X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Farch%2Fisa_parser.py;h=4e06c2ded836a425e0fb6cb4781e5f428b90dc30;hb=249549f9c3cc9317b1eeca8e844287dbbaf5f4ca;hp=f3981a6eb192b0f972a76766513d81713efc8741;hpb=55614caecca476a12ef711b8b6e459fee19028b9;p=gem5.git diff --git a/src/arch/isa_parser.py b/src/arch/isa_parser.py index f3981a6eb..4e06c2ded 100755 --- a/src/arch/isa_parser.py +++ b/src/arch/isa_parser.py @@ -25,740 +25,235 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Steve Reinhardt -# Korey Sewell import os import sys import re import string -import traceback +import inspect, traceback # get type names from types import * -# Prepend the directory where the PLY lex & yacc modules are found -# to the search path. Assumes we're compiling in a subdirectory -# of 'build' in the current tree. -sys.path[0:0] = [os.environ['M5_PLY']] +from m5.util.grammar import Grammar -import lex -import yacc +debug=False + +################### +# Utility functions -##################################################################### # -# Lexer +# Indent every line in string 's' by two spaces +# (except preprocessor directives). +# Used to make nested code blocks look pretty. # -# The PLY lexer module takes two things as input: -# - A list of token names (the string list 'tokens') -# - A regular expression describing a match for each token. The -# regexp for token FOO can be provided in two ways: -# - as a string variable named t_FOO -# - as the doc string for a function named t_FOO. In this case, -# the function is also executed, allowing an action to be -# associated with each token match. +def indent(s): + return re.sub(r'(?m)^(?!#)', ' ', s) + # -##################################################################### +# Munge a somewhat arbitrarily formatted piece of Python code +# (e.g. from a format 'let' block) into something whose indentation +# will get by the Python parser. +# +# The two keys here are that Python will give a syntax error if +# there's any whitespace at the beginning of the first line, and that +# all lines at the same lexical nesting level must have identical +# indentation. Unfortunately the way code literals work, an entire +# let block tends to have some initial indentation. Rather than +# trying to figure out what that is and strip it off, we prepend 'if +# 1:' to make the let code the nested block inside the if (and have +# the parser automatically deal with the indentation for us). +# +# We don't want to do this if (1) the code block is empty or (2) the +# first line of the block doesn't have any whitespace at the front. -# Reserved words. These are listed separately as they are matched -# using the same regexp as generic IDs, but distinguished in the -# t_ID() function. The PLY documentation suggests this approach. -reserved = ( - 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT', - 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS', - 'OUTPUT', 'SIGNED', 'TEMPLATE' - ) +def fixPythonIndentation(s): + # get rid of blank lines first + s = re.sub(r'(?m)^\s*\n', '', s); + if (s != '' and re.match(r'[ \t]', s[0])): + s = 'if 1:\n' + s + return s -# List of tokens. The lex module requires this. -tokens = reserved + ( - # identifier - 'ID', - - # integer literal - 'INTLIT', - - # string literal - 'STRLIT', - - # code literal - 'CODELIT', - - # ( ) [ ] { } < > , ; . : :: * - 'LPAREN', 'RPAREN', - 'LBRACKET', 'RBRACKET', - 'LBRACE', 'RBRACE', - 'LESS', 'GREATER', 'EQUALS', - 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON', - 'ASTERISK', - - # C preprocessor directives - 'CPPDIRECTIVE' - -# The following are matched but never returned. commented out to -# suppress PLY warning - # newfile directive -# 'NEWFILE', - - # endfile directive -# 'ENDFILE' -) - -# Regular expressions for token matching -t_LPAREN = r'\(' -t_RPAREN = r'\)' -t_LBRACKET = r'\[' -t_RBRACKET = r'\]' -t_LBRACE = r'\{' -t_RBRACE = r'\}' -t_LESS = r'\<' -t_GREATER = r'\>' -t_EQUALS = r'=' -t_COMMA = r',' -t_SEMI = r';' -t_DOT = r'\.' -t_COLON = r':' -t_DBLCOLON = r'::' -t_ASTERISK = r'\*' - -# Identifiers and reserved words -reserved_map = { } -for r in reserved: - reserved_map[r.lower()] = r - -def t_ID(t): - r'[A-Za-z_]\w*' - t.type = reserved_map.get(t.value,'ID') - return t - -# Integer literal -def t_INTLIT(t): - r'(0x[\da-fA-F]+)|\d+' - try: - t.value = int(t.value,0) - except ValueError: - error(t.lineno, 'Integer value "%s" too large' % t.value) - t.value = 0 - return t - -# String literal. Note that these use only single quotes, and -# can span multiple lines. -def t_STRLIT(t): - r"(?m)'([^'])+'" - # strip off quotes - t.value = t.value[1:-1] - t.lineno += t.value.count('\n') - return t - - -# "Code literal"... like a string literal, but delimiters are -# '{{' and '}}' so they get formatted nicely under emacs c-mode -def t_CODELIT(t): - r"(?m)\{\{([^\}]|}(?!\}))+\}\}" - # strip off {{ & }} - t.value = t.value[2:-2] - t.lineno += t.value.count('\n') - return t - -def t_CPPDIRECTIVE(t): - r'^\#[^\#].*\n' - t.lineno += t.value.count('\n') - return t - -def t_NEWFILE(t): - r'^\#\#newfile\s+"[\w/.-]*"' - fileNameStack.push((t.value[11:-1], t.lineno)) - t.lineno = 0 - -def t_ENDFILE(t): - r'^\#\#endfile' - (old_filename, t.lineno) = fileNameStack.pop() +class ISAParserError(Exception): + """Error handler for parser errors""" + def __init__(self, first, second=None): + if second is None: + self.lineno = 0 + self.string = first + else: + if hasattr(first, 'lexer'): + first = first.lexer.lineno + self.lineno = first + self.string = second -# -# The functions t_NEWLINE, t_ignore, and t_error are -# special for the lex module. -# + def display(self, filename_stack, print_traceback=debug): + # Output formatted to work under Emacs compile-mode. Optional + # 'print_traceback' arg, if set to True, prints a Python stack + # backtrace too (can be handy when trying to debug the parser + # itself). -# Newlines -def t_NEWLINE(t): - r'\n+' - t.lineno += t.value.count('\n') + spaces = "" + for (filename, line) in filename_stack[:-1]: + print "%sIn file included from %s:" % (spaces, filename) + spaces += " " -# Comments -def t_comment(t): - r'//.*' + # Print a Python stack backtrace if requested. + if print_traceback or not self.lineno: + traceback.print_exc() -# Completely ignored characters -t_ignore = ' \t\x0c' + line_str = "%s:" % (filename_stack[-1][0], ) + if self.lineno: + line_str += "%d:" % (self.lineno, ) -# Error handler -def t_error(t): - error(t.lineno, "illegal character '%s'" % t.value[0]) - t.skip(1) + return "%s%s %s" % (spaces, line_str, self.string) -# Build the lexer -lex.lex() + def exit(self, filename_stack, print_traceback=debug): + # Just call exit. -##################################################################### -# -# Parser -# -# Every function whose name starts with 'p_' defines a grammar rule. -# The rule is encoded in the function's doc string, while the -# function body provides the action taken when the rule is matched. -# The argument to each function is a list of the values of the -# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols -# on the RHS. For tokens, the value is copied from the t.value -# attribute provided by the lexer. For non-terminals, the value -# is assigned by the producing rule; i.e., the job of the grammar -# rule function is to set the value for the non-terminal on the LHS -# (by assigning to t[0]). -##################################################################### + sys.exit(self.display(filename_stack, print_traceback)) -# The LHS of the first grammar rule is used as the start symbol -# (in this case, 'specification'). Note that this rule enforces -# that there will be exactly one namespace declaration, with 0 or more -# global defs/decls before and after it. The defs & decls before -# the namespace decl will be outside the namespace; those after -# will be inside. The decoder function is always inside the namespace. -def p_specification(t): - 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block' - global_code = t[1] - isa_name = t[2] - namespace = isa_name + "Inst" - # wrap the decode block as a function definition - t[4].wrap_decode_block(''' -StaticInstPtr -%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst) -{ - using namespace %(namespace)s; -''' % vars(), '}') - # both the latter output blocks and the decode block are in the namespace - namespace_code = t[3] + t[4] - # pass it all back to the caller of yacc.parse() - t[0] = (isa_name, namespace, global_code, namespace_code) - -# ISA name declaration looks like "namespace ;" -def p_name_decl(t): - 'name_decl : NAMESPACE ID SEMI' - t[0] = t[2] - -# 'opt_defs_and_outputs' is a possibly empty sequence of -# def and/or output statements. -def p_opt_defs_and_outputs_0(t): - 'opt_defs_and_outputs : empty' - t[0] = GenCode() - -def p_opt_defs_and_outputs_1(t): - 'opt_defs_and_outputs : defs_and_outputs' - t[0] = t[1] - -def p_defs_and_outputs_0(t): - 'defs_and_outputs : def_or_output' - t[0] = t[1] - -def p_defs_and_outputs_1(t): - 'defs_and_outputs : defs_and_outputs def_or_output' - t[0] = t[1] + t[2] - -# The list of possible definition/output statements. -def p_def_or_output(t): - '''def_or_output : def_format - | def_bitfield - | def_bitfield_struct - | def_template - | def_operand_types - | def_operands - | output_header - | output_decoder - | output_exec - | global_let''' - t[0] = t[1] - -# Output blocks 'output {{...}}' (C++ code blocks) are copied -# directly to the appropriate output section. - - -# Protect any non-dict-substitution '%'s in a format string -# (i.e. those not followed by '(') -def protect_non_subst_percents(s): - return re.sub(r'%(?!\()', '%%', s) - -# Massage output block by substituting in template definitions and bit -# operators. We handle '%'s embedded in the string that don't -# indicate template substitutions (or CPU-specific symbols, which get -# handled in GenCode) by doubling them first so that the format -# operation will reduce them back to single '%'s. -def process_output(s): - s = protect_non_subst_percents(s) - # protects cpu-specific symbols too - s = protect_cpu_symbols(s) - return substBitOps(s % templateMap) - -def p_output_header(t): - 'output_header : OUTPUT HEADER CODELIT SEMI' - t[0] = GenCode(header_output = process_output(t[3])) - -def p_output_decoder(t): - 'output_decoder : OUTPUT DECODER CODELIT SEMI' - t[0] = GenCode(decoder_output = process_output(t[3])) - -def p_output_exec(t): - 'output_exec : OUTPUT EXEC CODELIT SEMI' - t[0] = GenCode(exec_output = process_output(t[3])) - -# global let blocks 'let {{...}}' (Python code blocks) are executed -# directly when seen. Note that these execute in a special variable -# context 'exportContext' to prevent the code from polluting this -# script's namespace. -def p_global_let(t): - 'global_let : LET CODELIT SEMI' - updateExportContext() - try: - exec fixPythonIndentation(t[2]) in exportContext - except Exception, exc: - error(t.lineno(1), - 'error: %s in global let block "%s".' % (exc, t[2])) - t[0] = GenCode() # contributes nothing to the output C++ file - -# Define the mapping from operand type extensions to C++ types and bit -# widths (stored in operandTypeMap). -def p_def_operand_types(t): - 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' - try: - userDict = eval('{' + t[3] + '}') - except Exception, exc: - error(t.lineno(1), - 'error: %s in def operand_types block "%s".' % (exc, t[3])) - buildOperandTypeMap(userDict, t.lineno(1)) - t[0] = GenCode() # contributes nothing to the output C++ file - -# Define the mapping from operand names to operand classes and other -# traits. Stored in operandNameMap. -def p_def_operands(t): - 'def_operands : DEF OPERANDS CODELIT SEMI' - if not globals().has_key('operandTypeMap'): - error(t.lineno(1), - 'error: operand types must be defined before operands') - try: - userDict = eval('{' + t[3] + '}') - except Exception, exc: - error(t.lineno(1), - 'error: %s in def operands block "%s".' % (exc, t[3])) - buildOperandNameMap(userDict, t.lineno(1)) - t[0] = GenCode() # contributes nothing to the output C++ file - -# A bitfield definition looks like: -# 'def [signed] bitfield [:]' -# This generates a preprocessor macro in the output file. -def p_def_bitfield_0(t): - 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' - expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) - if (t[2] == 'signed'): - expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) - hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) - t[0] = GenCode(header_output = hash_define) - -# alternate form for single bit: 'def [signed] bitfield []' -def p_def_bitfield_1(t): - 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' - expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) - if (t[2] == 'signed'): - expr = 'sext<%d>(%s)' % (1, expr) - hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) - t[0] = GenCode(header_output = hash_define) - -# alternate form for structure member: 'def bitfield ' -def p_def_bitfield_struct(t): - 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI' - if (t[2] != ''): - error(t.lineno(1), 'error: structure bitfields are always unsigned.') - expr = 'machInst.%s' % t[5] - hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) - t[0] = GenCode(header_output = hash_define) - -def p_id_with_dot_0(t): - 'id_with_dot : ID' - t[0] = t[1] - -def p_id_with_dot_1(t): - 'id_with_dot : ID DOT id_with_dot' - t[0] = t[1] + t[2] + t[3] - -def p_opt_signed_0(t): - 'opt_signed : SIGNED' - t[0] = t[1] - -def p_opt_signed_1(t): - 'opt_signed : empty' - t[0] = '' - -# Global map variable to hold templates -templateMap = {} - -def p_def_template(t): - 'def_template : DEF TEMPLATE ID CODELIT SEMI' - templateMap[t[3]] = Template(t[4]) - t[0] = GenCode() - -# An instruction format definition looks like -# "def format () {{...}};" -def p_def_format(t): - 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' - (id, params, code) = (t[3], t[5], t[7]) - defFormat(id, params, code, t.lineno(1)) - t[0] = GenCode() - -# The formal parameter list for an instruction format is a possibly -# empty list of comma-separated parameters. Positional (standard, -# non-keyword) parameters must come first, followed by keyword -# parameters, followed by a '*foo' parameter that gets excess -# positional arguments (as in Python). Each of these three parameter -# categories is optional. -# -# Note that we do not support the '**foo' parameter for collecting -# otherwise undefined keyword args. Otherwise the parameter list is -# (I believe) identical to what is supported in Python. -# -# The param list generates a tuple, where the first element is a list of -# the positional params and the second element is a dict containing the -# keyword params. -def p_param_list_0(t): - 'param_list : positional_param_list COMMA nonpositional_param_list' - t[0] = t[1] + t[3] - -def p_param_list_1(t): - '''param_list : positional_param_list - | nonpositional_param_list''' - t[0] = t[1] - -def p_positional_param_list_0(t): - 'positional_param_list : empty' - t[0] = [] - -def p_positional_param_list_1(t): - 'positional_param_list : ID' - t[0] = [t[1]] - -def p_positional_param_list_2(t): - 'positional_param_list : positional_param_list COMMA ID' - t[0] = t[1] + [t[3]] - -def p_nonpositional_param_list_0(t): - 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' - t[0] = t[1] + t[3] - -def p_nonpositional_param_list_1(t): - '''nonpositional_param_list : keyword_param_list - | excess_args_param''' - t[0] = t[1] - -def p_keyword_param_list_0(t): - 'keyword_param_list : keyword_param' - t[0] = [t[1]] - -def p_keyword_param_list_1(t): - 'keyword_param_list : keyword_param_list COMMA keyword_param' - t[0] = t[1] + [t[3]] - -def p_keyword_param(t): - 'keyword_param : ID EQUALS expr' - t[0] = t[1] + ' = ' + t[3].__repr__() - -def p_excess_args_param(t): - 'excess_args_param : ASTERISK ID' - # Just concatenate them: '*ID'. Wrap in list to be consistent - # with positional_param_list and keyword_param_list. - t[0] = [t[1] + t[2]] - -# End of format definition-related rules. -############## +def error(*args): + raise ISAParserError(*args) +#################### +# Template objects. # -# A decode block looks like: -# decode [, ]* [default ] { ... } -# -def p_decode_block(t): - 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' - default_defaults = defaultStack.pop() - codeObj = t[5] - # use the "default defaults" only if there was no explicit - # default statement in decode_stmt_list - if not codeObj.has_decode_default: - codeObj += default_defaults - codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') - t[0] = codeObj - -# The opt_default statement serves only to push the "default defaults" -# onto defaultStack. This value will be used by nested decode blocks, -# and used and popped off when the current decode_block is processed -# (in p_decode_block() above). -def p_opt_default_0(t): - 'opt_default : empty' - # no default specified: reuse the one currently at the top of the stack - defaultStack.push(defaultStack.top()) - # no meaningful value returned - t[0] = None - -def p_opt_default_1(t): - 'opt_default : DEFAULT inst' - # push the new default - codeObj = t[2] - codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') - defaultStack.push(codeObj) - # no meaningful value returned - t[0] = None - -def p_decode_stmt_list_0(t): - 'decode_stmt_list : decode_stmt' - t[0] = t[1] - -def p_decode_stmt_list_1(t): - 'decode_stmt_list : decode_stmt decode_stmt_list' - if (t[1].has_decode_default and t[2].has_decode_default): - error(t.lineno(1), 'Two default cases in decode block') - t[0] = t[1] + t[2] +# Template objects are format strings that allow substitution from +# the attribute spaces of other objects (e.g. InstObjParams instances). -# -# Decode statement rules -# -# There are four types of statements allowed in a decode block: -# 1. Format blocks 'format { ... }' -# 2. Nested decode blocks -# 3. Instruction definitions. -# 4. C preprocessor directives. - - -# Preprocessor directives found in a decode statement list are passed -# through to the output, replicated to all of the output code -# streams. This works well for ifdefs, so we can ifdef out both the -# declarations and the decode cases generated by an instruction -# definition. Handling them as part of the grammar makes it easy to -# keep them in the right place with respect to the code generated by -# the other statements. -def p_decode_stmt_cpp(t): - 'decode_stmt : CPPDIRECTIVE' - t[0] = GenCode(t[1], t[1], t[1], t[1]) - -# A format block 'format { ... }' sets the default instruction -# format used to handle instruction definitions inside the block. -# This format can be overridden by using an explicit format on the -# instruction definition or with a nested format block. -def p_decode_stmt_format(t): - 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' - # The format will be pushed on the stack when 'push_format_id' is - # processed (see below). Once the parser has recognized the full - # production (though the right brace), we're done with the format, - # so now we can pop it. - formatStack.pop() - t[0] = t[4] - -# This rule exists so we can set the current format (& push the stack) -# when we recognize the format name part of the format block. -def p_push_format_id(t): - 'push_format_id : ID' - try: - formatStack.push(formatMap[t[1]]) - t[0] = ('', '// format %s' % t[1]) - except KeyError: - error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) - -# Nested decode block: if the value of the current field matches the -# specified constant, do a nested decode on some other field. -def p_decode_stmt_decode(t): - 'decode_stmt : case_label COLON decode_block' - label = t[1] - codeObj = t[3] - # just wrap the decoding code from the block as a case in the - # outer switch statement. - codeObj.wrap_decode_block('\n%s:\n' % label) - codeObj.has_decode_default = (label == 'default') - t[0] = codeObj - -# Instruction definition (finally!). -def p_decode_stmt_inst(t): - 'decode_stmt : case_label COLON inst SEMI' - label = t[1] - codeObj = t[3] - codeObj.wrap_decode_block('\n%s:' % label, 'break;\n') - codeObj.has_decode_default = (label == 'default') - t[0] = codeObj - -# The case label is either a list of one or more constants or 'default' -def p_case_label_0(t): - 'case_label : intlit_list' - t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1])) - -def p_case_label_1(t): - 'case_label : DEFAULT' - t[0] = 'default' +labelRE = re.compile(r'(?()" -def p_inst_0(t): - 'inst : ID LPAREN arg_list RPAREN' - # Pass the ID and arg list to the current format class to deal with. - currentFormat = formatStack.top() - codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1)) - args = ','.join(map(str, t[3])) - args = re.sub('(?m)^', '//', args) - args = re.sub('^//', '', args) - comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) - codeObj.prepend_all(comment) - t[0] = codeObj - -# Define an instruction using an explicitly specified format: -# "::()" -def p_inst_1(t): - 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' - try: - format = formatMap[t[1]] - except KeyError: - error(t.lineno(1), 'instruction format "%s" not defined.' % t[1]) - codeObj = format.defineInst(t[3], t[5], t.lineno(1)) - comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) - codeObj.prepend_all(comment) - t[0] = codeObj - -# The arg list generates a tuple, where the first element is a list of -# the positional args and the second element is a dict containing the -# keyword args. -def p_arg_list_0(t): - 'arg_list : positional_arg_list COMMA keyword_arg_list' - t[0] = ( t[1], t[3] ) - -def p_arg_list_1(t): - 'arg_list : positional_arg_list' - t[0] = ( t[1], {} ) - -def p_arg_list_2(t): - 'arg_list : keyword_arg_list' - t[0] = ( [], t[1] ) - -def p_positional_arg_list_0(t): - 'positional_arg_list : empty' - t[0] = [] - -def p_positional_arg_list_1(t): - 'positional_arg_list : expr' - t[0] = [t[1]] - -def p_positional_arg_list_2(t): - 'positional_arg_list : positional_arg_list COMMA expr' - t[0] = t[1] + [t[3]] - -def p_keyword_arg_list_0(t): - 'keyword_arg_list : keyword_arg' - t[0] = t[1] - -def p_keyword_arg_list_1(t): - 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' - t[0] = t[1] - t[0].update(t[3]) - -def p_keyword_arg(t): - 'keyword_arg : ID EQUALS expr' - t[0] = { t[1] : t[3] } +class Template(object): + def __init__(self, parser, t): + self.parser = parser + self.template = t -# -# Basic expressions. These constitute the argument values of -# "function calls" (i.e. instruction definitions in the decode block) -# and default values for formal parameters of format functions. -# -# Right now, these are either strings, integers, or (recursively) -# lists of exprs (using Python square-bracket list syntax). Note that -# bare identifiers are trated as string constants here (since there -# isn't really a variable namespace to refer to). -# -def p_expr_0(t): - '''expr : ID - | INTLIT - | STRLIT - | CODELIT''' - t[0] = t[1] + def subst(self, d): + myDict = None -def p_expr_1(t): - '''expr : LBRACKET list_expr RBRACKET''' - t[0] = t[2] + # Protect non-Python-dict substitutions (e.g. if there's a printf + # in the templated C++ code) + template = self.parser.protectNonSubstPercents(self.template) + # CPU-model-specific substitutions are handled later (in GenCode). + template = self.parser.protectCpuSymbols(template) -def p_list_expr_0(t): - 'list_expr : expr' - t[0] = [t[1]] + # Build a dict ('myDict') to use for the template substitution. + # Start with the template namespace. Make a copy since we're + # going to modify it. + myDict = self.parser.templateMap.copy() -def p_list_expr_1(t): - 'list_expr : list_expr COMMA expr' - t[0] = t[1] + [t[3]] + if isinstance(d, InstObjParams): + # If we're dealing with an InstObjParams object, we need + # to be a little more sophisticated. The instruction-wide + # parameters are already formed, but the parameters which + # are only function wide still need to be generated. + compositeCode = '' -def p_list_expr_2(t): - 'list_expr : empty' - t[0] = [] + myDict.update(d.__dict__) + # The "operands" and "snippets" attributes of the InstObjParams + # objects are for internal use and not substitution. + del myDict['operands'] + del myDict['snippets'] -# -# Empty production... use in other rules for readability. -# -def p_empty(t): - 'empty :' - pass - -# Parse error handler. Note that the argument here is the offending -# *token*, not a grammar symbol (hence the need to use t.value) -def p_error(t): - if t: - error(t.lineno, "syntax error at '%s'" % t.value) - else: - error(0, "unknown syntax error", True) + snippetLabels = [l for l in labelRE.findall(template) + if d.snippets.has_key(l)] -# END OF GRAMMAR RULES -# -# Now build the parser. -yacc.yacc() + snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s])) + for s in snippetLabels]) + myDict.update(snippets) -##################################################################### -# -# Support Classes + compositeCode = ' '.join(map(str, snippets.values())) + + # Add in template itself in case it references any + # operands explicitly (like Mem) + compositeCode += ' ' + template + + operands = SubOperandList(self.parser, compositeCode, d.operands) + + myDict['op_decl'] = operands.concatAttrStrings('op_decl') + + is_src = lambda op: op.is_src + is_dest = lambda op: op.is_dest + + myDict['op_src_decl'] = \ + operands.concatSomeAttrStrings(is_src, 'op_src_decl') + myDict['op_dest_decl'] = \ + operands.concatSomeAttrStrings(is_dest, 'op_dest_decl') + + myDict['op_rd'] = operands.concatAttrStrings('op_rd') + myDict['op_wb'] = operands.concatAttrStrings('op_wb') + + if d.operands.memOperand: + myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size + myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type + + elif isinstance(d, dict): + # if the argument is a dictionary, we just use it. + myDict.update(d) + elif hasattr(d, '__dict__'): + # if the argument is an object, we use its attribute map. + myDict.update(d.__dict__) + else: + raise TypeError, "Template.subst() arg must be or have dictionary" + return template % myDict + + # Convert to string. This handles the case when a template with a + # CPU-specific term gets interpolated into another template or into + # an output block. + def __str__(self): + return self.parser.expandCpuSymbolsToString(self.template) + +################ +# Format object. # -##################################################################### +# A format object encapsulates an instruction format. It must provide +# a defineInst() method that generates the code for an instruction +# definition. -# Expand template with CPU-specific references into a dictionary with -# an entry for each CPU model name. The entry key is the model name -# and the corresponding value is the template with the CPU-specific -# refs substituted for that model. -def expand_cpu_symbols_to_dict(template): - # Protect '%'s that don't go with CPU-specific terms - t = re.sub(r'%(?!\(CPU_)', '%%', template) - result = {} - for cpu in cpu_models: - result[cpu.name] = t % cpu.strings - return result - -# *If* the template has CPU-specific references, return a single -# string containing a copy of the template for each CPU model with the -# corresponding values substituted in. If the template has no -# CPU-specific references, it is returned unmodified. -def expand_cpu_symbols_to_string(template): - if template.find('%(CPU_') != -1: - return reduce(lambda x,y: x+y, - expand_cpu_symbols_to_dict(template).values()) - else: - return template +class Format(object): + def __init__(self, id, params, code): + self.id = id + self.params = params + label = 'def format ' + id + self.user_code = compile(fixPythonIndentation(code), label, 'exec') + param_list = string.join(params, ", ") + f = '''def defInst(_code, _context, %s): + my_locals = vars().copy() + exec _code in _context, my_locals + return my_locals\n''' % param_list + c = compile(f, label + ' wrapper', 'exec') + exec c + self.func = defInst -# Protect CPU-specific references by doubling the corresponding '%'s -# (in preparation for substituting a different set of references into -# the template). -def protect_cpu_symbols(template): - return re.sub(r'%(?=\(CPU_)', '%%', template) + def defineInst(self, parser, name, args, lineno): + parser.updateExportContext() + context = parser.exportContext.copy() + if len(name): + Name = name[0].upper() + if len(name) > 1: + Name += name[1:] + context.update({ 'name' : name, 'Name' : Name }) + try: + vars = self.func(self.user_code, context, *args[0], **args[1]) + except Exception, exc: + if debug: + raise + error(lineno, 'error defining "%s": %s.' % (name, exc)) + for k in vars.keys(): + if k not in ('header_output', 'decoder_output', + 'exec_output', 'decode_block'): + del vars[k] + return GenCode(parser, **vars) + +# Special null format to catch an implicit-format instruction +# definition outside of any format block. +class NoFormat(object): + def __init__(self): + self.defaultInst = '' + + def defineInst(self, parser, name, args, lineno): + error(lineno, + 'instruction definition "%s" with no active format!' % name) ############### # GenCode class @@ -774,34 +269,36 @@ def protect_cpu_symbols(template): # has_decode_default attribute is used in the decode block to allow # explicit default clauses to override default default clauses. -class GenCode: +class GenCode(object): # Constructor. At this point we substitute out all CPU-specific # symbols. For the exec output, these go into the per-model # dictionary. For all other output types they get collapsed into # a single string. - def __init__(self, + def __init__(self, parser, header_output = '', decoder_output = '', exec_output = '', decode_block = '', has_decode_default = False): - self.header_output = expand_cpu_symbols_to_string(header_output) - self.decoder_output = expand_cpu_symbols_to_string(decoder_output) + self.parser = parser + self.header_output = parser.expandCpuSymbolsToString(header_output) + self.decoder_output = parser.expandCpuSymbolsToString(decoder_output) if isinstance(exec_output, dict): self.exec_output = exec_output elif isinstance(exec_output, str): # If the exec_output arg is a single string, we replicate # it for each of the CPU models, substituting and # %(CPU_foo)s params appropriately. - self.exec_output = expand_cpu_symbols_to_dict(exec_output) - self.decode_block = expand_cpu_symbols_to_string(decode_block) + self.exec_output = parser.expandCpuSymbolsToDict(exec_output) + self.decode_block = parser.expandCpuSymbolsToString(decode_block) self.has_decode_default = has_decode_default # Override '+' operator: generate a new GenCode object that # concatenates all the individual strings in the operands. def __add__(self, other): exec_output = {} - for cpu in cpu_models: + for cpu in self.parser.cpuModels: n = cpu.name exec_output[n] = self.exec_output[n] + other.exec_output[n] - return GenCode(self.header_output + other.header_output, + return GenCode(self.parser, + self.header_output + other.header_output, self.decoder_output + other.decoder_output, exec_output, self.decode_block + other.decode_block, @@ -812,7 +309,7 @@ class GenCode: self.header_output = pre + self.header_output self.decoder_output = pre + self.decoder_output self.decode_block = pre + self.decode_block - for cpu in cpu_models: + for cpu in self.parser.cpuModels: self.exec_output[cpu.name] = pre + self.exec_output[cpu.name] # Wrap the decode block in a pair of strings (e.g., 'case foo:' @@ -820,160 +317,6 @@ class GenCode: def wrap_decode_block(self, pre, post = ''): self.decode_block = pre + indent(self.decode_block) + post -################ -# Format object. -# -# A format object encapsulates an instruction format. It must provide -# a defineInst() method that generates the code for an instruction -# definition. - -exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string') - -exportContext = {} - -def updateExportContext(): - exportContext.update(exportDict(*exportContextSymbols)) - exportContext.update(templateMap) - -def exportDict(*symNames): - return dict([(s, eval(s)) for s in symNames]) - - -class Format: - def __init__(self, id, params, code): - # constructor: just save away arguments - self.id = id - self.params = params - label = 'def format ' + id - self.user_code = compile(fixPythonIndentation(code), label, 'exec') - param_list = string.join(params, ", ") - f = '''def defInst(_code, _context, %s): - my_locals = vars().copy() - exec _code in _context, my_locals - return my_locals\n''' % param_list - c = compile(f, label + ' wrapper', 'exec') - exec c - self.func = defInst - - def defineInst(self, name, args, lineno): - context = {} - updateExportContext() - context.update(exportContext) - context.update({ 'name': name, 'Name': string.capitalize(name) }) - try: - vars = self.func(self.user_code, context, *args[0], **args[1]) - except Exception, exc: - error(lineno, 'error defining "%s": %s.' % (name, exc)) - for k in vars.keys(): - if k not in ('header_output', 'decoder_output', - 'exec_output', 'decode_block'): - del vars[k] - return GenCode(**vars) - -# Special null format to catch an implicit-format instruction -# definition outside of any format block. -class NoFormat: - def __init__(self): - self.defaultInst = '' - - def defineInst(self, name, args, lineno): - error(lineno, - 'instruction definition "%s" with no active format!' % name) - -# This dictionary maps format name strings to Format objects. -formatMap = {} - -# Define a new format -def defFormat(id, params, code, lineno): - # make sure we haven't already defined this one - if formatMap.get(id, None) != None: - error(lineno, 'format %s redefined.' % id) - # create new object and store in global map - formatMap[id] = Format(id, params, code) - - -############## -# Stack: a simple stack object. Used for both formats (formatStack) -# and default cases (defaultStack). Simply wraps a list to give more -# stack-like syntax and enable initialization with an argument list -# (as opposed to an argument that's a list). - -class Stack(list): - def __init__(self, *items): - list.__init__(self, items) - - def push(self, item): - self.append(item); - - def top(self): - return self[-1] - -# The global format stack. -formatStack = Stack(NoFormat()) - -# The global default case stack. -defaultStack = Stack( None ) - -# Global stack that tracks current file and line number. -# Each element is a tuple (filename, lineno) that records the -# *current* filename and the line number in the *previous* file where -# it was included. -fileNameStack = Stack() - -################### -# Utility functions - -# -# Indent every line in string 's' by two spaces -# (except preprocessor directives). -# Used to make nested code blocks look pretty. -# -def indent(s): - return re.sub(r'(?m)^(?!#)', ' ', s) - -# -# Munge a somewhat arbitrarily formatted piece of Python code -# (e.g. from a format 'let' block) into something whose indentation -# will get by the Python parser. -# -# The two keys here are that Python will give a syntax error if -# there's any whitespace at the beginning of the first line, and that -# all lines at the same lexical nesting level must have identical -# indentation. Unfortunately the way code literals work, an entire -# let block tends to have some initial indentation. Rather than -# trying to figure out what that is and strip it off, we prepend 'if -# 1:' to make the let code the nested block inside the if (and have -# the parser automatically deal with the indentation for us). -# -# We don't want to do this if (1) the code block is empty or (2) the -# first line of the block doesn't have any whitespace at the front. - -def fixPythonIndentation(s): - # get rid of blank lines first - s = re.sub(r'(?m)^\s*\n', '', s); - if (s != '' and re.match(r'[ \t]', s[0])): - s = 'if 1:\n' + s - return s - -# Error handler. Just call exit. Output formatted to work under -# Emacs compile-mode. Optional 'print_traceback' arg, if set to True, -# prints a Python stack backtrace too (can be handy when trying to -# debug the parser itself). -def error(lineno, string, print_traceback = False): - spaces = "" - for (filename, line) in fileNameStack[0:-1]: - print spaces + "In file included from " + filename + ":" - spaces += " " - # Print a Python stack backtrace if requested. - if (print_traceback): - traceback.print_exc() - if lineno != 0: - line_str = "%d:" % lineno - else: - line_str = "" - sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string)) - - ##################################################################### # # Bitfield Operator Support @@ -1015,94 +358,6 @@ def substBitOps(code): return code -#################### -# Template objects. -# -# Template objects are format strings that allow substitution from -# the attribute spaces of other objects (e.g. InstObjParams instances). - -labelRE = re.compile(r'[^%]%\(([^\)]+)\)[sd]') - -class Template: - def __init__(self, t): - self.template = t - - def subst(self, d): - myDict = None - - # Protect non-Python-dict substitutions (e.g. if there's a printf - # in the templated C++ code) - template = protect_non_subst_percents(self.template) - # CPU-model-specific substitutions are handled later (in GenCode). - template = protect_cpu_symbols(template) - - # Build a dict ('myDict') to use for the template substitution. - # Start with the template namespace. Make a copy since we're - # going to modify it. - myDict = templateMap.copy() - - if isinstance(d, InstObjParams): - # If we're dealing with an InstObjParams object, we need - # to be a little more sophisticated. The instruction-wide - # parameters are already formed, but the parameters which - # are only function wide still need to be generated. - compositeCode = '' - - myDict.update(d.__dict__) - # The "operands" and "snippets" attributes of the InstObjParams - # objects are for internal use and not substitution. - del myDict['operands'] - del myDict['snippets'] - - snippetLabels = [l for l in labelRE.findall(template) - if d.snippets.has_key(l)] - - snippets = dict([(s, mungeSnippet(d.snippets[s])) - for s in snippetLabels]) - - myDict.update(snippets) - - compositeCode = ' '.join(map(str, snippets.values())) - - # Add in template itself in case it references any - # operands explicitly (like Mem) - compositeCode += ' ' + template - - operands = SubOperandList(compositeCode, d.operands) - - myDict['op_decl'] = operands.concatAttrStrings('op_decl') - - is_src = lambda op: op.is_src - is_dest = lambda op: op.is_dest - - myDict['op_src_decl'] = \ - operands.concatSomeAttrStrings(is_src, 'op_src_decl') - myDict['op_dest_decl'] = \ - operands.concatSomeAttrStrings(is_dest, 'op_dest_decl') - - myDict['op_rd'] = operands.concatAttrStrings('op_rd') - myDict['op_wb'] = operands.concatAttrStrings('op_wb') - - if d.operands.memOperand: - myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size - myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type - - elif isinstance(d, dict): - # if the argument is a dictionary, we just use it. - myDict.update(d) - elif hasattr(d, '__dict__'): - # if the argument is an object, we use its attribute map. - myDict.update(d.__dict__) - else: - raise TypeError, "Template.subst() arg must be or have dictionary" - return template % myDict - - # Convert to string. This handles the case when a template with a - # CPU-specific term gets interpolated into another template or into - # an output block. - def __str__(self): - return expand_cpu_symbols_to_string(self.template) - ##################################################################### # # Code Parser @@ -1125,45 +380,51 @@ def makeList(arg): else: return [ arg ] -# Generate operandTypeMap from the user's 'def operand_types' -# statement. -def buildOperandTypeMap(userDict, lineno): - global operandTypeMap - operandTypeMap = {} - for (ext, (desc, size)) in userDict.iteritems(): - if desc == 'signed int': - ctype = 'int%d_t' % size - is_signed = 1 - elif desc == 'unsigned int': - ctype = 'uint%d_t' % size - is_signed = 0 - elif desc == 'float': - is_signed = 1 # shouldn't really matter - if size == 32: - ctype = 'float' - elif size == 64: - ctype = 'double' - elif desc == 'twin64 int': - is_signed = 0 - ctype = 'Twin64_t' - elif desc == 'twin32 int': - is_signed = 0 - ctype = 'Twin32_t' - if ctype == '': - error(lineno, 'Unrecognized type description "%s" in userDict') - operandTypeMap[ext] = (size, ctype, is_signed) - -# -# -# -# Base class for operand descriptors. An instance of this class (or -# actually a class derived from this one) represents a specific -# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate -# derived classes encapsulates the traits of a particular operand type -# (e.g., "32-bit integer register"). -# class Operand(object): - def __init__(self, full_name, ext, is_src, is_dest): + '''Base class for operand descriptors. An instance of this class + (or actually a class derived from this one) represents a specific + operand for a code block (e.g, "Rc.sq" as a dest). Intermediate + derived classes encapsulates the traits of a particular operand + type (e.g., "32-bit integer register").''' + + def buildReadCode(self, func = None): + subst_dict = {"name": self.base_name, + "func": func, + "reg_idx": self.reg_spec, + "size": self.size, + "ctype": self.ctype} + if hasattr(self, 'src_reg_idx'): + subst_dict['op_idx'] = self.src_reg_idx + code = self.read_code % subst_dict + if self.size != self.dflt_size: + return '%s = bits(%s, %d, 0);\n' % \ + (self.base_name, code, self.size-1) + else: + return '%s = %s;\n' % \ + (self.base_name, code) + + def buildWriteCode(self, func = None): + if (self.size != self.dflt_size and self.is_signed): + final_val = 'sext<%d>(%s)' % (self.size, self.base_name) + else: + final_val = self.base_name + subst_dict = {"name": self.base_name, + "func": func, + "reg_idx": self.reg_spec, + "size": self.size, + "ctype": self.ctype, + "final_val": final_val} + if hasattr(self, 'dest_reg_idx'): + subst_dict['op_idx'] = self.dest_reg_idx + code = self.write_code % subst_dict + return ''' + { + %s final_val = %s; + %s; + if (traceData) { traceData->setData(final_val); } + }''' % (self.dflt_ctype, final_val, code) + + def __init__(self, parser, full_name, ext, is_src, is_dest): self.full_name = full_name self.ext = ext self.is_src = is_src @@ -1175,7 +436,8 @@ class Operand(object): else: self.eff_ext = self.dflt_ext - (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext] + self.size, self.ctype, self.is_signed = \ + parser.operandTypeMap[self.eff_ext] # note that mem_acc_size is undefined for non-mem operands... # template must be careful not to use it if it doesn't apply. @@ -1258,7 +520,9 @@ class IntRegOperand(Operand): def makeRead(self): if (self.ctype == 'float' or self.ctype == 'double'): - error(0, 'Attempt to read integer register as FP') + error('Attempt to read integer register as FP') + if self.read_code != None: + return self.buildReadCode('readIntRegOperand') if (self.size == self.dflt_size): return '%s = xc->readIntRegOperand(this, %d);\n' % \ (self.base_name, self.src_reg_idx) @@ -1274,7 +538,9 @@ class IntRegOperand(Operand): def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): - error(0, 'Attempt to write integer register as FP') + error('Attempt to write integer register as FP') + if self.write_code != None: + return self.buildWriteCode('setIntRegOperand') if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) else: @@ -1306,27 +572,15 @@ class FloatRegOperand(Operand): def makeRead(self): bit_select = 0 - width = 0; - if (self.ctype == 'float'): - func = 'readFloatRegOperand' - width = 32; - elif (self.ctype == 'double'): + if (self.ctype == 'float' or self.ctype == 'double'): func = 'readFloatRegOperand' - width = 64; else: func = 'readFloatRegOperandBits' - if (self.ctype == 'uint32_t'): - width = 32; - elif (self.ctype == 'uint64_t'): - width = 64; if (self.size != self.dflt_size): bit_select = 1 - if width: - base = 'xc->%s(this, %d, %d)' % \ - (func, self.src_reg_idx, width) - else: - base = 'xc->%s(this, %d)' % \ - (func, self.src_reg_idx) + base = 'xc->%s(this, %d)' % (func, self.src_reg_idx) + if self.read_code != None: + return self.buildReadCode(func) if bit_select: return '%s = bits(%s, %d, 0);\n' % \ (self.base_name, base, self.size-1) @@ -1336,34 +590,23 @@ class FloatRegOperand(Operand): def makeWrite(self): final_val = self.base_name final_ctype = self.ctype - widthSpecifier = '' - width = 0 - if (self.ctype == 'float'): - width = 32 - func = 'setFloatRegOperand' - elif (self.ctype == 'double'): - width = 64 + if (self.ctype == 'float' or self.ctype == 'double'): func = 'setFloatRegOperand' - elif (self.ctype == 'uint32_t'): + elif (self.ctype == 'uint32_t' or self.ctype == 'uint64_t'): func = 'setFloatRegOperandBits' - width = 32 - elif (self.ctype == 'uint64_t'): - func = 'setFloatRegOperandBits' - width = 64 else: func = 'setFloatRegOperandBits' final_ctype = 'uint%d_t' % self.dflt_size if (self.size != self.dflt_size and self.is_signed): final_val = 'sext<%d>(%s)' % (self.size, self.base_name) - if width: - widthSpecifier = ', %d' % width + if self.write_code != None: + return self.buildWriteCode(func) wb = ''' { %s final_val = %s; - xc->%s(this, %d, final_val%s);\n + xc->%s(this, %d, final_val);\n if (traceData) { traceData->setData(final_val); } - }''' % (final_ctype, final_val, func, self.dest_reg_idx, - widthSpecifier) + }''' % (final_ctype, final_val, func, self.dest_reg_idx) return wb class ControlRegOperand(Operand): @@ -1386,7 +629,9 @@ class ControlRegOperand(Operand): def makeRead(self): bit_select = 0 if (self.ctype == 'float' or self.ctype == 'double'): - error(0, 'Attempt to read control register as FP') + error('Attempt to read control register as FP') + if self.read_code != None: + return self.buildReadCode('readMiscRegOperand') base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx if self.size == self.dflt_size: return '%s = %s;\n' % (self.base_name, base) @@ -1396,7 +641,9 @@ class ControlRegOperand(Operand): def makeWrite(self): if (self.ctype == 'float' or self.ctype == 'double'): - error(0, 'Attempt to write control register as FP') + error('Attempt to write control register as FP') + if self.write_code != None: + return self.buildWriteCode('setMiscRegOperand') wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \ (self.dest_reg_idx, self.base_name) wb += 'if (traceData) { traceData->setData(%s); }' % \ @@ -1415,15 +662,18 @@ class MemOperand(Operand): # to avoid 'uninitialized variable' errors from the compiler. # Declare memory data variable. if self.ctype in ['Twin32_t','Twin64_t']: - return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name, - self.base_name, self.base_name) - c = '%s %s = 0;\n' % (self.ctype, self.base_name) - return c + return "%s %s; %s.a = 0; %s.b = 0;\n" % \ + (self.ctype, self.base_name, self.base_name, self.base_name) + return '%s %s = 0;\n' % (self.ctype, self.base_name) def makeRead(self): + if self.read_code != None: + return self.buildReadCode() return '' def makeWrite(self): + if self.write_code != None: + return self.buildWriteCode() return '' # Return the memory access size *in bits*, suitable for @@ -1431,15 +681,56 @@ class MemOperand(Operand): def makeAccSize(self): return self.size +class PCOperand(Operand): + def makeConstructor(self): + return '' + + def makeRead(self): + return '%s = xc->readPC();\n' % self.base_name + + def makeWrite(self): + return 'xc->setPC(%s);\n' % self.base_name + +class UPCOperand(Operand): + def makeConstructor(self): + return '' + + def makeRead(self): + if self.read_code != None: + return self.buildReadCode('readMicroPC') + return '%s = xc->readMicroPC();\n' % self.base_name + + def makeWrite(self): + if self.write_code != None: + return self.buildWriteCode('setMicroPC') + return 'xc->setMicroPC(%s);\n' % self.base_name + +class NUPCOperand(Operand): + def makeConstructor(self): + return '' + + def makeRead(self): + if self.read_code != None: + return self.buildReadCode('readNextMicroPC') + return '%s = xc->readNextMicroPC();\n' % self.base_name + + def makeWrite(self): + if self.write_code != None: + return self.buildWriteCode('setNextMicroPC') + return 'xc->setNextMicroPC(%s);\n' % self.base_name class NPCOperand(Operand): def makeConstructor(self): return '' def makeRead(self): + if self.read_code != None: + return self.buildReadCode('readNextPC') return '%s = xc->readNextPC();\n' % self.base_name def makeWrite(self): + if self.write_code != None: + return self.buildWriteCode('setNextPC') return 'xc->setNextPC(%s);\n' % self.base_name class NNPCOperand(Operand): @@ -1447,86 +738,19 @@ class NNPCOperand(Operand): return '' def makeRead(self): + if self.read_code != None: + return self.buildReadCode('readNextNPC') return '%s = xc->readNextNPC();\n' % self.base_name def makeWrite(self): + if self.write_code != None: + return self.buildWriteCode('setNextNPC') return 'xc->setNextNPC(%s);\n' % self.base_name -def buildOperandNameMap(userDict, lineno): - global operandNameMap - operandNameMap = {} - for (op_name, val) in userDict.iteritems(): - (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val - (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext] - # Canonical flag structure is a triple of lists, where each list - # indicates the set of flags implied by this operand always, when - # used as a source, and when used as a dest, respectively. - # For simplicity this can be initialized using a variety of fairly - # obvious shortcuts; we convert these to canonical form here. - if not flags: - # no flags specified (e.g., 'None') - flags = ( [], [], [] ) - elif isinstance(flags, str): - # a single flag: assumed to be unconditional - flags = ( [ flags ], [], [] ) - elif isinstance(flags, list): - # a list of flags: also assumed to be unconditional - flags = ( flags, [], [] ) - elif isinstance(flags, tuple): - # it's a tuple: it should be a triple, - # but each item could be a single string or a list - (uncond_flags, src_flags, dest_flags) = flags - flags = (makeList(uncond_flags), - makeList(src_flags), makeList(dest_flags)) - # Accumulate attributes of new operand class in tmp_dict - tmp_dict = {} - for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri', - 'dflt_size', 'dflt_ctype', 'dflt_is_signed'): - tmp_dict[attr] = eval(attr) - tmp_dict['base_name'] = op_name - # New class name will be e.g. "IntReg_Ra" - cls_name = base_cls_name + '_' + op_name - # Evaluate string arg to get class object. Note that the - # actual base class for "IntReg" is "IntRegOperand", i.e. we - # have to append "Operand". - try: - base_cls = eval(base_cls_name + 'Operand') - except NameError: - error(lineno, - 'error: unknown operand base class "%s"' % base_cls_name) - # The following statement creates a new class called - # as a subclass of with the attributes - # in tmp_dict, just as if we evaluated a class declaration. - operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict) - - # Define operand variables. - operands = userDict.keys() - - operandsREString = (r''' - (? , ; . : :: * + 'LPAREN', 'RPAREN', + 'LBRACKET', 'RBRACKET', + 'LBRACE', 'RBRACE', + 'LESS', 'GREATER', 'EQUALS', + 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON', + 'ASTERISK', + + # C preprocessor directives + 'CPPDIRECTIVE' + + # The following are matched but never returned. commented out to + # suppress PLY warning + # newfile directive + # 'NEWFILE', + + # endfile directive + # 'ENDFILE' + ) -# Update the output file only if the new contents are different from -# the current contents. Minimizes the files that need to be rebuilt -# after minor changes. -def update_if_needed(file, contents): - update = False - if os.access(file, os.R_OK): - f = open(file, 'r') - old_contents = f.read() - f.close() - if contents != old_contents: - print 'Updating', file - os.remove(file) # in case it's write-protected - update = True + # Regular expressions for token matching + t_LPAREN = r'\(' + t_RPAREN = r'\)' + t_LBRACKET = r'\[' + t_RBRACKET = r'\]' + t_LBRACE = r'\{' + t_RBRACE = r'\}' + t_LESS = r'\<' + t_GREATER = r'\>' + t_EQUALS = r'=' + t_COMMA = r',' + t_SEMI = r';' + t_DOT = r'\.' + t_COLON = r':' + t_DBLCOLON = r'::' + t_ASTERISK = r'\*' + + # Identifiers and reserved words + reserved_map = { } + for r in reserved: + reserved_map[r.lower()] = r + + def t_ID(self, t): + r'[A-Za-z_]\w*' + t.type = self.reserved_map.get(t.value, 'ID') + return t + + # Integer literal + def t_INTLIT(self, t): + r'-?(0x[\da-fA-F]+)|\d+' + try: + t.value = int(t.value,0) + except ValueError: + error(t, 'Integer value "%s" too large' % t.value) + t.value = 0 + return t + + # String literal. Note that these use only single quotes, and + # can span multiple lines. + def t_STRLIT(self, t): + r"(?m)'([^'])+'" + # strip off quotes + t.value = t.value[1:-1] + t.lexer.lineno += t.value.count('\n') + return t + + + # "Code literal"... like a string literal, but delimiters are + # '{{' and '}}' so they get formatted nicely under emacs c-mode + def t_CODELIT(self, t): + r"(?m)\{\{([^\}]|}(?!\}))+\}\}" + # strip off {{ & }} + t.value = t.value[2:-2] + t.lexer.lineno += t.value.count('\n') + return t + + def t_CPPDIRECTIVE(self, t): + r'^\#[^\#].*\n' + t.lexer.lineno += t.value.count('\n') + return t + + def t_NEWFILE(self, t): + r'^\#\#newfile\s+"[\w/.-]*"' + self.fileNameStack.push((t.value[11:-1], t.lexer.lineno)) + t.lexer.lineno = 0 + + def t_ENDFILE(self, t): + r'^\#\#endfile' + (old_filename, t.lexer.lineno) = self.fileNameStack.pop() + + # + # The functions t_NEWLINE, t_ignore, and t_error are + # special for the lex module. + # + + # Newlines + def t_NEWLINE(self, t): + r'\n+' + t.lexer.lineno += t.value.count('\n') + + # Comments + def t_comment(self, t): + r'//.*' + + # Completely ignored characters + t_ignore = ' \t\x0c' + + # Error handler + def t_error(self, t): + error(t, "illegal character '%s'" % t.value[0]) + t.skip(1) + + ##################################################################### + # + # Parser + # + # Every function whose name starts with 'p_' defines a grammar + # rule. The rule is encoded in the function's doc string, while + # the function body provides the action taken when the rule is + # matched. The argument to each function is a list of the values + # of the rule's symbols: t[0] for the LHS, and t[1..n] for the + # symbols on the RHS. For tokens, the value is copied from the + # t.value attribute provided by the lexer. For non-terminals, the + # value is assigned by the producing rule; i.e., the job of the + # grammar rule function is to set the value for the non-terminal + # on the LHS (by assigning to t[0]). + ##################################################################### + + # The LHS of the first grammar rule is used as the start symbol + # (in this case, 'specification'). Note that this rule enforces + # that there will be exactly one namespace declaration, with 0 or + # more global defs/decls before and after it. The defs & decls + # before the namespace decl will be outside the namespace; those + # after will be inside. The decoder function is always inside the + # namespace. + def p_specification(self, t): + 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block' + global_code = t[1] + isa_name = t[2] + namespace = isa_name + "Inst" + # wrap the decode block as a function definition + t[4].wrap_decode_block(''' +StaticInstPtr +%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst) +{ + using namespace %(namespace)s; +''' % vars(), '}') + # both the latter output blocks and the decode block are in + # the namespace + namespace_code = t[3] + t[4] + # pass it all back to the caller of yacc.parse() + t[0] = (isa_name, namespace, global_code, namespace_code) + + # ISA name declaration looks like "namespace ;" + def p_name_decl(self, t): + 'name_decl : NAMESPACE ID SEMI' + t[0] = t[2] + + # 'opt_defs_and_outputs' is a possibly empty sequence of + # def and/or output statements. + def p_opt_defs_and_outputs_0(self, t): + 'opt_defs_and_outputs : empty' + t[0] = GenCode(self) + + def p_opt_defs_and_outputs_1(self, t): + 'opt_defs_and_outputs : defs_and_outputs' + t[0] = t[1] + + def p_defs_and_outputs_0(self, t): + 'defs_and_outputs : def_or_output' + t[0] = t[1] + + def p_defs_and_outputs_1(self, t): + 'defs_and_outputs : defs_and_outputs def_or_output' + t[0] = t[1] + t[2] + + # The list of possible definition/output statements. + def p_def_or_output(self, t): + '''def_or_output : def_format + | def_bitfield + | def_bitfield_struct + | def_template + | def_operand_types + | def_operands + | output_header + | output_decoder + | output_exec + | global_let''' + t[0] = t[1] + + # Output blocks 'output {{...}}' (C++ code blocks) are copied + # directly to the appropriate output section. + + # Massage output block by substituting in template definitions and + # bit operators. We handle '%'s embedded in the string that don't + # indicate template substitutions (or CPU-specific symbols, which + # get handled in GenCode) by doubling them first so that the + # format operation will reduce them back to single '%'s. + def process_output(self, s): + s = self.protectNonSubstPercents(s) + # protects cpu-specific symbols too + s = self.protectCpuSymbols(s) + return substBitOps(s % self.templateMap) + + def p_output_header(self, t): + 'output_header : OUTPUT HEADER CODELIT SEMI' + t[0] = GenCode(self, header_output = self.process_output(t[3])) + + def p_output_decoder(self, t): + 'output_decoder : OUTPUT DECODER CODELIT SEMI' + t[0] = GenCode(self, decoder_output = self.process_output(t[3])) + + def p_output_exec(self, t): + 'output_exec : OUTPUT EXEC CODELIT SEMI' + t[0] = GenCode(self, exec_output = self.process_output(t[3])) + + # global let blocks 'let {{...}}' (Python code blocks) are + # executed directly when seen. Note that these execute in a + # special variable context 'exportContext' to prevent the code + # from polluting this script's namespace. + def p_global_let(self, t): + 'global_let : LET CODELIT SEMI' + self.updateExportContext() + self.exportContext["header_output"] = '' + self.exportContext["decoder_output"] = '' + self.exportContext["exec_output"] = '' + self.exportContext["decode_block"] = '' + try: + exec fixPythonIndentation(t[2]) in self.exportContext + except Exception, exc: + if debug: + raise + error(t, 'error: %s in global let block "%s".' % (exc, t[2])) + t[0] = GenCode(self, + header_output=self.exportContext["header_output"], + decoder_output=self.exportContext["decoder_output"], + exec_output=self.exportContext["exec_output"], + decode_block=self.exportContext["decode_block"]) + + # Define the mapping from operand type extensions to C++ types and + # bit widths (stored in operandTypeMap). + def p_def_operand_types(self, t): + 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI' + try: + user_dict = eval('{' + t[3] + '}') + except Exception, exc: + if debug: + raise + error(t, + 'error: %s in def operand_types block "%s".' % (exc, t[3])) + self.buildOperandTypeMap(user_dict, t.lexer.lineno) + t[0] = GenCode(self) # contributes nothing to the output C++ file + + # Define the mapping from operand names to operand classes and + # other traits. Stored in operandNameMap. + def p_def_operands(self, t): + 'def_operands : DEF OPERANDS CODELIT SEMI' + if not hasattr(self, 'operandTypeMap'): + error(t, 'error: operand types must be defined before operands') + try: + user_dict = eval('{' + t[3] + '}', self.exportContext) + except Exception, exc: + if debug: + raise + error(t, 'error: %s in def operands block "%s".' % (exc, t[3])) + self.buildOperandNameMap(user_dict, t.lexer.lineno) + t[0] = GenCode(self) # contributes nothing to the output C++ file + + # A bitfield definition looks like: + # 'def [signed] bitfield [:]' + # This generates a preprocessor macro in the output file. + def p_def_bitfield_0(self, t): + 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI' + expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8]) + if (t[2] == 'signed'): + expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr) + hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) + t[0] = GenCode(self, header_output=hash_define) + + # alternate form for single bit: 'def [signed] bitfield []' + def p_def_bitfield_1(self, t): + 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI' + expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6]) + if (t[2] == 'signed'): + expr = 'sext<%d>(%s)' % (1, expr) + hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) + t[0] = GenCode(self, header_output=hash_define) + + # alternate form for structure member: 'def bitfield ' + def p_def_bitfield_struct(self, t): + 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI' + if (t[2] != ''): + error(t, 'error: structure bitfields are always unsigned.') + expr = 'machInst.%s' % t[5] + hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr) + t[0] = GenCode(self, header_output=hash_define) + + def p_id_with_dot_0(self, t): + 'id_with_dot : ID' + t[0] = t[1] + + def p_id_with_dot_1(self, t): + 'id_with_dot : ID DOT id_with_dot' + t[0] = t[1] + t[2] + t[3] + + def p_opt_signed_0(self, t): + 'opt_signed : SIGNED' + t[0] = t[1] + + def p_opt_signed_1(self, t): + 'opt_signed : empty' + t[0] = '' + + def p_def_template(self, t): + 'def_template : DEF TEMPLATE ID CODELIT SEMI' + self.templateMap[t[3]] = Template(self, t[4]) + t[0] = GenCode(self) + + # An instruction format definition looks like + # "def format () {{...}};" + def p_def_format(self, t): + 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI' + (id, params, code) = (t[3], t[5], t[7]) + self.defFormat(id, params, code, t.lexer.lineno) + t[0] = GenCode(self) + + # The formal parameter list for an instruction format is a + # possibly empty list of comma-separated parameters. Positional + # (standard, non-keyword) parameters must come first, followed by + # keyword parameters, followed by a '*foo' parameter that gets + # excess positional arguments (as in Python). Each of these three + # parameter categories is optional. + # + # Note that we do not support the '**foo' parameter for collecting + # otherwise undefined keyword args. Otherwise the parameter list + # is (I believe) identical to what is supported in Python. + # + # The param list generates a tuple, where the first element is a + # list of the positional params and the second element is a dict + # containing the keyword params. + def p_param_list_0(self, t): + 'param_list : positional_param_list COMMA nonpositional_param_list' + t[0] = t[1] + t[3] + + def p_param_list_1(self, t): + '''param_list : positional_param_list + | nonpositional_param_list''' + t[0] = t[1] + + def p_positional_param_list_0(self, t): + 'positional_param_list : empty' + t[0] = [] + + def p_positional_param_list_1(self, t): + 'positional_param_list : ID' + t[0] = [t[1]] + + def p_positional_param_list_2(self, t): + 'positional_param_list : positional_param_list COMMA ID' + t[0] = t[1] + [t[3]] + + def p_nonpositional_param_list_0(self, t): + 'nonpositional_param_list : keyword_param_list COMMA excess_args_param' + t[0] = t[1] + t[3] + + def p_nonpositional_param_list_1(self, t): + '''nonpositional_param_list : keyword_param_list + | excess_args_param''' + t[0] = t[1] + + def p_keyword_param_list_0(self, t): + 'keyword_param_list : keyword_param' + t[0] = [t[1]] + + def p_keyword_param_list_1(self, t): + 'keyword_param_list : keyword_param_list COMMA keyword_param' + t[0] = t[1] + [t[3]] + + def p_keyword_param(self, t): + 'keyword_param : ID EQUALS expr' + t[0] = t[1] + ' = ' + t[3].__repr__() + + def p_excess_args_param(self, t): + 'excess_args_param : ASTERISK ID' + # Just concatenate them: '*ID'. Wrap in list to be consistent + # with positional_param_list and keyword_param_list. + t[0] = [t[1] + t[2]] + + # End of format definition-related rules. + ############## + + # + # A decode block looks like: + # decode [, ]* [default ] { ... } + # + def p_decode_block(self, t): + 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE' + default_defaults = self.defaultStack.pop() + codeObj = t[5] + # use the "default defaults" only if there was no explicit + # default statement in decode_stmt_list + if not codeObj.has_decode_default: + codeObj += default_defaults + codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n') + t[0] = codeObj + + # The opt_default statement serves only to push the "default + # defaults" onto defaultStack. This value will be used by nested + # decode blocks, and used and popped off when the current + # decode_block is processed (in p_decode_block() above). + def p_opt_default_0(self, t): + 'opt_default : empty' + # no default specified: reuse the one currently at the top of + # the stack + self.defaultStack.push(self.defaultStack.top()) + # no meaningful value returned + t[0] = None + + def p_opt_default_1(self, t): + 'opt_default : DEFAULT inst' + # push the new default + codeObj = t[2] + codeObj.wrap_decode_block('\ndefault:\n', 'break;\n') + self.defaultStack.push(codeObj) + # no meaningful value returned + t[0] = None + + def p_decode_stmt_list_0(self, t): + 'decode_stmt_list : decode_stmt' + t[0] = t[1] + + def p_decode_stmt_list_1(self, t): + 'decode_stmt_list : decode_stmt decode_stmt_list' + if (t[1].has_decode_default and t[2].has_decode_default): + error(t, 'Two default cases in decode block') + t[0] = t[1] + t[2] + + # + # Decode statement rules + # + # There are four types of statements allowed in a decode block: + # 1. Format blocks 'format { ... }' + # 2. Nested decode blocks + # 3. Instruction definitions. + # 4. C preprocessor directives. + + + # Preprocessor directives found in a decode statement list are + # passed through to the output, replicated to all of the output + # code streams. This works well for ifdefs, so we can ifdef out + # both the declarations and the decode cases generated by an + # instruction definition. Handling them as part of the grammar + # makes it easy to keep them in the right place with respect to + # the code generated by the other statements. + def p_decode_stmt_cpp(self, t): + 'decode_stmt : CPPDIRECTIVE' + t[0] = GenCode(self, t[1], t[1], t[1], t[1]) + + # A format block 'format { ... }' sets the default + # instruction format used to handle instruction definitions inside + # the block. This format can be overridden by using an explicit + # format on the instruction definition or with a nested format + # block. + def p_decode_stmt_format(self, t): + 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE' + # The format will be pushed on the stack when 'push_format_id' + # is processed (see below). Once the parser has recognized + # the full production (though the right brace), we're done + # with the format, so now we can pop it. + self.formatStack.pop() + t[0] = t[4] + + # This rule exists so we can set the current format (& push the + # stack) when we recognize the format name part of the format + # block. + def p_push_format_id(self, t): + 'push_format_id : ID' + try: + self.formatStack.push(self.formatMap[t[1]]) + t[0] = ('', '// format %s' % t[1]) + except KeyError: + error(t, 'instruction format "%s" not defined.' % t[1]) + + # Nested decode block: if the value of the current field matches + # the specified constant, do a nested decode on some other field. + def p_decode_stmt_decode(self, t): + 'decode_stmt : case_label COLON decode_block' + label = t[1] + codeObj = t[3] + # just wrap the decoding code from the block as a case in the + # outer switch statement. + codeObj.wrap_decode_block('\n%s:\n' % label) + codeObj.has_decode_default = (label == 'default') + t[0] = codeObj + + # Instruction definition (finally!). + def p_decode_stmt_inst(self, t): + 'decode_stmt : case_label COLON inst SEMI' + label = t[1] + codeObj = t[3] + codeObj.wrap_decode_block('\n%s:' % label, 'break;\n') + codeObj.has_decode_default = (label == 'default') + t[0] = codeObj + + # The case label is either a list of one or more constants or + # 'default' + def p_case_label_0(self, t): + 'case_label : intlit_list' + def make_case(intlit): + if intlit >= 2**32: + return 'case ULL(%#x)' % intlit + else: + return 'case %#x' % intlit + t[0] = ': '.join(map(make_case, t[1])) + + def p_case_label_1(self, t): + 'case_label : DEFAULT' + t[0] = 'default' + + # + # The constant list for a decode case label must be non-empty, but + # may have one or more comma-separated integer literals in it. + # + def p_intlit_list_0(self, t): + 'intlit_list : INTLIT' + t[0] = [t[1]] + + def p_intlit_list_1(self, t): + 'intlit_list : intlit_list COMMA INTLIT' + t[0] = t[1] + t[0].append(t[3]) + + # Define an instruction using the current instruction format + # (specified by an enclosing format block). + # "()" + def p_inst_0(self, t): + 'inst : ID LPAREN arg_list RPAREN' + # Pass the ID and arg list to the current format class to deal with. + currentFormat = self.formatStack.top() + codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno) + args = ','.join(map(str, t[3])) + args = re.sub('(?m)^', '//', args) + args = re.sub('^//', '', args) + comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args) + codeObj.prepend_all(comment) + t[0] = codeObj + + # Define an instruction using an explicitly specified format: + # "::()" + def p_inst_1(self, t): + 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN' + try: + format = self.formatMap[t[1]] + except KeyError: + error(t, 'instruction format "%s" not defined.' % t[1]) + + codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno) + comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5]) + codeObj.prepend_all(comment) + t[0] = codeObj + + # The arg list generates a tuple, where the first element is a + # list of the positional args and the second element is a dict + # containing the keyword args. + def p_arg_list_0(self, t): + 'arg_list : positional_arg_list COMMA keyword_arg_list' + t[0] = ( t[1], t[3] ) + + def p_arg_list_1(self, t): + 'arg_list : positional_arg_list' + t[0] = ( t[1], {} ) + + def p_arg_list_2(self, t): + 'arg_list : keyword_arg_list' + t[0] = ( [], t[1] ) + + def p_positional_arg_list_0(self, t): + 'positional_arg_list : empty' + t[0] = [] + + def p_positional_arg_list_1(self, t): + 'positional_arg_list : expr' + t[0] = [t[1]] + + def p_positional_arg_list_2(self, t): + 'positional_arg_list : positional_arg_list COMMA expr' + t[0] = t[1] + [t[3]] + + def p_keyword_arg_list_0(self, t): + 'keyword_arg_list : keyword_arg' + t[0] = t[1] + + def p_keyword_arg_list_1(self, t): + 'keyword_arg_list : keyword_arg_list COMMA keyword_arg' + t[0] = t[1] + t[0].update(t[3]) + + def p_keyword_arg(self, t): + 'keyword_arg : ID EQUALS expr' + t[0] = { t[1] : t[3] } + + # + # Basic expressions. These constitute the argument values of + # "function calls" (i.e. instruction definitions in the decode + # block) and default values for formal parameters of format + # functions. + # + # Right now, these are either strings, integers, or (recursively) + # lists of exprs (using Python square-bracket list syntax). Note + # that bare identifiers are trated as string constants here (since + # there isn't really a variable namespace to refer to). + # + def p_expr_0(self, t): + '''expr : ID + | INTLIT + | STRLIT + | CODELIT''' + t[0] = t[1] + + def p_expr_1(self, t): + '''expr : LBRACKET list_expr RBRACKET''' + t[0] = t[2] + + def p_list_expr_0(self, t): + 'list_expr : expr' + t[0] = [t[1]] + + def p_list_expr_1(self, t): + 'list_expr : list_expr COMMA expr' + t[0] = t[1] + [t[3]] + + def p_list_expr_2(self, t): + 'list_expr : empty' + t[0] = [] + + # + # Empty production... use in other rules for readability. + # + def p_empty(self, t): + 'empty :' + pass + + # Parse error handler. Note that the argument here is the + # offending *token*, not a grammar symbol (hence the need to use + # t.value) + def p_error(self, t): + if t: + error(t, "syntax error at '%s'" % t.value) else: - print 'File', file, 'is unchanged' - else: - print 'Generating', file - update = True - if update: - f = open(file, 'w') - f.write(contents) - f.close() - -# This regular expression matches '##include' directives -includeRE = re.compile(r'^\s*##include\s+"(?P[\w/.-]*)".*$', - re.MULTILINE) - -# Function to replace a matched '##include' directive with the -# contents of the specified file (with nested ##includes replaced -# recursively). 'matchobj' is an re match object (from a match of -# includeRE) and 'dirname' is the directory relative to which the file -# path should be resolved. -def replace_include(matchobj, dirname): - fname = matchobj.group('filename') - full_fname = os.path.normpath(os.path.join(dirname, fname)) - contents = '##newfile "%s"\n%s\n##endfile\n' % \ - (full_fname, read_and_flatten(full_fname)) - return contents - -# Read a file and recursively flatten nested '##include' files. -def read_and_flatten(filename): - current_dir = os.path.dirname(filename) - try: - contents = open(filename).read() - except IOError: - error(0, 'Error including file "%s"' % filename) - fileNameStack.push((filename, 0)) - # Find any includes and include them - contents = includeRE.sub(lambda m: replace_include(m, current_dir), - contents) - fileNameStack.pop() - return contents + error("unknown syntax error") -# -# Read in and parse the ISA description. -# -def parse_isa_desc(isa_desc_file, output_dir): - # Read file and (recursively) all included files into a string. - # PLY requires that the input be in a single string so we have to - # do this up front. - isa_desc = read_and_flatten(isa_desc_file) - - # Initialize filename stack with outer file. - fileNameStack.push((isa_desc_file, 0)) - - # Parse it. - (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc) - - # grab the last three path components of isa_desc_file to put in - # the output - filename = '/'.join(isa_desc_file.split('/')[-3:]) - - # generate decoder.hh - includes = '#include "base/bitfield.hh" // for bitfield support' - global_output = global_code.header_output - namespace_output = namespace_code.header_output - decode_function = '' - update_if_needed(output_dir + '/decoder.hh', file_template % vars()) - - # generate decoder.cc - includes = '#include "decoder.hh"' - global_output = global_code.decoder_output - namespace_output = namespace_code.decoder_output - # namespace_output += namespace_code.decode_block - decode_function = namespace_code.decode_block - update_if_needed(output_dir + '/decoder.cc', file_template % vars()) - - # generate per-cpu exec files - for cpu in cpu_models: - includes = '#include "decoder.hh"\n' - includes += cpu.includes - global_output = global_code.exec_output[cpu.name] - namespace_output = namespace_code.exec_output[cpu.name] - decode_function = '' - update_if_needed(output_dir + '/' + cpu.filename, - file_template % vars()) + # END OF GRAMMAR RULES + + def updateExportContext(self): + + # create a continuation that allows us to grab the current parser + def wrapInstObjParams(*args): + return InstObjParams(self, *args) + self.exportContext['InstObjParams'] = wrapInstObjParams + self.exportContext.update(self.templateMap) + + def defFormat(self, id, params, code, lineno): + '''Define a new format''' -# global list of CpuModel objects (see cpu_models.py) -cpu_models = [] + # make sure we haven't already defined this one + if id in self.formatMap: + error(lineno, 'format %s redefined.' % id) + + # create new object and store in global map + self.formatMap[id] = Format(id, params, code) + + def expandCpuSymbolsToDict(self, template): + '''Expand template with CPU-specific references into a + dictionary with an entry for each CPU model name. The entry + key is the model name and the corresponding value is the + template with the CPU-specific refs substituted for that + model.''' + + # Protect '%'s that don't go with CPU-specific terms + t = re.sub(r'%(?!\(CPU_)', '%%', template) + result = {} + for cpu in self.cpuModels: + result[cpu.name] = t % cpu.strings + return result + + def expandCpuSymbolsToString(self, template): + '''*If* the template has CPU-specific references, return a + single string containing a copy of the template for each CPU + model with the corresponding values substituted in. If the + template has no CPU-specific references, it is returned + unmodified.''' + + if template.find('%(CPU_') != -1: + return reduce(lambda x,y: x+y, + self.expandCpuSymbolsToDict(template).values()) + else: + return template + + def protectCpuSymbols(self, template): + '''Protect CPU-specific references by doubling the + corresponding '%'s (in preparation for substituting a different + set of references into the template).''' + + return re.sub(r'%(?=\(CPU_)', '%%', template) + + def protectNonSubstPercents(self, s): + '''Protect any non-dict-substitution '%'s in a format string + (i.e. those not followed by '(')''' + + return re.sub(r'%(?!\()', '%%', s) + + def buildOperandTypeMap(self, user_dict, lineno): + """Generate operandTypeMap from the user's 'def operand_types' + statement.""" + operand_type = {} + for (ext, (desc, size)) in user_dict.iteritems(): + if desc == 'signed int': + ctype = 'int%d_t' % size + is_signed = 1 + elif desc == 'unsigned int': + ctype = 'uint%d_t' % size + is_signed = 0 + elif desc == 'float': + is_signed = 1 # shouldn't really matter + if size == 32: + ctype = 'float' + elif size == 64: + ctype = 'double' + elif desc == 'twin64 int': + is_signed = 0 + ctype = 'Twin64_t' + elif desc == 'twin32 int': + is_signed = 0 + ctype = 'Twin32_t' + if ctype == '': + error(parser, lineno, + 'Unrecognized type description "%s" in user_dict') + operand_type[ext] = (size, ctype, is_signed) + + self.operandTypeMap = operand_type + + def buildOperandNameMap(self, user_dict, lineno): + operand_name = {} + for op_name, val in user_dict.iteritems(): + base_cls_name, dflt_ext, reg_spec, flags, sort_pri = val[:5] + if len(val) > 5: + read_code = val[5] + else: + read_code = None + if len(val) > 6: + write_code = val[6] + else: + write_code = None + if len(val) > 7: + error(lineno, + 'error: too many attributes for operand "%s"' % + base_cls_name) + + (dflt_size, dflt_ctype, dflt_is_signed) = \ + self.operandTypeMap[dflt_ext] + # Canonical flag structure is a triple of lists, where each list + # indicates the set of flags implied by this operand always, when + # used as a source, and when used as a dest, respectively. + # For simplicity this can be initialized using a variety of fairly + # obvious shortcuts; we convert these to canonical form here. + if not flags: + # no flags specified (e.g., 'None') + flags = ( [], [], [] ) + elif isinstance(flags, str): + # a single flag: assumed to be unconditional + flags = ( [ flags ], [], [] ) + elif isinstance(flags, list): + # a list of flags: also assumed to be unconditional + flags = ( flags, [], [] ) + elif isinstance(flags, tuple): + # it's a tuple: it should be a triple, + # but each item could be a single string or a list + (uncond_flags, src_flags, dest_flags) = flags + flags = (makeList(uncond_flags), + makeList(src_flags), makeList(dest_flags)) + # Accumulate attributes of new operand class in tmp_dict + tmp_dict = {} + for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri', + 'dflt_size', 'dflt_ctype', 'dflt_is_signed', + 'read_code', 'write_code'): + tmp_dict[attr] = eval(attr) + tmp_dict['base_name'] = op_name + # New class name will be e.g. "IntReg_Ra" + cls_name = base_cls_name + '_' + op_name + # Evaluate string arg to get class object. Note that the + # actual base class for "IntReg" is "IntRegOperand", i.e. we + # have to append "Operand". + try: + base_cls = eval(base_cls_name + 'Operand') + except NameError: + error(lineno, + 'error: unknown operand base class "%s"' % base_cls_name) + # The following statement creates a new class called + # as a subclass of with the attributes + # in tmp_dict, just as if we evaluated a class declaration. + operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict) + + self.operandNameMap = operand_name + + # Define operand variables. + operands = user_dict.keys() + + operandsREString = (r''' + (?[\w/.-]*)".*$', + re.MULTILINE) + + def replace_include(self, matchobj, dirname): + """Function to replace a matched '##include' directive with the + contents of the specified file (with nested ##includes + replaced recursively). 'matchobj' is an re match object + (from a match of includeRE) and 'dirname' is the directory + relative to which the file path should be resolved.""" + + fname = matchobj.group('filename') + full_fname = os.path.normpath(os.path.join(dirname, fname)) + contents = '##newfile "%s"\n%s\n##endfile\n' % \ + (full_fname, self.read_and_flatten(full_fname)) + return contents + + def read_and_flatten(self, filename): + """Read a file and recursively flatten nested '##include' files.""" + + current_dir = os.path.dirname(filename) + try: + contents = open(filename).read() + except IOError: + error('Error including file "%s"' % filename) + + self.fileNameStack.push((filename, 0)) + + # Find any includes and include them + def replace(matchobj): + return self.replace_include(matchobj, current_dir) + contents = self.includeRE.sub(replace, contents) + + self.fileNameStack.pop() + return contents + + def _parse_isa_desc(self, isa_desc_file): + '''Read in and parse the ISA description.''' + + # Read file and (recursively) all included files into a string. + # PLY requires that the input be in a single string so we have to + # do this up front. + isa_desc = self.read_and_flatten(isa_desc_file) + + # Initialize filename stack with outer file. + self.fileNameStack.push((isa_desc_file, 0)) + + # Parse it. + (isa_name, namespace, global_code, namespace_code) = \ + self.parse(isa_desc) + + # grab the last three path components of isa_desc_file to put in + # the output + filename = '/'.join(isa_desc_file.split('/')[-3:]) + + # generate decoder.hh + includes = '#include "base/bitfield.hh" // for bitfield support' + global_output = global_code.header_output + namespace_output = namespace_code.header_output + decode_function = '' + self.update_if_needed('decoder.hh', file_template % vars()) + + # generate decoder.cc + includes = '#include "decoder.hh"' + global_output = global_code.decoder_output + namespace_output = namespace_code.decoder_output + # namespace_output += namespace_code.decode_block + decode_function = namespace_code.decode_block + self.update_if_needed('decoder.cc', file_template % vars()) + + # generate per-cpu exec files + for cpu in self.cpuModels: + includes = '#include "decoder.hh"\n' + includes += cpu.includes + global_output = global_code.exec_output[cpu.name] + namespace_output = namespace_code.exec_output[cpu.name] + decode_function = '' + self.update_if_needed(cpu.filename, file_template % vars()) + + # The variable names here are hacky, but this will creat local + # variables which will be referenced in vars() which have the + # value of the globals. + MaxInstSrcRegs = self.maxInstSrcRegs + MaxInstDestRegs = self.maxInstDestRegs + # max_inst_regs.hh + self.update_if_needed('max_inst_regs.hh', + max_inst_regs_template % vars()) + + def parse_isa_desc(self, *args, **kwargs): + try: + self._parse_isa_desc(*args, **kwargs) + except ISAParserError, e: + e.exit(self.fileNameStack) # Called as script: get args from command line. # Args are: if __name__ == '__main__': execfile(sys.argv[1]) # read in CpuModel definitions cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]] - parse_isa_desc(sys.argv[2], sys.argv[3]) + ISAParser(sys.argv[3], cpu_models).parse_isa_desc(sys.argv[2])