + + /* ld r11, (r2) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 }, + + /* addi r2, r2, */ + { insn_d (-1, -1, -1, 0), insn_d (14, 2, 2, 0), 1 }, + + /* mtctr r11 */ + { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467), 0 }, + + /* ld r11, (r2) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 2, 0, 0), 0 }, + + /* ld r2, (r2) */ + { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 2, 0, 0), 0 }, + + /* bctr */ + { -1, 0x4e800420, 0 }, + + { 0, 0, 0 } + }; +#define PPC64_STANDARD_LINKAGE3_LEN \ + (sizeof (ppc64_standard_linkage3) / sizeof (ppc64_standard_linkage3[0])) + /* When the dynamic linker is doing lazy symbol resolution, the first call to a function in another object will go like this: @@ -694,167 +496,366 @@ static struct insn_pattern ppc64_standard_linkage[] = standard linkage function will send them. (This doesn't deal with dynamic linker lazy symbol resolution stubs.) */ static CORE_ADDR -ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn) +ppc64_standard_linkage1_target (struct frame_info *frame, + CORE_ADDR pc, unsigned int *insn) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* The address of the function descriptor this linkage function + references. */ + CORE_ADDR desc + = ((CORE_ADDR) get_frame_register_unsigned (frame, + tdep->ppc_gp0_regnum + 2) + + (insn_d_field (insn[0]) << 16) + + insn_ds_field (insn[2])); + + /* The first word of the descriptor is the entry point. Return that. */ + return ppc64_desc_entry_point (gdbarch, desc); +} + +static struct core_regset_section ppc_linux_vsx_regset_sections[] = +{ + { ".reg", 48 * 4, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { ".reg-ppc-vmx", 544, "ppc Altivec" }, + { ".reg-ppc-vsx", 256, "POWER7 VSX" }, + { NULL, 0} +}; + +static struct core_regset_section ppc_linux_vmx_regset_sections[] = +{ + { ".reg", 48 * 4, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { ".reg-ppc-vmx", 544, "ppc Altivec" }, + { NULL, 0} +}; + +static struct core_regset_section ppc_linux_fp_regset_sections[] = +{ + { ".reg", 48 * 4, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { NULL, 0} +}; + +static struct core_regset_section ppc64_linux_vsx_regset_sections[] = +{ + { ".reg", 48 * 8, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { ".reg-ppc-vmx", 544, "ppc Altivec" }, + { ".reg-ppc-vsx", 256, "POWER7 VSX" }, + { NULL, 0} +}; + +static struct core_regset_section ppc64_linux_vmx_regset_sections[] = +{ + { ".reg", 48 * 8, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { ".reg-ppc-vmx", 544, "ppc Altivec" }, + { NULL, 0} +}; + +static struct core_regset_section ppc64_linux_fp_regset_sections[] = +{ + { ".reg", 48 * 8, "general-purpose" }, + { ".reg2", 264, "floating-point" }, + { NULL, 0} +}; + +static CORE_ADDR +ppc64_standard_linkage2_target (struct frame_info *frame, + CORE_ADDR pc, unsigned int *insn) { - struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); + struct gdbarch *gdbarch = get_frame_arch (frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); /* The address of the function descriptor this linkage function references. */ CORE_ADDR desc - = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2) + = ((CORE_ADDR) get_frame_register_unsigned (frame, + tdep->ppc_gp0_regnum + 2) + (insn_d_field (insn[0]) << 16) + insn_ds_field (insn[2])); /* The first word of the descriptor is the entry point. Return that. */ - return ppc64_desc_entry_point (desc); + return ppc64_desc_entry_point (gdbarch, desc); +} + +static CORE_ADDR +ppc64_standard_linkage3_target (struct frame_info *frame, + CORE_ADDR pc, unsigned int *insn) +{ + struct gdbarch *gdbarch = get_frame_arch (frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + + /* The address of the function descriptor this linkage function + references. */ + CORE_ADDR desc + = ((CORE_ADDR) get_frame_register_unsigned (frame, + tdep->ppc_gp0_regnum + 2) + + insn_ds_field (insn[1])); + + /* The first word of the descriptor is the entry point. Return that. */ + return ppc64_desc_entry_point (gdbarch, desc); } /* Given that we've begun executing a call trampoline at PC, return the entry point of the function the trampoline will go to. */ static CORE_ADDR -ppc64_skip_trampoline_code (CORE_ADDR pc) +ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) { - unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN]; - - if (insns_match_pattern (pc, ppc64_standard_linkage, - ppc64_standard_linkage_insn)) - return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn); + unsigned int ppc64_standard_linkage1_insn[PPC64_STANDARD_LINKAGE1_LEN]; + unsigned int ppc64_standard_linkage2_insn[PPC64_STANDARD_LINKAGE2_LEN]; + unsigned int ppc64_standard_linkage3_insn[PPC64_STANDARD_LINKAGE3_LEN]; + CORE_ADDR target; + + if (insns_match_pattern (pc, ppc64_standard_linkage1, + ppc64_standard_linkage1_insn)) + pc = ppc64_standard_linkage1_target (frame, pc, + ppc64_standard_linkage1_insn); + else if (insns_match_pattern (pc, ppc64_standard_linkage2, + ppc64_standard_linkage2_insn)) + pc = ppc64_standard_linkage2_target (frame, pc, + ppc64_standard_linkage2_insn); + else if (insns_match_pattern (pc, ppc64_standard_linkage3, + ppc64_standard_linkage3_insn)) + pc = ppc64_standard_linkage3_target (frame, pc, + ppc64_standard_linkage3_insn); else return 0; + + /* The PLT descriptor will either point to the already resolved target + address, or else to a glink stub. As the latter carry synthetic @plt + symbols, find_solib_trampoline_target should be able to resolve them. */ + target = find_solib_trampoline_target (frame, pc); + return target? target : pc; } -/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64 +/* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64 GNU/Linux. Usually a function pointer's representation is simply the address - of the function. On GNU/Linux on the 64-bit PowerPC however, a - function pointer is represented by a pointer to a TOC entry. This - TOC entry contains three words, the first word is the address of - the function, the second word is the TOC pointer (r2), and the - third word is the static chain value. Throughout GDB it is - currently assumed that a function pointer contains the address of - the function, which is not easy to fix. In addition, the + of the function. On GNU/Linux on the PowerPC however, a function + pointer may be a pointer to a function descriptor. + + For PPC64, a function descriptor is a TOC entry, in a data section, + which contains three words: the first word is the address of the + function, the second word is the TOC pointer (r2), and the third word + is the static chain value. + + Throughout GDB it is currently assumed that a function pointer contains + the address of the function, which is not easy to fix. In addition, the conversion of a function address to a function pointer would require allocation of a TOC entry in the inferior's memory space, with all its drawbacks. To be able to call C++ virtual methods in the inferior (which are called via function pointers), find_function_addr uses this function to get the function address - from a function pointer. */ + from a function pointer. -/* If ADDR points at what is clearly a function descriptor, transform - it into the address of the corresponding function. Be - conservative, otherwize GDB will do the transformation on any - random addresses such as occures when there is no symbol table. */ + If ADDR points at what is clearly a function descriptor, transform + it into the address of the corresponding function, if needed. Be + conservative, otherwise GDB will do the transformation on any + random addresses such as occur when there is no symbol table. */ static CORE_ADDR ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, struct target_ops *targ) { - struct section_table *s = target_section_by_addr (targ, addr); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct target_section *s = target_section_by_addr (targ, addr); /* Check if ADDR points to a function descriptor. */ if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) - return get_target_memory_unsigned (targ, addr, 8); + { + /* There may be relocations that need to be applied to the .opd + section. Unfortunately, this function may be called at a time + where these relocations have not yet been performed -- this can + happen for example shortly after a library has been loaded with + dlopen, but ld.so has not yet applied the relocations. + + To cope with both the case where the relocation has been applied, + and the case where it has not yet been applied, we do *not* read + the (maybe) relocated value from target memory, but we instead + read the non-relocated value from the BFD, and apply the relocation + offset manually. + + This makes the assumption that all .opd entries are always relocated + by the same offset the section itself was relocated. This should + always be the case for GNU/Linux executables and shared libraries. + Note that other kind of object files (e.g. those added via + add-symbol-files) will currently never end up here anyway, as this + function accesses *target* sections only; only the main exec and + shared libraries are ever added to the target. */ + + gdb_byte buf[8]; + int res; + + res = bfd_get_section_contents (s->bfd, s->the_bfd_section, + &buf, addr - s->addr, 8); + if (res != 0) + return extract_unsigned_integer (buf, 8, byte_order) + - bfd_section_vma (s->bfd, s->the_bfd_section) + s->addr; + } return addr; } +/* Wrappers to handle Linux-only registers. */ + static void -right_supply_register (struct regcache *regcache, int wordsize, int regnum, - const bfd_byte *buf) +ppc_linux_supply_gregset (const struct regset *regset, + struct regcache *regcache, + int regnum, const void *gregs, size_t len) { - regcache_raw_supply (regcache, regnum, - (buf + wordsize - register_size (current_gdbarch, regnum))); -} + const struct ppc_reg_offsets *offsets = regset->descr; -/* Extract the register values found in the WORDSIZED ABI GREGSET, - storing their values in REGCACHE. Note that some are left-aligned, - while others are right aligned. */ + ppc_supply_gregset (regset, regcache, regnum, gregs, len); -void -ppc_linux_supply_gregset (struct regcache *regcache, - int regnum, const void *gregs, size_t size, - int wordsize) -{ - int regi; - struct gdbarch *regcache_arch = get_regcache_arch (regcache); - struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); - const bfd_byte *buf = gregs; - - for (regi = 0; regi < ppc_num_gprs; regi++) - right_supply_register (regcache, wordsize, - regcache_tdep->ppc_gp0_regnum + regi, - buf + wordsize * regi); - - right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch), - buf + wordsize * PPC_LINUX_PT_NIP); - right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum, - buf + wordsize * PPC_LINUX_PT_LNK); - regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum, - buf + wordsize * PPC_LINUX_PT_CCR); - regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum, - buf + wordsize * PPC_LINUX_PT_XER); - regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum, - buf + wordsize * PPC_LINUX_PT_CTR); - if (regcache_tdep->ppc_mq_regnum != -1) - right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum, - buf + wordsize * PPC_LINUX_PT_MQ); - right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum, - buf + wordsize * PPC_LINUX_PT_MSR); + if (ppc_linux_trap_reg_p (get_regcache_arch (regcache))) + { + /* "orig_r3" is stored 2 slots after "pc". */ + if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) + ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs, + offsets->pc_offset + 2 * offsets->gpr_size, + offsets->gpr_size); + + /* "trap" is stored 8 slots after "pc". */ + if (regnum == -1 || regnum == PPC_TRAP_REGNUM) + ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs, + offsets->pc_offset + 8 * offsets->gpr_size, + offsets->gpr_size); + } } static void -ppc32_linux_supply_gregset (const struct regset *regset, - struct regcache *regcache, - int regnum, const void *gregs, size_t size) +ppc_linux_collect_gregset (const struct regset *regset, + const struct regcache *regcache, + int regnum, void *gregs, size_t len) { - ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4); + const struct ppc_reg_offsets *offsets = regset->descr; + + /* Clear areas in the linux gregset not written elsewhere. */ + if (regnum == -1) + memset (gregs, 0, len); + + ppc_collect_gregset (regset, regcache, regnum, gregs, len); + + if (ppc_linux_trap_reg_p (get_regcache_arch (regcache))) + { + /* "orig_r3" is stored 2 slots after "pc". */ + if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM) + ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs, + offsets->pc_offset + 2 * offsets->gpr_size, + offsets->gpr_size); + + /* "trap" is stored 8 slots after "pc". */ + if (regnum == -1 || regnum == PPC_TRAP_REGNUM) + ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs, + offsets->pc_offset + 8 * offsets->gpr_size, + offsets->gpr_size); + } } -static struct regset ppc32_linux_gregset = { - NULL, ppc32_linux_supply_gregset +/* Regset descriptions. */ +static const struct ppc_reg_offsets ppc32_linux_reg_offsets = + { + /* General-purpose registers. */ + /* .r0_offset = */ 0, + /* .gpr_size = */ 4, + /* .xr_size = */ 4, + /* .pc_offset = */ 128, + /* .ps_offset = */ 132, + /* .cr_offset = */ 152, + /* .lr_offset = */ 144, + /* .ctr_offset = */ 140, + /* .xer_offset = */ 148, + /* .mq_offset = */ 156, + + /* Floating-point registers. */ + /* .f0_offset = */ 0, + /* .fpscr_offset = */ 256, + /* .fpscr_size = */ 8, + + /* AltiVec registers. */ + /* .vr0_offset = */ 0, + /* .vscr_offset = */ 512 + 12, + /* .vrsave_offset = */ 528 + }; + +static const struct ppc_reg_offsets ppc64_linux_reg_offsets = + { + /* General-purpose registers. */ + /* .r0_offset = */ 0, + /* .gpr_size = */ 8, + /* .xr_size = */ 8, + /* .pc_offset = */ 256, + /* .ps_offset = */ 264, + /* .cr_offset = */ 304, + /* .lr_offset = */ 288, + /* .ctr_offset = */ 280, + /* .xer_offset = */ 296, + /* .mq_offset = */ 312, + + /* Floating-point registers. */ + /* .f0_offset = */ 0, + /* .fpscr_offset = */ 256, + /* .fpscr_size = */ 8, + + /* AltiVec registers. */ + /* .vr0_offset = */ 0, + /* .vscr_offset = */ 512 + 12, + /* .vrsave_offset = */ 528 + }; + +static const struct regset ppc32_linux_gregset = { + &ppc32_linux_reg_offsets, + ppc_linux_supply_gregset, + ppc_linux_collect_gregset, + NULL }; -static void -ppc64_linux_supply_gregset (const struct regset *regset, - struct regcache * regcache, - int regnum, const void *gregs, size_t size) -{ - ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8); -} +static const struct regset ppc64_linux_gregset = { + &ppc64_linux_reg_offsets, + ppc_linux_supply_gregset, + ppc_linux_collect_gregset, + NULL +}; -static struct regset ppc64_linux_gregset = { - NULL, ppc64_linux_supply_gregset +static const struct regset ppc32_linux_fpregset = { + &ppc32_linux_reg_offsets, + ppc_supply_fpregset, + ppc_collect_fpregset, + NULL }; -void -ppc_linux_supply_fpregset (const struct regset *regset, - struct regcache * regcache, - int regnum, const void *fpset, size_t size) +static const struct regset ppc32_linux_vrregset = { + &ppc32_linux_reg_offsets, + ppc_supply_vrregset, + ppc_collect_vrregset, + NULL +}; + +static const struct regset ppc32_linux_vsxregset = { + &ppc32_linux_reg_offsets, + ppc_supply_vsxregset, + ppc_collect_vsxregset, + NULL +}; + +const struct regset * +ppc_linux_gregset (int wordsize) { - int regi; - struct gdbarch *regcache_arch = get_regcache_arch (regcache); - struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch); - const bfd_byte *buf = fpset; - - if (! ppc_floating_point_unit_p (regcache_arch)) - return; - - for (regi = 0; regi < ppc_num_fprs; regi++) - regcache_raw_supply (regcache, - regcache_tdep->ppc_fp0_regnum + regi, - buf + 8 * regi); - - /* The FPSCR is stored in the low order word of the last - doubleword in the fpregset. */ - regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum, - buf + 8 * 32 + 4); + return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset; } -static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset }; +const struct regset * +ppc_linux_fpregset (void) +{ + return &ppc32_linux_fpregset; +} static const struct regset * ppc_linux_regset_from_core_section (struct gdbarch *core_arch, @@ -869,12 +870,16 @@ ppc_linux_regset_from_core_section (struct gdbarch *core_arch, return &ppc64_linux_gregset; } if (strcmp (sect_name, ".reg2") == 0) - return &ppc_linux_fpregset; + return &ppc32_linux_fpregset; + if (strcmp (sect_name, ".reg-ppc-vmx") == 0) + return &ppc32_linux_vrregset; + if (strcmp (sect_name, ".reg-ppc-vsx") == 0) + return &ppc32_linux_vsxregset; return NULL; } static void -ppc_linux_sigtramp_cache (struct frame_info *next_frame, +ppc_linux_sigtramp_cache (struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func, LONGEST offset, int bias) @@ -884,11 +889,13 @@ ppc_linux_sigtramp_cache (struct frame_info *next_frame, CORE_ADDR gpregs; CORE_ADDR fpregs; int i; - struct gdbarch *gdbarch = get_frame_arch (next_frame); + struct gdbarch *gdbarch = get_frame_arch (this_frame); struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); - base = frame_unwind_register_unsigned (next_frame, SP_REGNUM); - if (bias > 0 && frame_pc_unwind (next_frame) != func) + base = get_frame_register_unsigned (this_frame, + gdbarch_sp_regnum (gdbarch)); + if (bias > 0 && get_frame_pc (this_frame) != func) /* See below, some signal trampolines increment the stack as their first instruction, need to compensate for that. */ base -= bias; @@ -897,7 +904,7 @@ ppc_linux_sigtramp_cache (struct frame_info *next_frame, regs = base + offset; /* Use that to find the address of the corresponding register buffers. */ - gpregs = read_memory_unsigned_integer (regs, tdep->wordsize); + gpregs = read_memory_unsigned_integer (regs, tdep->wordsize, byte_order); fpregs = gpregs + 48 * tdep->wordsize; /* General purpose. */ @@ -906,7 +913,9 @@ ppc_linux_sigtramp_cache (struct frame_info *next_frame, int regnum = i + tdep->ppc_gp0_regnum; trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize); } - trad_frame_set_reg_addr (this_cache, PC_REGNUM, gpregs + 32 * tdep->wordsize); + trad_frame_set_reg_addr (this_cache, + gdbarch_pc_regnum (gdbarch), + gpregs + 32 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum, gpregs + 35 * tdep->wordsize); trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum, @@ -916,12 +925,20 @@ ppc_linux_sigtramp_cache (struct frame_info *next_frame, trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum, gpregs + 38 * tdep->wordsize); + if (ppc_linux_trap_reg_p (gdbarch)) + { + trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM, + gpregs + 34 * tdep->wordsize); + trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM, + gpregs + 40 * tdep->wordsize); + } + if (ppc_floating_point_unit_p (gdbarch)) { /* Floating point registers. */ for (i = 0; i < 32; i++) { - int regnum = i + FP0_REGNUM; + int regnum = i + gdbarch_fp0_regnum (gdbarch); trad_frame_set_reg_addr (this_cache, regnum, fpregs + i * tdep->wordsize); } @@ -933,11 +950,11 @@ ppc_linux_sigtramp_cache (struct frame_info *next_frame, static void ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, - struct frame_info *next_frame, + struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { - ppc_linux_sigtramp_cache (next_frame, this_cache, func, + ppc_linux_sigtramp_cache (this_frame, this_cache, func, 0xd0 /* Offset to ucontext_t. */ + 0x30 /* Offset to .reg. */, 0); @@ -945,11 +962,11 @@ ppc32_linux_sigaction_cache_init (const struct tramp_frame *self, static void ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, - struct frame_info *next_frame, + struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { - ppc_linux_sigtramp_cache (next_frame, this_cache, func, + ppc_linux_sigtramp_cache (this_frame, this_cache, func, 0x80 /* Offset to ucontext_t. */ + 0xe0 /* Offset to .reg. */, 128); @@ -957,11 +974,11 @@ ppc64_linux_sigaction_cache_init (const struct tramp_frame *self, static void ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, - struct frame_info *next_frame, + struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { - ppc_linux_sigtramp_cache (next_frame, this_cache, func, + ppc_linux_sigtramp_cache (this_frame, this_cache, func, 0x40 /* Offset to ucontext_t. */ + 0x1c /* Offset to .reg. */, 0); @@ -969,11 +986,11 @@ ppc32_linux_sighandler_cache_init (const struct tramp_frame *self, static void ppc64_linux_sighandler_cache_init (const struct tramp_frame *self, - struct frame_info *next_frame, + struct frame_info *this_frame, struct trad_frame_cache *this_cache, CORE_ADDR func) { - ppc_linux_sigtramp_cache (next_frame, this_cache, func, + ppc_linux_sigtramp_cache (this_frame, this_cache, func, 0x80 /* Offset to struct sigcontext. */ + 0x38 /* Offset to .reg. */, 128); @@ -1022,21 +1039,466 @@ static struct tramp_frame ppc64_linux_sighandler_tramp_frame = { ppc64_linux_sighandler_cache_init }; + +/* Address to use for displaced stepping. When debugging a stand-alone + SPU executable, entry_point_address () will point to an SPU local-store + address and is thus not usable as displaced stepping location. We use + the auxiliary vector to determine the PowerPC-side entry point address + instead. */ + +static CORE_ADDR ppc_linux_entry_point_addr = 0; + +static void +ppc_linux_inferior_created (struct target_ops *target, int from_tty) +{ + ppc_linux_entry_point_addr = 0; +} + +static CORE_ADDR +ppc_linux_displaced_step_location (struct gdbarch *gdbarch) +{ + if (ppc_linux_entry_point_addr == 0) + { + CORE_ADDR addr; + + /* Determine entry point from target auxiliary vector. */ + if (target_auxv_search (¤t_target, AT_ENTRY, &addr) <= 0) + error (_("Cannot find AT_ENTRY auxiliary vector entry.")); + + /* Make certain that the address points at real code, and not a + function descriptor. */ + addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, + ¤t_target); + + /* Inferior calls also use the entry point as a breakpoint location. + We don't want displaced stepping to interfere with those + breakpoints, so leave space. */ + ppc_linux_entry_point_addr = addr + 2 * PPC_INSN_SIZE; + } + + return ppc_linux_entry_point_addr; +} + + +/* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */ +int +ppc_linux_trap_reg_p (struct gdbarch *gdbarch) +{ + /* If we do not have a target description with registers, then + the special registers will not be included in the register set. */ + if (!tdesc_has_registers (gdbarch_target_desc (gdbarch))) + return 0; + + /* If we do, then it is safe to check the size. */ + return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0 + && register_size (gdbarch, PPC_TRAP_REGNUM) > 0; +} + +/* Return the current system call's number present in the + r0 register. When the function fails, it returns -1. */ +static LONGEST +ppc_linux_get_syscall_number (struct gdbarch *gdbarch, + ptid_t ptid) +{ + struct regcache *regcache = get_thread_regcache (ptid); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct cleanup *cleanbuf; + /* The content of a register */ + gdb_byte *buf; + /* The result */ + LONGEST ret; + + /* Make sure we're in a 32- or 64-bit machine */ + gdb_assert (tdep->wordsize == 4 || tdep->wordsize == 8); + + buf = (gdb_byte *) xmalloc (tdep->wordsize * sizeof (gdb_byte)); + + cleanbuf = make_cleanup (xfree, buf); + + /* Getting the system call number from the register. + When dealing with PowerPC architecture, this information + is stored at 0th register. */ + regcache_cooked_read (regcache, tdep->ppc_gp0_regnum, buf); + + ret = extract_signed_integer (buf, tdep->wordsize, byte_order); + do_cleanups (cleanbuf); + + return ret; +} + +static void +ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc) +{ + struct gdbarch *gdbarch = get_regcache_arch (regcache); + + regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc); + + /* Set special TRAP register to -1 to prevent the kernel from + messing with the PC we just installed, if we happen to be + within an interrupted system call that the kernel wants to + restart. + + Note that after we return from the dummy call, the TRAP and + ORIG_R3 registers will be automatically restored, and the + kernel continues to restart the system call at this point. */ + if (ppc_linux_trap_reg_p (gdbarch)) + regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1); +} + +static int +ppc_linux_spu_section (bfd *abfd, asection *asect, void *user_data) +{ + return strncmp (bfd_section_name (abfd, asect), "SPU/", 4) == 0; +} + +static const struct target_desc * +ppc_linux_core_read_description (struct gdbarch *gdbarch, + struct target_ops *target, + bfd *abfd) +{ + asection *cell = bfd_sections_find_if (abfd, ppc_linux_spu_section, NULL); + asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx"); + asection *vsx = bfd_get_section_by_name (abfd, ".reg-ppc-vsx"); + asection *section = bfd_get_section_by_name (abfd, ".reg"); + if (! section) + return NULL; + + switch (bfd_section_size (abfd, section)) + { + case 48 * 4: + if (cell) + return tdesc_powerpc_cell32l; + else if (vsx) + return tdesc_powerpc_vsx32l; + else if (altivec) + return tdesc_powerpc_altivec32l; + else + return tdesc_powerpc_32l; + + case 48 * 8: + if (cell) + return tdesc_powerpc_cell64l; + else if (vsx) + return tdesc_powerpc_vsx64l; + else if (altivec) + return tdesc_powerpc_altivec64l; + else + return tdesc_powerpc_64l; + + default: + return NULL; + } +} + + +/* Cell/B.E. active SPE context tracking support. */ + +static struct objfile *spe_context_objfile = NULL; +static CORE_ADDR spe_context_lm_addr = 0; +static CORE_ADDR spe_context_offset = 0; + +static ptid_t spe_context_cache_ptid; +static CORE_ADDR spe_context_cache_address; + +/* Hook into inferior_created, solib_loaded, and solib_unloaded observers + to track whether we've loaded a version of libspe2 (as static or dynamic + library) that provides the __spe_current_active_context variable. */ +static void +ppc_linux_spe_context_lookup (struct objfile *objfile) +{ + struct minimal_symbol *sym; + + if (!objfile) + { + spe_context_objfile = NULL; + spe_context_lm_addr = 0; + spe_context_offset = 0; + spe_context_cache_ptid = minus_one_ptid; + spe_context_cache_address = 0; + return; + } + + sym = lookup_minimal_symbol ("__spe_current_active_context", NULL, objfile); + if (sym) + { + spe_context_objfile = objfile; + spe_context_lm_addr = svr4_fetch_objfile_link_map (objfile); + spe_context_offset = SYMBOL_VALUE_ADDRESS (sym); + spe_context_cache_ptid = minus_one_ptid; + spe_context_cache_address = 0; + return; + } +} + +static void +ppc_linux_spe_context_inferior_created (struct target_ops *t, int from_tty) +{ + struct objfile *objfile; + + ppc_linux_spe_context_lookup (NULL); + ALL_OBJFILES (objfile) + ppc_linux_spe_context_lookup (objfile); +} + +static void +ppc_linux_spe_context_solib_loaded (struct so_list *so) +{ + if (strstr (so->so_original_name, "/libspe") != NULL) + { + solib_read_symbols (so, 0); + ppc_linux_spe_context_lookup (so->objfile); + } +} + +static void +ppc_linux_spe_context_solib_unloaded (struct so_list *so) +{ + if (so->objfile == spe_context_objfile) + ppc_linux_spe_context_lookup (NULL); +} + +/* Retrieve contents of the N'th element in the current thread's + linked SPE context list into ID and NPC. Return the address of + said context element, or 0 if not found. */ +static CORE_ADDR +ppc_linux_spe_context (int wordsize, enum bfd_endian byte_order, + int n, int *id, unsigned int *npc) +{ + CORE_ADDR spe_context = 0; + gdb_byte buf[16]; + int i; + + /* Quick exit if we have not found __spe_current_active_context. */ + if (!spe_context_objfile) + return 0; + + /* Look up cached address of thread-local variable. */ + if (!ptid_equal (spe_context_cache_ptid, inferior_ptid)) + { + struct target_ops *target = ¤t_target; + volatile struct gdb_exception ex; + + while (target && !target->to_get_thread_local_address) + target = find_target_beneath (target); + if (!target) + return 0; + + TRY_CATCH (ex, RETURN_MASK_ERROR) + { + /* We do not call target_translate_tls_address here, because + svr4_fetch_objfile_link_map may invalidate the frame chain, + which must not do while inside a frame sniffer. + + Instead, we have cached the lm_addr value, and use that to + directly call the target's to_get_thread_local_address. */ + spe_context_cache_address + = target->to_get_thread_local_address (target, inferior_ptid, + spe_context_lm_addr, + spe_context_offset); + spe_context_cache_ptid = inferior_ptid; + } + + if (ex.reason < 0) + return 0; + } + + /* Read variable value. */ + if (target_read_memory (spe_context_cache_address, buf, wordsize) == 0) + spe_context = extract_unsigned_integer (buf, wordsize, byte_order); + + /* Cyle through to N'th linked list element. */ + for (i = 0; i < n && spe_context; i++) + if (target_read_memory (spe_context + align_up (12, wordsize), + buf, wordsize) == 0) + spe_context = extract_unsigned_integer (buf, wordsize, byte_order); + else + spe_context = 0; + + /* Read current context. */ + if (spe_context + && target_read_memory (spe_context, buf, 12) != 0) + spe_context = 0; + + /* Extract data elements. */ + if (spe_context) + { + if (id) + *id = extract_signed_integer (buf, 4, byte_order); + if (npc) + *npc = extract_unsigned_integer (buf + 4, 4, byte_order); + } + + return spe_context; +} + + +/* Cell/B.E. cross-architecture unwinder support. */ + +struct ppu2spu_cache +{ + struct frame_id frame_id; + struct regcache *regcache; +}; + +static struct gdbarch * +ppu2spu_prev_arch (struct frame_info *this_frame, void **this_cache) +{ + struct ppu2spu_cache *cache = *this_cache; + return get_regcache_arch (cache->regcache); +} + +static void +ppu2spu_this_id (struct frame_info *this_frame, + void **this_cache, struct frame_id *this_id) +{ + struct ppu2spu_cache *cache = *this_cache; + *this_id = cache->frame_id; +} + +static struct value * +ppu2spu_prev_register (struct frame_info *this_frame, + void **this_cache, int regnum) +{ + struct ppu2spu_cache *cache = *this_cache; + struct gdbarch *gdbarch = get_regcache_arch (cache->regcache); + gdb_byte *buf; + + buf = alloca (register_size (gdbarch, regnum)); + regcache_cooked_read (cache->regcache, regnum, buf); + return frame_unwind_got_bytes (this_frame, regnum, buf); +} + +struct ppu2spu_data +{ + struct gdbarch *gdbarch; + int id; + unsigned int npc; + gdb_byte gprs[128*16]; +}; + +static int +ppu2spu_unwind_register (void *src, int regnum, gdb_byte *buf) +{ + struct ppu2spu_data *data = src; + enum bfd_endian byte_order = gdbarch_byte_order (data->gdbarch); + + if (regnum >= 0 && regnum < SPU_NUM_GPRS) + memcpy (buf, data->gprs + 16*regnum, 16); + else if (regnum == SPU_ID_REGNUM) + store_unsigned_integer (buf, 4, byte_order, data->id); + else if (regnum == SPU_PC_REGNUM) + store_unsigned_integer (buf, 4, byte_order, data->npc); + else + return 0; + + return 1; +} + +static int +ppu2spu_sniffer (const struct frame_unwind *self, + struct frame_info *this_frame, void **this_prologue_cache) +{ + struct gdbarch *gdbarch = get_frame_arch (this_frame); + struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); + struct ppu2spu_data data; + struct frame_info *fi; + CORE_ADDR base, func, backchain, spe_context; + gdb_byte buf[8]; + int n = 0; + + /* Count the number of SPU contexts already in the frame chain. */ + for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi)) + if (get_frame_type (fi) == ARCH_FRAME + && gdbarch_bfd_arch_info (get_frame_arch (fi))->arch == bfd_arch_spu) + n++; + + base = get_frame_sp (this_frame); + func = get_frame_pc (this_frame); + if (target_read_memory (base, buf, tdep->wordsize)) + return 0; + backchain = extract_unsigned_integer (buf, tdep->wordsize, byte_order); + + spe_context = ppc_linux_spe_context (tdep->wordsize, byte_order, + n, &data.id, &data.npc); + if (spe_context && base <= spe_context && spe_context < backchain) + { + char annex[32]; + + /* Find gdbarch for SPU. */ + struct gdbarch_info info; + gdbarch_info_init (&info); + info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu); + info.byte_order = BFD_ENDIAN_BIG; + info.osabi = GDB_OSABI_LINUX; + info.tdep_info = (void *) &data.id; + data.gdbarch = gdbarch_find_by_info (info); + if (!data.gdbarch) + return 0; + + xsnprintf (annex, sizeof annex, "%d/regs", data.id); + if (target_read (¤t_target, TARGET_OBJECT_SPU, annex, + data.gprs, 0, sizeof data.gprs) + == sizeof data.gprs) + { + struct ppu2spu_cache *cache + = FRAME_OBSTACK_CALLOC (1, struct ppu2spu_cache); + + struct address_space *aspace = get_frame_address_space (this_frame); + struct regcache *regcache = regcache_xmalloc (data.gdbarch, aspace); + struct cleanup *cleanups = make_cleanup_regcache_xfree (regcache); + regcache_save (regcache, ppu2spu_unwind_register, &data); + discard_cleanups (cleanups); + + cache->frame_id = frame_id_build (base, func); + cache->regcache = regcache; + *this_prologue_cache = cache; + return 1; + } + } + + return 0; +} + +static void +ppu2spu_dealloc_cache (struct frame_info *self, void *this_cache) +{ + struct ppu2spu_cache *cache = this_cache; + regcache_xfree (cache->regcache); +} + +static const struct frame_unwind ppu2spu_unwind = { + ARCH_FRAME, + ppu2spu_this_id, + ppu2spu_prev_register, + NULL, + ppu2spu_sniffer, + ppu2spu_dealloc_cache, + ppu2spu_prev_arch, +}; + + static void ppc_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) { struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); + struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info; + + /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where + 128-bit, they are IBM long double, not IEEE quad long double as + in the System V ABI PowerPC Processor Supplement. We can safely + let them default to 128-bit, since the debug info will give the + size of type actually used in each case. */ + set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); + set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double); + + /* Handle inferior calls during interrupted system calls. */ + set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc); - /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor - Supplement says that long doubles are sixteen bytes long. - However, as one of the known warts of its ABI, PPC GNU/Linux uses - eight-byte long doubles. GCC only recently got 128-bit long - double support on PPC, so it may be changing soon. The - Linux[sic] Standards Base says that programs that use 'long - double' on PPC GNU/Linux are non-conformant. */ - /* NOTE: cagney/2005-01-25: True for both 32- and 64-bit. */ - set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); + /* Get the syscall number from the arch's register. */ + set_gdbarch_get_syscall_number (gdbarch, ppc_linux_get_syscall_number); if (tdep->wordsize == 4) { @@ -1053,39 +1515,124 @@ ppc_linux_init_abi (struct gdbarch_info info, ppc_linux_memory_remove_breakpoint); /* Shared library handling. */ - set_gdbarch_skip_trampoline_code (gdbarch, - ppc_linux_skip_trampoline_code); + set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_ilp32_fetch_link_map_offsets); + /* Setting the correct XML syscall filename. */ + set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC); + /* Trampolines. */ tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame); + + /* BFD target for core files. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) + set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpcle"); + else + set_gdbarch_gcore_bfd_target (gdbarch, "elf32-powerpc"); + + /* Supported register sections. */ + if (tdesc_find_feature (info.target_desc, + "org.gnu.gdb.power.vsx")) + set_gdbarch_core_regset_sections (gdbarch, + ppc_linux_vsx_regset_sections); + else if (tdesc_find_feature (info.target_desc, + "org.gnu.gdb.power.altivec")) + set_gdbarch_core_regset_sections (gdbarch, + ppc_linux_vmx_regset_sections); + else + set_gdbarch_core_regset_sections (gdbarch, + ppc_linux_fp_regset_sections); } if (tdep->wordsize == 8) { - /* Handle PPC64 GNU/Linux function pointers (which are really - function descriptors). */ + /* Handle PPC GNU/Linux 64-bit function pointers (which are really + function descriptors). */ set_gdbarch_convert_from_func_ptr_addr - (gdbarch, ppc64_linux_convert_from_func_ptr_addr); - set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); + (gdbarch, ppc64_linux_convert_from_func_ptr_addr); /* Shared library handling. */ + set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code); set_solib_svr4_fetch_link_map_offsets (gdbarch, svr4_lp64_fetch_link_map_offsets); + /* Setting the correct XML syscall filename. */ + set_xml_syscall_file_name (XML_SYSCALL_FILENAME_PPC64); + /* Trampolines. */ tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame); tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame); + + /* BFD target for core files. */ + if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) + set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpcle"); + else + set_gdbarch_gcore_bfd_target (gdbarch, "elf64-powerpc"); + + /* Supported register sections. */ + if (tdesc_find_feature (info.target_desc, + "org.gnu.gdb.power.vsx")) + set_gdbarch_core_regset_sections (gdbarch, + ppc64_linux_vsx_regset_sections); + else if (tdesc_find_feature (info.target_desc, + "org.gnu.gdb.power.altivec")) + set_gdbarch_core_regset_sections (gdbarch, + ppc64_linux_vmx_regset_sections); + else + set_gdbarch_core_regset_sections (gdbarch, + ppc64_linux_fp_regset_sections); } set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section); + set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description); /* Enable TLS support. */ set_gdbarch_fetch_tls_load_module_address (gdbarch, svr4_fetch_objfile_link_map); + + if (tdesc_data) + { + const struct tdesc_feature *feature; + + /* If we have target-described registers, then we can safely + reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM + (whether they are described or not). */ + gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM); + set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1); + + /* If they are present, then assign them to the reserved number. */ + feature = tdesc_find_feature (info.target_desc, + "org.gnu.gdb.power.linux"); + if (feature != NULL) + { + tdesc_numbered_register (feature, tdesc_data, + PPC_ORIG_R3_REGNUM, "orig_r3"); + tdesc_numbered_register (feature, tdesc_data, + PPC_TRAP_REGNUM, "trap"); + } + } + + /* Enable Cell/B.E. if supported by the target. */ + if (tdesc_compatible_p (info.target_desc, + bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu))) + { + /* Cell/B.E. multi-architecture support. */ + set_spu_solib_ops (gdbarch); + + /* Cell/B.E. cross-architecture unwinder support. */ + frame_unwind_prepend_unwinder (gdbarch, &ppu2spu_unwind); + + /* The default displaced_step_at_entry_point doesn't work for + SPU stand-alone executables. */ + set_gdbarch_displaced_step_location (gdbarch, + ppc_linux_displaced_step_location); + } } +/* Provide a prototype to silence -Wmissing-prototypes. */ +extern initialize_file_ftype _initialize_ppc_linux_tdep; + void _initialize_ppc_linux_tdep (void) { @@ -1097,4 +1644,29 @@ _initialize_ppc_linux_tdep (void) ppc_linux_init_abi); gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX, ppc_linux_init_abi); + + /* Attach to inferior_created observer. */ + observer_attach_inferior_created (ppc_linux_inferior_created); + + /* Attach to observers to track __spe_current_active_context. */ + observer_attach_inferior_created (ppc_linux_spe_context_inferior_created); + observer_attach_solib_loaded (ppc_linux_spe_context_solib_loaded); + observer_attach_solib_unloaded (ppc_linux_spe_context_solib_unloaded); + + /* Initialize the Linux target descriptions. */ + initialize_tdesc_powerpc_32l (); + initialize_tdesc_powerpc_altivec32l (); + initialize_tdesc_powerpc_cell32l (); + initialize_tdesc_powerpc_vsx32l (); + initialize_tdesc_powerpc_isa205_32l (); + initialize_tdesc_powerpc_isa205_altivec32l (); + initialize_tdesc_powerpc_isa205_vsx32l (); + initialize_tdesc_powerpc_64l (); + initialize_tdesc_powerpc_altivec64l (); + initialize_tdesc_powerpc_cell64l (); + initialize_tdesc_powerpc_vsx64l (); + initialize_tdesc_powerpc_isa205_64l (); + initialize_tdesc_powerpc_isa205_altivec64l (); + initialize_tdesc_powerpc_isa205_vsx64l (); + initialize_tdesc_powerpc_e500l (); }