X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fbase%2Faddr_range.test.cc;h=4ab4ae402fd8df76ed3f8e204d64618308fbcd48;hb=b4c9996d894118be04cdf4ed793b35a1d5001942;hp=93afbb0e78d0617f7543e4b028d184cf75af1cf6;hpb=1c4d64fb104245e7e655113155be02a5209e46c0;p=gem5.git diff --git a/src/base/addr_range.test.cc b/src/base/addr_range.test.cc index 93afbb0e7..4ab4ae402 100644 --- a/src/base/addr_range.test.cc +++ b/src/base/addr_range.test.cc @@ -1,4 +1,5 @@ /* + * Copyright (c) 2019 The Regents of the University of California * Copyright (c) 2018-2019 ARM Limited * All rights reserved * @@ -35,210 +36,1006 @@ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nikos Nikoleris + * Bobby R. Bruce */ #include +#include + #include "base/addr_range.hh" #include "base/bitfield.hh" -TEST(AddrRangeComp, AddrRangeIsSubset) +TEST(AddrRangeTest, ValidRange) { - AddrRange r, r1, r2; + AddrRange r; + EXPECT_FALSE(r.valid()); +} + +/* + * This following tests check the behavior of AddrRange when initialized with + * a start and end address. The expected behavior is that the first address + * within the range will be the start address, and the last address in the + * range will be the (end - 1) address. + */ +TEST(AddrRangeTest, EmptyRange) +{ + AddrRange r(0x0, 0x0); + + /* + * Empty ranges are valid. + */ + EXPECT_TRUE(r.valid()); + EXPECT_EQ(0x0, r.start()); + EXPECT_EQ(0x0, r.end()); + EXPECT_EQ(0, r.size()); - // Test non-interleaved ranges - r1 = AddrRange(0x0, 0x7f); - r2 = AddrRange(0x80, 0xff); + /* + * With no masks, granularity equals the size of the range. + */ + EXPECT_EQ(0, r.granularity()); - r = AddrRange(0x0, 0xf); - EXPECT_TRUE(r.isSubset(r1)); - EXPECT_FALSE(r.isSubset(r2)); + /* + * With no masks, "interleaved()" returns false. + */ + EXPECT_FALSE(r.interleaved()); - r = AddrRange(0x80, 0x8f); - EXPECT_FALSE(r.isSubset(r1)); - EXPECT_TRUE(r.isSubset(r2)); + /* + * With no masks, "stripes()" returns ULL(1). + */ + EXPECT_EQ(ULL(1), r.stripes()); + EXPECT_EQ("[0:0]", r.to_string()); +} - // Test interleaved ranges - r1 = AddrRange(0x0, 0xff, 6, 0, 1, 0); - r2 = AddrRange(0x0, 0xff, 6, 0, 1, 1); +TEST(AddrRangeTest, RangeSizeOfOne) +{ + AddrRange r(0x0, 0x1); + EXPECT_TRUE(r.valid()); + EXPECT_EQ(0x0, r.start()); + EXPECT_EQ(0x1, r.end()); + EXPECT_EQ(1, r.size()); + EXPECT_EQ(1, r.granularity()); + EXPECT_FALSE(r.interleaved()); + EXPECT_EQ(ULL(1), r.stripes()); + EXPECT_EQ("[0:0x1]", r.to_string()); +} - r = AddrRange(0x0, 0xf); - EXPECT_TRUE(r.isSubset(r1)); - EXPECT_FALSE(r.isSubset(r2)); +TEST(AddrRangeTest, Range16Bit) +{ + AddrRange r(0xF000, 0xFFFF); + EXPECT_TRUE(r.valid()); + EXPECT_EQ(0xF000, r.start()); + EXPECT_EQ(0xFFFF, r.end()); + EXPECT_EQ(0x0FFF, r.size()); + EXPECT_EQ(0x0FFF, r.granularity()); + EXPECT_FALSE(r.interleaved()); + EXPECT_EQ(ULL(1), r.stripes()); + EXPECT_EQ("[0xf000:0xffff]", r.to_string()); +} - r = AddrRange(0x40, 0x4f); - EXPECT_FALSE(r.isSubset(r1)); - EXPECT_TRUE(r.isSubset(r2)); +TEST(AddrRangeTest, InvalidRange) +{ + AddrRange r(0x1, 0x0); + EXPECT_FALSE(r.valid()); +} - r = AddrRange(0xbf, 0xc0); - EXPECT_FALSE(r.isSubset(r1)); - EXPECT_FALSE(r.isSubset(r2)); +TEST(AddrRangeTest, LessThan) +{ + /* + * The less-than override is a bit unintuitive and does not have a + * corresponding greater than. It compares the AddrRange.start() values. + * If they are equal, the "intlvMatch" values are compared. This is + * zero when AddRange is initialized with a just a start and end address. + */ + AddrRange r1(0xF000, 0xFFFF); + AddrRange r2(0xF001, 0xFFFF); + AddrRange r3(0xF000, 0xFFFF); - // Test interleaved ranges with hashing - r1 = AddrRange(0x0, 0xff, 6, 7, 1, 0); - r2 = AddrRange(0x0, 0xff, 6, 7, 1, 1); + EXPECT_TRUE(r1 < r2); + EXPECT_FALSE(r2 < r1); + EXPECT_FALSE(r1 < r3); + EXPECT_FALSE(r3 < r1); +} - r = AddrRange(0x0, 0xf); - EXPECT_TRUE(r.isSubset(r1)); - EXPECT_FALSE(r.isSubset(r2)); +TEST(AddrRangeTest, EqualToNotEqualTo) +{ + AddrRange r1(0x1234, 0x5678); + AddrRange r2(0x1234, 0x5678); + AddrRange r3(0x1234, 0x5679); - r = AddrRange(0x40, 0x4f); - EXPECT_FALSE(r.isSubset(r1)); - EXPECT_TRUE(r.isSubset(r2)); + EXPECT_TRUE(r1 == r2); + EXPECT_FALSE(r1 == r3); + EXPECT_FALSE(r1 != r2); + EXPECT_TRUE(r1 != r3); - r = AddrRange(0xbf, 0xc0); - EXPECT_FALSE(r.isSubset(r1)); - EXPECT_FALSE(r.isSubset(r2)); + EXPECT_TRUE(r2 == r1); + EXPECT_FALSE(r3 == r1); + EXPECT_FALSE(r2 != r1); + EXPECT_TRUE(r3 != r1); } -class AddrRangeBase : public testing::Test { - protected: +TEST(AddrRangeTest, MergesWith) +{ + /* + * AddrRange.mergesWith will return true if the start, end, and masks + * are the same. + */ + AddrRange r1(0x10, 0x1F); + AddrRange r2(0x10, 0x1F); - virtual int getIndex(Addr addr) = 0; + EXPECT_TRUE(r1.mergesWith(r2)); + EXPECT_TRUE(r2.mergesWith(r1)); +} - void testContains() - { - for (Addr addr = start; addr <= end; addr++) { - int i = getIndex(addr); - ASSERT_TRUE(range[i].contains(addr)); - for (int j = 1; j < intlvSize; j++) { - ASSERT_FALSE(range[(i + j) % intlvSize].contains(addr)); - } - } - } +TEST(AddrRangeTest, DoesNotMergeWith) +{ + AddrRange r1(0x10, 0x1E); + AddrRange r2(0x10, 0x1F); - void testGetOffset() - { - Addr offsets[intlvSize] = {0, 0, 0, 0}; - for (Addr addr = start; addr <= end; addr++) { - int i = getIndex(addr); - Addr offset = range[i].getOffset(addr); - ASSERT_EQ(offsets[i], offset); - offsets[i]++; - } - for (Addr offset: offsets) { - ASSERT_EQ(offset, (end - start + 1) / intlvSize); - } - } + EXPECT_FALSE(r1.mergesWith(r2)); + EXPECT_FALSE(r2.mergesWith(r1)); +} - void testAddRemoveIntlvBits() - { - for (Addr addr = start; addr <= end; addr++) { - AddrRange &r = range[getIndex(addr)]; - Addr ch_addr = r.removeIntlvBits(addr); - Addr pa = r.addIntlvBits(ch_addr); - ASSERT_EQ(addr, pa); - } - } +TEST(AddrRangeTest, IntersectsCompleteOverlap) +{ + AddrRange r1(0x21, 0x30); + AddrRange r2(0x21, 0x30); - static const Addr end = 0x1ffff; - static const Addr start = 0x0; - static const int intlvSize = 4; + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); +} - AddrRange range[intlvSize]; -}; +TEST(AddrRangeTest, IntersectsAddressWithin) +{ + AddrRange r1(0x0, 0xF); + AddrRange r2(0x1, 0xE); + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); +} -class AddrRangeCont : public AddrRangeBase { - protected: - void SetUp() override - { - std::vector masks = { - 1UL << xorBits0[0] | 1UL << xorBits0[1], - 1UL << xorBits1[0] | 1UL << xorBits1[1] - }; - for (auto i = 0; i < intlvSize; i++) { - range[i] = AddrRange(start, end, masks, i); - } - } +TEST(AddrRangeTest, IntersectsPartialOverlap) +{ + AddrRange r1(0x0F0, 0x0FF); + AddrRange r2(0x0F5, 0xF00); - int getIndex(Addr addr) override - { - return bits(addr, xorBits1[1], xorBits0[1]) ^ - bits(addr, xorBits1[0], xorBits0[0]); - } + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); +} + +TEST(AddrRangeTest, IntersectsNoOverlap) +{ + AddrRange r1(0x00, 0x10); + AddrRange r2(0x11, 0xFF); + + EXPECT_FALSE(r1.intersects(r2)); + EXPECT_FALSE(r2.intersects(r1)); +} + +TEST(AddrRangeTest, IntersectsFirstLastAddressOverlap) +{ + AddrRange r1(0x0, 0xF); + AddrRange r2(0xF, 0xF0); - const int xorBits0[2] = {8, 14}; - const int xorBits1[2] = {9, 15}; -}; + /* + * The "end address" is not in the range. Therefore, if + * r1.end() == r2.start(), the ranges do not intersect. + */ + EXPECT_FALSE(r1.intersects(r2)); + EXPECT_FALSE(r2.intersects(r1)); +} -TEST_F(AddrRangeCont, AddrRangeContains) +TEST(AddrRangeTest, isSubsetCompleteOverlap) { - testContains(); + AddrRange r1(0x10, 0x20); + AddrRange r2(0x10, 0x20); + + EXPECT_TRUE(r1.isSubset(r2)); + EXPECT_TRUE(r2.isSubset(r1)); } -TEST_F(AddrRangeCont, AddrRangeGetOffset) +TEST(AddrRangeTest, isSubsetNoOverlap) { - testGetOffset(); + AddrRange r1(0x10, 0x20); + AddrRange r2(0x20, 0x22); + + EXPECT_FALSE(r1.isSubset(r2)); + EXPECT_FALSE(r2.isSubset(r1)); } -TEST_F(AddrRangeCont, AddrRangeAddRemoveIntlvBits) +TEST(AddrRangeTest, isSubsetTrueSubset) { - testAddRemoveIntlvBits(); + AddrRange r1(0x10, 0x20); + AddrRange r2(0x15, 0x17); + + EXPECT_TRUE(r2.isSubset(r1)); + EXPECT_FALSE(r1.isSubset(r2)); } +TEST(AddrRangeTest, isSubsetPartialSubset) +{ + AddrRange r1(0x20, 0x30); + AddrRange r2(0x26, 0xF0); -class AddrRangeContLegacy : public AddrRangeCont { - protected: - void SetUp() override - { - // Test interleaved ranges with hashing - for (auto i = 0; i < intlvSize; i++) { - range[i] = AddrRange(start, end, xorBits1[0], xorBits1[1], - 2, i); - } - } -}; + EXPECT_FALSE(r1.isSubset(r2)); + EXPECT_FALSE(r2.isSubset(r1)); +} + +TEST(AddrRangeTest, Contains) +{ + AddrRange r(0xF0, 0xF5); + + EXPECT_FALSE(r.contains(0xEF)); + EXPECT_TRUE(r.contains(0xF0)); + EXPECT_TRUE(r.contains(0xF1)); + EXPECT_TRUE(r.contains(0xF2)); + EXPECT_TRUE(r.contains(0xF3)); + EXPECT_TRUE(r.contains(0xF4)); + EXPECT_FALSE(r.contains(0xF5)); + EXPECT_FALSE(r.contains(0xF6)); +} + +TEST(AddrRangeTest, ContainsInAnEmptyRange) +{ + AddrRange r(0x1, 0x1); + + EXPECT_FALSE(r.contains(0x1)); +} + +TEST(AddrRangeTest, RemoveIntlvBits) +{ + AddrRange r(0x01, 0x10); + + /* + * When there are no masks, AddrRange.removeIntlBits just returns the + * address parameter. + */ + Addr a(56); + a = r.removeIntlvBits(a); + EXPECT_EQ(56, a); +} + +TEST(AddrRangeTest, addIntlvBits) +{ + AddrRange r(0x01, 0x10); + + /* + * As with AddrRange.removeIntlBits, when there are no masks, + * AddrRange.addIntlvBits just returns the address parameter. + */ + Addr a(56); + a = r.addIntlvBits(a); + EXPECT_EQ(56, a); +} + +TEST(AddrRangeTest, OffsetInRange) +{ + AddrRange r(0x01, 0xF0); + EXPECT_EQ(0x04, r.getOffset(0x5)); +} + +TEST(AddrRangeTest, OffsetOutOfRangeAfter) +{ + /* + * If the address is less than the range, MaxAddr is returned. + */ + AddrRange r(0x01, 0xF0); + EXPECT_EQ(MaxAddr, r.getOffset(0xF0)); +} + +TEST(AddrRangeTest, OffsetOutOfRangeBefore) +{ + AddrRange r(0x05, 0xF0); + EXPECT_EQ(MaxAddr, r.getOffset(0x04)); +} + +/* + * The following tests check the behavior of AddrRange when initialized with + * a start and end address, as well as masks to distinguish interleaving bits. + */ +TEST(AddrRangeTest, LsbInterleavingMask) +{ + Addr start = 0x00; + Addr end = 0xFF; + std::vector masks; + /* + * The address is in range if the LSB is set, i.e. is the value is odd. + */ + masks.push_back(1); + uint8_t intlv_match = 1; + + AddrRange r(start, end, masks, intlv_match); + EXPECT_TRUE(r.valid()); + EXPECT_EQ(start, r.start()); + EXPECT_EQ(end, r.end()); + /* + * With interleaving, it's assumed the size is equal to + * start - end >> [number of masks]. + */ + EXPECT_EQ(0x7F, r.size()); + /* + * The Granularity, the size of regions created by the interleaving bits, + * which, in this case, is one. + */ + EXPECT_EQ(1, r.granularity()); + EXPECT_TRUE(r.interleaved()); + EXPECT_EQ(ULL(2), r.stripes()); + EXPECT_EQ("[0:0xff] a[0]^\b=1", r.to_string()); +} + +TEST(AddrRangeTest, TwoInterleavingMasks) +{ + Addr start = 0x0000; + Addr end = 0xFFFF; + std::vector masks; + /* + * There are two marks, the two LSBs. + */ + masks.push_back(1); + masks.push_back((1 << 1)); + uint8_t intlv_match = (1 << 1) | 1; + + AddrRange r(start, end, masks, intlv_match); + EXPECT_TRUE(r.valid()); + EXPECT_EQ(start, r.start()); + EXPECT_EQ(end, r.end()); + + EXPECT_EQ(0x3FFF, r.size()); + EXPECT_TRUE(r.interleaved()); + EXPECT_EQ(ULL(4), r.stripes()); + EXPECT_EQ("[0:0xffff] a[0]^\b=1 a[1]^\b=1", r.to_string()); +} + +TEST(AddrRangeTest, ComplexInterleavingMasks) +{ + Addr start = 0x0000; + Addr end = 0xFFFF; + std::vector masks; + masks.push_back((1 << 1) | 1); + masks.push_back((ULL(1) << 63) | (ULL(1) << 62)); + uint8_t intlv_match = 0; + + AddrRange r(start, end, masks, intlv_match); + EXPECT_TRUE(r.valid()); + EXPECT_EQ(start, r.start()); + EXPECT_EQ(end, r.end()); + + EXPECT_EQ(0x3FFF, r.size()); + EXPECT_TRUE(r.interleaved()); + EXPECT_EQ(ULL(4), r.stripes()); + EXPECT_EQ("[0:0xffff] a[0]^a[1]^\b=0 a[62]^a[63]^\b=0", r.to_string()); +} + +TEST(AddrRangeTest, InterleavingAddressesMergesWith) +{ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks; + masks.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks.push_back((1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks, intlv_match1); + + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + uint8_t intlv_match2 = 1; // intlv_match may differ. + AddrRange r2(start2, end2, masks, intlv_match2); + + EXPECT_TRUE(r1.mergesWith(r2)); + EXPECT_TRUE(r2.mergesWith(r1)); +} + +TEST(AddrRangeTest, InterleavingAddressesDoNotMergeWith) +{ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks1.push_back((1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks2.push_back((1 << 3)); // Different mask here. + uint8_t intlv_match2 = 1; // intlv_match may differ. + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_FALSE(r1.mergesWith(r2)); + EXPECT_FALSE(r2.mergesWith(r1)); +} + +TEST(AddrRangeTest, InterleavingAddressesDoNotIntersect) +{ + /* + * Range 1: all the odd addresses between 0x0000 and 0xFFFF. + */ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back(1); + uint8_t intlv_match1 = 1; + AddrRange r1(start1, end1, masks1, intlv_match1); + + /* + * Range 2: all the even addresses between 0x0000 and 0xFFFF. These + * addresses should thereby not intersect. + */ + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back(1); + uint8_t intv_match2 = 0; + AddrRange r2(start2, end2, masks2, intv_match2); + + EXPECT_FALSE(r1.intersects(r2)); + EXPECT_FALSE(r2.intersects(r1)); +} + +TEST(AddrRangeTest, InterleavingAddressesIntersectsViaMerging) +{ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks1.push_back((1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks2.push_back((1 << 2)); + uint8_t intlv_match2 = 0; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); +} + +TEST(AddrRangeTest, InterleavingAddressesDoesNotIntersectViaMerging) +{ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks1.push_back((1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back((1 << 29) | (1 << 20) | (1 << 10) | 1); + masks2.push_back((1 << 2)); + /* + * These addresses can merge, but their intlv_match values differ. They + * therefore do not intersect. + */ + uint8_t intlv_match2 = 1; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_FALSE(r1.intersects(r2)); + EXPECT_FALSE(r2.intersects(r1)); +} + +/* + * The following tests were created to test more complex cases where + * interleaving addresses may intersect. However, the "intersects" function + * does not cover all cases (a "Cannot test intersection..." exception will + * be thrown outside of very simple checks to see if an intersection occurs). + * The tests below accurately test whether two ranges intersect but, for now, + * code has yet to be implemented to utilize these tests. They are therefore + * disabled, but may be enabled at a later date if/when the "intersects" + * function is enhanced. + */ +TEST(AddrRangeTest, DISABLED_InterleavingAddressesIntersect) +{ + /* + * Range 1: all the odd addresses between 0x0000 and 0xFFFF. + */ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back(1); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + /* + * Range 2: all the addresses divisible by 4 between 0x0000 and + * 0xFFFF. These addresses should thereby intersect. + */ + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back(1 << 2); + uint8_t intlv_match2 = 1; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); +} + +TEST(AddrRangeTest, DISABLED_InterleavingAddressesIntersectsOnOneByteAddress) +{ + /* + * Range: all the odd addresses between 0x0000 and 0xFFFF. + */ + Addr start = 0x0000; + Addr end = 0xFFFF; + std::vector masks; + masks.push_back(1); + uint8_t intlv_match = 1; + AddrRange r1(start, end, masks, intlv_match); + + AddrRange r2(0x0000, 0x0001); + + EXPECT_FALSE(r1.intersects(r2)); + EXPECT_FALSE(r2.intersects(r1)); +} -TEST_F(AddrRangeContLegacy, AddrRangeContains) +TEST(AddrRangeTest, + DISABLED_InterleavingAddressesDoesNotIntersectOnOneByteAddress) { - testContains(); + /* + * Range: all the odd addresses between 0x0000 and 0xFFFF. + */ + Addr start = 0x0000; + Addr end = 0xFFFF; + std::vector masks; + masks.push_back(1); + uint8_t intlv_match = 1; + AddrRange r1(start, end, masks, intlv_match); + + AddrRange r2(0x0001, 0x0002); + + EXPECT_TRUE(r1.intersects(r2)); + EXPECT_TRUE(r2.intersects(r1)); } -TEST_F(AddrRangeContLegacy, AddrRangeGetOffset) + +/* + * The following three tests were created to test the addr_range.isSubset + * function for Interleaving address ranges. However, for now, this + * functionality has not been implemented. These tests are therefore disabled. + */ +TEST(AddrRangeTest, DISABLED_InterleavingAddressIsSubset) { - testGetOffset(); + // Range 1: all the even addresses between 0x0000 and 0xFFFF. + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back(1); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + // Range 2: all the even addresses between 0xF000 and 0x0FFF, this is + // a subset of Range 1. + Addr start2 = 0xF000; + Addr end2 = 0x0FFF; + std::vector masks2; + masks2.push_back(1); + uint8_t intlv_match2 = 0; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_TRUE(r1.isSubset(r2)); + EXPECT_TRUE(r2.isSubset(r1)); } -TEST_F(AddrRangeContLegacy, AddrRangeAddRemoveIntlvBits) +TEST(AddrRangeTest, DISABLED_InterleavingAddressIsNotSubset) { - testAddRemoveIntlvBits(); + //Range 1: all the even addresses between 0x0000 and 0xFFFF. + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back(1); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + + // Range 2: all the odd addresses between 0xF000 and 0x0FFF, this is + //a subset of Range 1. + Addr start2 = 0xF000; + Addr end2 = 0x0FFF; + std::vector masks2; + masks2.push_back(1); + uint8_t intlv_match2 = 1; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_FALSE(r1.isSubset(r2)); + EXPECT_FALSE(r2.isSubset(r1)); } -class AddrRangeArb : public AddrRangeBase { - protected: - void SetUp() override - { - std::vector masks = { - 1UL << xorBits0[0] | 1UL << xorBits0[1], - 1UL << xorBits1[0] | 1UL << xorBits1[1] - }; - for (auto i = 0; i < intlvSize; i++) { - range[i] = AddrRange(start, end, masks, i); +TEST(AddrRangeTest, DISABLED_InterleavingAddressContains) +{ + /* + * Range: all the address between 0x0 and 0xFF which have both the 1st + * and 5th bits 1, or both are 0 + */ + Addr start = 0x00; + Addr end = 0xFF; + std::vector masks; + masks.push_back((1 << 4) | 1); + uint8_t intlv_match = 0; + AddrRange r(start, end, masks, intlv_match); + + for (Addr addr = start; addr < end; addr++) { + if (((addr & 1) && ((1 << 4) & addr)) || // addr[0] && addr[4] + (!(addr & 1) && !((1 << 4) & addr))) { //!addr[0] && !addr[4] + EXPECT_TRUE(r.contains(addr)); + } else { + EXPECT_FALSE(r.contains(addr)); } } +} + +TEST(AddrRangeTest, InterleavingAddressAddRemoveInterlvBits) +{ + Addr start = 0x00000; + Addr end = 0x10000; + std::vector masks; + masks.push_back(1); + uint8_t intlv_match = 1; + AddrRange r(start, end, masks, intlv_match); + + Addr input = 0xFFFF; + Addr output = r.removeIntlvBits(input); + + /* + * The removeIntlvBits function removes the LSB from each mask from the + * input address. For example, two masks: + * 00000001 and, + * 10000100 + * with an input address of: + * 10101010 + * + * we would remove bit at position 0, and at position 2, resulting in: + * 00101011 + * + * In this test there is is one mask, with a LSB at position 0. + * Therefore, removing the interleaving bits is equivilant to bitshifting + * the input to the right. + */ + EXPECT_EQ(input >> 1, output); + + /* + * The addIntlvBits function will re-insert bits at the removed locations + */ + EXPECT_EQ(input, r.addIntlvBits(output)); +} + +TEST(AddrRangeTest, InterleavingAddressAddRemoveInterlvBitsTwoMasks) +{ + Addr start = 0x00000; + Addr end = 0x10000; + std::vector masks; + masks.push_back((1 << 3) | (1 << 2) | (1 << 1) | 1); + masks.push_back((1 << 11) | (1 << 10) | (1 << 9) | (1 << 8)); + uint8_t intlv_match = 1; + AddrRange r(start, end, masks, intlv_match); + + Addr input = (1 << 9) | (1 << 8) | 1; + /* + * (1 << 8) and 1 are interleaving bits to be removed. + */ + Addr output = r.removeIntlvBits(input); + + /* + * The bit, formally at position 9, is now at 7. + */ + EXPECT_EQ((1 << 7), output); + + /* + * Re-adding the interleaving. + */ + EXPECT_EQ(input, r.addIntlvBits(output)); +} + +TEST(AddrRangeTest, AddRemoveInterleavBitsAcrossRange) +{ + /* + * This purpose of this test is to ensure that removing then adding + * interleaving bits has no net effect. + * E.g.: + * addr_range.addIntlvBits(add_range.removeIntlvBits(an_address)) should + * always return an_address. + */ + Addr start = 0x00000; + Addr end = 0x10000; + std::vector masks; + masks.push_back(1 << 2); + masks.push_back(1 << 3); + masks.push_back(1 << 16); + masks.push_back(1 << 30); + uint8_t intlv_match = 0xF; + AddrRange r(start, end, masks, intlv_match); - int getIndex(Addr addr) override - { - return (bits(addr, xorBits0[0]) ^ bits(addr, xorBits0[1])) | - (bits(addr, xorBits1[0]) ^ bits(addr, xorBits1[1])) << 1; + for (Addr i = 0; i < 0xFFF; i++) { + Addr removedBits = r.removeIntlvBits(i); + /* + * As intlv_match = 0xF, all the interleaved bits should be set. + */ + EXPECT_EQ(i | (1 << 2) | (1 << 3) | (1 << 16) | (1 << 30), + r.addIntlvBits(removedBits)); } +} + +TEST(AddrRangeTest, InterleavingAddressesGetOffset) +{ + Addr start = 0x0002; + Addr end = 0xFFFF; + std::vector masks; + masks.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match = 0; + AddrRange r(start, end, masks, intlv_match); + + Addr value = ((1 << 10) | (1 << 9) | (1 << 8) | (1 << 2) | (1 << 1) | 1); + Addr value_interleaving_bits_removed = + ((1 << 9) | (1 << 8) | (1 << 7) | (1 << 1) | 1); - const int xorBits0[2] = {11, 12}; - const int xorBits1[2] = {8, 15}; -}; + Addr expected_output = value_interleaving_bits_removed - start; -TEST_F(AddrRangeArb, AddrRangeContains) + EXPECT_EQ(expected_output, r.getOffset(value)); +} + +TEST(AddrRangeTest, InterleavingLessThanStartEquals) { - testContains(); + Addr start1 = 0x0000FFFF; + Addr end1 = 0xFFFF0000; + std::vector masks1; + masks1.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000FFFF; + Addr end2 = 0x000F0000; + std::vector masks2; + masks2.push_back((1 << 4) | (1 << 2)); + masks2.push_back((1 << 10)); + uint8_t intlv_match2 = 2; + AddrRange r2(start2, end2, masks2, intlv_match2); + + /* + * When The start addresses are equal, the intlv_match values are + * compared. + */ + EXPECT_TRUE(r1 < r2); + EXPECT_FALSE(r2 < r1); } -TEST_F(AddrRangeArb, AddrRangeGetOffset) +TEST(AddrRangeTest, InterleavingLessThanStartNotEquals) { - testGetOffset(); + Addr start1 = 0x0000FFFF; + Addr end1 = 0xFFFF0000; + std::vector masks1; + masks1.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000FFFE; + Addr end2 = 0x000F0000; + std::vector masks2; + masks2.push_back((1 << 4) | (1 << 2)); + masks2.push_back((1 << 10)); + uint8_t intlv_match2 = 2; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_TRUE(r2 < r1); + EXPECT_FALSE(r1 < r2); } -TEST_F(AddrRangeArb, AddrRangeAddRemoveIntlvBits) +TEST(AddrRangeTest, InterleavingEqualTo) { - testAddRemoveIntlvBits(); + Addr start1 = 0x0000FFFF; + Addr end1 = 0xFFFF0000; + std::vector masks1; + masks1.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000FFFF; + Addr end2 = 0xFFFF0000; + std::vector masks2; + masks2.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match2 = 0; + AddrRange r2(start2, end2, masks2, intlv_match2); + + EXPECT_TRUE(r1 == r2); +} + +TEST(AddrRangeTest, InterleavingNotEqualTo) +{ + Addr start1 = 0x0000FFFF; + Addr end1 = 0xFFFF0000; + std::vector masks1; + masks1.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000FFFF; + Addr end2 = 0xFFFF0000; + std::vector masks2; + masks2.push_back((1 << 4) | (1 << 2)); + masks2.push_back((1 << 10)); + uint8_t intlv_match2 = 2; + AddrRange r2(start2, end2, masks2, intlv_match2); + + /* + * These ranges are not equal due to having different masks. + */ + EXPECT_FALSE(r1 == r2); +} + +/* + * The AddrRange(std::vector) constructor "merges" the interleaving + * address ranges. It should be noted that this constructor simply checks that + * these interleaving addresses can be merged then creates a new address from + * the start and end addresses of the first address range in the vector. + */ +TEST(AddrRangeTest, MergingInterleavingAddressRanges) +{ + Addr start1 = 0x0000; + Addr end1 = 0xFFFF; + std::vector masks1; + masks1.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match1 = 0; + AddrRange r1(start1, end1, masks1, intlv_match1); + + Addr start2 = 0x0000; + Addr end2 = 0xFFFF; + std::vector masks2; + masks2.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match2 = 1; + AddrRange r2(start2, end2, masks2, intlv_match2); + + std::vector to_merge; + to_merge.push_back(r1); + to_merge.push_back(r2); + + AddrRange output(to_merge); + + EXPECT_EQ(0x0000, output.start()); + EXPECT_EQ(0xFFFF, output.end()); + EXPECT_FALSE(output.interleaved()); +} + +TEST(AddrRangeTest, MergingInterleavingAddressRangesOneRange) +{ + /* + * In the case where there is just one range in the vector, the merged + * address range is equal to that range. + */ + Addr start = 0x0000; + Addr end = 0xFFFF; + std::vector masks; + masks.push_back((1 << 4) | (1 << 2)); + uint8_t intlv_match = 0; + AddrRange r(start, end, masks, intlv_match); + + std::vector to_merge; + to_merge.push_back(r); + + AddrRange output(to_merge); + + EXPECT_EQ(r, output); } + +/* + * The following tests verify the soundness of the "legacy constructor", + * AddrRange(Addr, Addr, uint8_t, uint8_t, uint8_t, uint8_t). + * + * The address is assumed to contain two ranges; the interleaving bits, and + * the xor bits. The first two arguments of this constructor specify the + * start and end addresses. The third argument specifies the MSB of the + * interleaving bits. The fourth argument specifies the MSB of the xor bits. + * The firth argument specifies the size (in bits) of the xor and interleaving + * bits. These cannot overlap. The sixth argument specifies the value the + * XORing of the xor and interleaving bits should equal to be considered in + * range. + * + * This constructor does a lot of complex translation to migrate this + * constructor to the masks/intlv_match format. + */ +TEST(AddrRangeTest, LegacyConstructorNoInterleaving) +{ + /* + * This constructor should create a range with no interleaving. + */ + AddrRange range(0x0000, 0xFFFF, 0, 0, 0 ,0); + AddrRange expected(0x0000, 0xFFFF); + + EXPECT_EQ(expected, range); +} + +TEST(AddrRangeTest, LegacyConstructorOneBitMask) +{ + /* + * In this test, the LSB of the address determines whether an address is + * in range. If even, it's in range, if not, it's out of range. the XOR + * bit range is not used. + */ + AddrRange range(0x00000000, 0xFFFFFFFF, 0, 0, 1, 0); + + std::vector masks; + masks.push_back(1); + AddrRange expected(0x00000000, 0xFFFFFFFF, masks, 0); + + EXPECT_TRUE(expected == range); +} + +TEST(AddrRangeTest, LegacyConstructorTwoBitMask) +{ + /* + * In this test, the two LSBs of the address determines whether an address + * is in range. If the two are set, the address is in range. The XOR bit + * range is not used. + */ + AddrRange range(0x00000000, 0xFFFFFFFF, 1, 0, 2, 3); + + std::vector masks; + masks.push_back(1); + masks.push_back((1 << 1)); + AddrRange expected(0x00000000, 0xFFFFFFFF, masks, 3); + + EXPECT_TRUE(expected == range); +} + +TEST(AddrRangeTest, LegacyConstructorTwoBitMaskWithXOR) +{ + /* + * In this test, the two LSBs of the address determine wether an address + * is in range. They are XORed to the 10th and 11th bits in the address. + * If XORed value is equal to 3, then the address is in range. + */ + + AddrRange range(0x00000000, 0xFFFFFFFF, 1, 11, 2, 3); + + /* + * The easiest way to ensure this range is correct is to iterate throguh + * the address range and ensure the correct set of addresses are contained + * within the range. + * + * We start with the xor_mask: a mask to select the 10th and 11th bits. + */ + Addr xor_mask = (1 << 11) | (1 << 10); + for (Addr i = 0; i < 0x0000FFFF; i++) { + // Get xor bits. + Addr xor_value = (xor_mask & i) >> 10; + /* If the XOR of xor_bits and the intlv bits (the 0th and 1st bits) is + * equal to intlv_match (3, i.e., the 0th and 1st bit is set),then the + * address is within range. + */ + if (((xor_value ^ i) & 3) == 3) { + EXPECT_TRUE(range.contains(i)); + } else { + EXPECT_FALSE(range.contains(i)); + } + } +} + +/* + * addr_range.hh contains some convenience constructors. The following tests + * verify they construct AddrRange correctly. + */ +TEST(AddrRangeTest, RangeExConstruction) +{ + AddrRange r = RangeEx(0x6, 0xE); + EXPECT_EQ(0x6, r.start()); + EXPECT_EQ(0xE, r.end()); +} + +TEST(AddrRangeTest, RangeInConstruction) +{ + AddrRange r = RangeIn(0x6, 0xE); + EXPECT_EQ(0x6, r.start()); + EXPECT_EQ(0xF, r.end()); +} + +TEST(AddrRangeTest, RangeSizeConstruction){ + AddrRange r = RangeSize(0x5, 5); + EXPECT_EQ(0x5, r.start()); + EXPECT_EQ(0xA, r.end()); +} \ No newline at end of file