X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fcompiler%2Fglsl%2Fir_constant_expression.cpp;h=5b1b5aa8eff4f6adb0e10f7d1d56d85ba73f684f;hb=08dc541b662c39ebae80935d4845b2f40e92d028;hp=fa8d7f758b038cc5b0af831d97d036bbfd689428;hpb=8b123b08cba852b5c9660cc0b6c02c37d432baa9;p=mesa.git diff --git a/src/compiler/glsl/ir_constant_expression.cpp b/src/compiler/glsl/ir_constant_expression.cpp index fa8d7f758b0..5b1b5aa8eff 100644 --- a/src/compiler/glsl/ir_constant_expression.cpp +++ b/src/compiler/glsl/ir_constant_expression.cpp @@ -34,12 +34,12 @@ */ #include -#include "main/core.h" /* for MAX2, MIN2, CLAMP */ #include "util/rounding.h" /* for _mesa_roundeven */ #include "util/half_float.h" #include "ir.h" #include "compiler/glsl_types.h" -#include "program/hash_table.h" +#include "util/hash_table.h" +#include "util/u_math.h" static float dot_f(ir_constant *op0, ir_constant *op1) @@ -73,7 +73,8 @@ dot_d(ir_constant *op0, ir_constant *op1) static float bitcast_u2f(unsigned int u) { - assert(sizeof(float) == sizeof(unsigned int)); + static_assert(sizeof(float) == sizeof(unsigned int), + "float and unsigned int size mismatch"); float f; memcpy(&f, &u, sizeof(f)); return f; @@ -82,12 +83,53 @@ bitcast_u2f(unsigned int u) static unsigned int bitcast_f2u(float f) { - assert(sizeof(float) == sizeof(unsigned int)); + static_assert(sizeof(float) == sizeof(unsigned int), + "float and unsigned int size mismatch"); unsigned int u; memcpy(&u, &f, sizeof(f)); return u; } +static double +bitcast_u642d(uint64_t u) +{ + static_assert(sizeof(double) == sizeof(uint64_t), + "double and uint64_t size mismatch"); + double d; + memcpy(&d, &u, sizeof(d)); + return d; +} + +static double +bitcast_i642d(int64_t i) +{ + static_assert(sizeof(double) == sizeof(int64_t), + "double and int64_t size mismatch"); + double d; + memcpy(&d, &i, sizeof(d)); + return d; +} + +static uint64_t +bitcast_d2u64(double d) +{ + static_assert(sizeof(double) == sizeof(uint64_t), + "double and uint64_t size mismatch"); + uint64_t u; + memcpy(&u, &d, sizeof(d)); + return u; +} + +static int64_t +bitcast_d2i64(double d) +{ + static_assert(sizeof(double) == sizeof(int64_t), + "double and int64_t size mismatch"); + int64_t i; + memcpy(&i, &d, sizeof(d)); + return i; +} + /** * Evaluate one component of a floating-point 4x8 unpacking function. */ @@ -399,7 +441,8 @@ constant_referenced(const ir_dereference *deref, ir_constant *const index_c = da->array_index->constant_expression_value(variable_context); - if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) + if (!index_c || !index_c->type->is_scalar() || + !index_c->type->is_integer_32()) break; const int index = index_c->type->base_type == GLSL_TYPE_INT ? @@ -449,7 +492,7 @@ constant_referenced(const ir_dereference *deref, */ assert(suboffset == 0); - store = substore->get_record_field(dr->field); + store = substore->get_record_field(dr->field_idx); break; } @@ -457,7 +500,9 @@ constant_referenced(const ir_dereference *deref, const ir_dereference_variable *const dv = (const ir_dereference_variable *) deref; - store = (ir_constant *) hash_table_find(variable_context, dv->var); + hash_entry *entry = _mesa_hash_table_search(variable_context, dv->var); + if (entry) + store = (ir_constant *) entry->data; break; } @@ -471,15 +516,130 @@ constant_referenced(const ir_dereference *deref, ir_constant * -ir_rvalue::constant_expression_value(struct hash_table *) +ir_rvalue::constant_expression_value(void *, struct hash_table *) { assert(this->type->is_error()); return NULL; } +static uint32_t +bitfield_reverse(uint32_t v) +{ + /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ + uint32_t r = v; // r will be reversed bits of v; first get LSB of v + int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end + + for (v >>= 1; v; v >>= 1) { + r <<= 1; + r |= v & 1; + s--; + } + r <<= s; // shift when v's highest bits are zero + + return r; +} + +static int +find_msb_uint(uint32_t v) +{ + int count = 0; + + /* If v == 0, then the loop will terminate when count == 32. In that case + * 31-count will produce the -1 result required by GLSL findMSB(). + */ + while (((v & (1u << 31)) == 0) && count != 32) { + count++; + v <<= 1; + } + + return 31 - count; +} + +static int +find_msb_int(int32_t v) +{ + /* If v is signed, findMSB() returns the position of the most significant + * zero bit. + */ + return find_msb_uint(v < 0 ? ~v : v); +} + +static float +ldexpf_flush_subnormal(float x, int exp) +{ + const float result = ldexpf(x, exp); + + /* Flush subnormal values to zero. */ + return !isnormal(result) ? copysignf(0.0f, x) : result; +} + +static double +ldexp_flush_subnormal(double x, int exp) +{ + const double result = ldexp(x, exp); + + /* Flush subnormal values to zero. */ + return !isnormal(result) ? copysign(0.0, x) : result; +} + +static uint32_t +bitfield_extract_uint(uint32_t value, int offset, int bits) +{ + if (bits == 0) + return 0; + else if (offset < 0 || bits < 0) + return 0; /* Undefined, per spec. */ + else if (offset + bits > 32) + return 0; /* Undefined, per spec. */ + else { + value <<= 32 - bits - offset; + value >>= 32 - bits; + return value; + } +} + +static int32_t +bitfield_extract_int(int32_t value, int offset, int bits) +{ + if (bits == 0) + return 0; + else if (offset < 0 || bits < 0) + return 0; /* Undefined, per spec. */ + else if (offset + bits > 32) + return 0; /* Undefined, per spec. */ + else { + value <<= 32 - bits - offset; + value >>= 32 - bits; + return value; + } +} + +static uint32_t +bitfield_insert(uint32_t base, uint32_t insert, int offset, int bits) +{ + if (bits == 0) + return base; + else if (offset < 0 || bits < 0) + return 0; /* Undefined, per spec. */ + else if (offset + bits > 32) + return 0; /* Undefined, per spec. */ + else { + unsigned insert_mask = ((1ull << bits) - 1) << offset; + + insert <<= offset; + insert &= insert_mask; + base &= ~insert_mask; + + return base | insert; + } +} + ir_constant * -ir_expression::constant_expression_value(struct hash_table *variable_context) +ir_expression::constant_expression_value(void *mem_ctx, + struct hash_table *variable_context) { + assert(mem_ctx); + if (this->type->is_error()) return NULL; @@ -488,8 +648,10 @@ ir_expression::constant_expression_value(struct hash_table *variable_context) memset(&data, 0, sizeof(data)); - for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { - op[operand] = this->operands[operand]->constant_expression_value(variable_context); + for (unsigned operand = 0; operand < this->num_operands; operand++) { + op[operand] = + this->operands[operand]->constant_expression_value(mem_ctx, + variable_context); if (!op[operand]) return NULL; } @@ -526,1223 +688,28 @@ ir_expression::constant_expression_value(struct hash_table *variable_context) components = op[1]->type->components(); } - void *ctx = ralloc_parent(this); - /* Handle array operations here, rather than below. */ if (op[0]->type->is_array()) { assert(op[1] != NULL && op[1]->type->is_array()); switch (this->operation) { case ir_binop_all_equal: - return new(ctx) ir_constant(op[0]->has_value(op[1])); + return new(mem_ctx) ir_constant(op[0]->has_value(op[1])); case ir_binop_any_nequal: - return new(ctx) ir_constant(!op[0]->has_value(op[1])); + return new(mem_ctx) ir_constant(!op[0]->has_value(op[1])); default: break; } return NULL; } - switch (this->operation) { - case ir_unop_bit_not: - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - for (unsigned c = 0; c < components; c++) - data.i[c] = ~ op[0]->value.i[c]; - break; - case GLSL_TYPE_UINT: - for (unsigned c = 0; c < components; c++) - data.u[c] = ~ op[0]->value.u[c]; - break; - default: - assert(0); - } - break; - - case ir_unop_logic_not: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = !op[0]->value.b[c]; - break; - - case ir_unop_f2i: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = (int) op[0]->value.f[c]; - } - break; - case ir_unop_f2u: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = (unsigned) op[0]->value.f[c]; - } - break; - case ir_unop_i2f: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.i[c]; - } - break; - case ir_unop_u2f: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = (float) op[0]->value.u[c]; - } - break; - case ir_unop_b2f: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; - } - break; - case ir_unop_f2b: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; - } - break; - case ir_unop_b2i: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = op[0]->value.b[c] ? 1 : 0; - } - break; - case ir_unop_i2b: - assert(op[0]->type->is_integer()); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.u[c] ? true : false; - } - break; - case ir_unop_u2i: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = op[0]->value.u[c]; - } - break; - case ir_unop_i2u: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.i[c]; - } - break; - case ir_unop_bitcast_i2f: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = bitcast_u2f(op[0]->value.i[c]); - } - break; - case ir_unop_bitcast_f2i: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = bitcast_f2u(op[0]->value.f[c]); - } - break; - case ir_unop_bitcast_u2f: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = bitcast_u2f(op[0]->value.u[c]); - } - break; - case ir_unop_bitcast_f2u: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = bitcast_f2u(op[0]->value.f[c]); - } - break; - case ir_unop_d2f: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = op[0]->value.d[c]; - } - break; - case ir_unop_f2d: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.f[c]; - } - break; - case ir_unop_d2i: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.i[c] = op[0]->value.d[c]; - } - break; - case ir_unop_i2d: - assert(op[0]->type->base_type == GLSL_TYPE_INT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.i[c]; - } - break; - case ir_unop_d2u: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.u[c] = op[0]->value.d[c]; - } - break; - case ir_unop_u2d: - assert(op[0]->type->base_type == GLSL_TYPE_UINT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.d[c] = op[0]->value.u[c]; - } - break; - case ir_unop_d2b: - assert(op[0]->type->base_type == GLSL_TYPE_DOUBLE); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.b[c] = op[0]->value.d[c] != 0.0; - } - break; - case ir_unop_trunc: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = trunc(op[0]->value.d[c]); - else - data.f[c] = truncf(op[0]->value.f[c]); - } - break; - - case ir_unop_round_even: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = _mesa_roundeven(op[0]->value.d[c]); - else - data.f[c] = _mesa_roundevenf(op[0]->value.f[c]); - } - break; - - case ir_unop_ceil: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = ceil(op[0]->value.d[c]); - else - data.f[c] = ceilf(op[0]->value.f[c]); - } - break; - - case ir_unop_floor: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = floor(op[0]->value.d[c]); - else - data.f[c] = floorf(op[0]->value.f[c]); - } - break; - - case ir_unop_fract: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c] - floor(op[0]->value.d[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sin: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = sinf(op[0]->value.f[c]); - } - break; - - case ir_unop_cos: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = cosf(op[0]->value.f[c]); - } - break; - - case ir_unop_neg: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = -((int) op[0]->value.u[c]); - break; - case GLSL_TYPE_INT: - data.i[c] = -op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = -op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = -op[0]->value.d[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_abs: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c]; - if (data.i[c] < 0) - data.i[c] = -data.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = fabs(op[0]->value.f[c]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = fabs(op[0]->value.d[c]); - break; - default: - assert(0); - } - } - break; - - case ir_unop_sign: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = double((op[0]->value.d[c] > 0)-(op[0]->value.d[c] < 0)); - break; - default: - assert(0); - } - } - break; - - case ir_unop_rcp: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (this->type->base_type) { - case GLSL_TYPE_FLOAT: - if (op[0]->value.f[c] != 0.0) - data.f[c] = 1.0F / op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - if (op[0]->value.d[c] != 0.0) - data.d[c] = 1.0 / op[0]->value.d[c]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_rsq: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = 1.0 / sqrt(op[0]->value.d[c]); - else - data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]); - } - break; - - case ir_unop_sqrt: - for (unsigned c = 0; c < op[0]->type->components(); c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = sqrt(op[0]->value.d[c]); - else - data.f[c] = sqrtf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = expf(op[0]->value.f[c]); - } - break; - - case ir_unop_exp2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = exp2f(op[0]->value.f[c]); - } - break; - - case ir_unop_log: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = logf(op[0]->value.f[c]); - } - break; - - case ir_unop_log2: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = log2f(op[0]->value.f[c]); - } - break; - - case ir_unop_dFdx: - case ir_unop_dFdx_coarse: - case ir_unop_dFdx_fine: - case ir_unop_dFdy: - case ir_unop_dFdy_coarse: - case ir_unop_dFdy_fine: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = 0.0; - } - break; - - case ir_unop_pack_snorm_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_snorm_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_pack_snorm_4x8: - assert(op[0]->type == glsl_type::vec4_type); - data.u[0] = pack_4x8(pack_snorm_1x8, - op[0]->value.f[0], - op[0]->value.f[1], - op[0]->value.f[2], - op[0]->value.f[3]); - break; - case ir_unop_unpack_snorm_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_snorm_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_unop_unpack_snorm_4x8: - assert(op[0]->type == glsl_type::uint_type); - unpack_4x8(unpack_snorm_1x8, - op[0]->value.u[0], - &data.f[0], &data.f[1], &data.f[2], &data.f[3]); - break; - case ir_unop_pack_unorm_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_unorm_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_pack_unorm_4x8: - assert(op[0]->type == glsl_type::vec4_type); - data.u[0] = pack_4x8(pack_unorm_1x8, - op[0]->value.f[0], - op[0]->value.f[1], - op[0]->value.f[2], - op[0]->value.f[3]); - break; - case ir_unop_unpack_unorm_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_unorm_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_unop_unpack_unorm_4x8: - assert(op[0]->type == glsl_type::uint_type); - unpack_4x8(unpack_unorm_1x8, - op[0]->value.u[0], - &data.f[0], &data.f[1], &data.f[2], &data.f[3]); - break; - case ir_unop_pack_half_2x16: - assert(op[0]->type == glsl_type::vec2_type); - data.u[0] = pack_2x16(pack_half_1x16, - op[0]->value.f[0], - op[0]->value.f[1]); - break; - case ir_unop_unpack_half_2x16: - assert(op[0]->type == glsl_type::uint_type); - unpack_2x16(unpack_half_1x16, - op[0]->value.u[0], - &data.f[0], &data.f[1]); - break; - case ir_binop_pow: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); - } - break; - - case ir_binop_dot: - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[0] = dot_d(op[0], op[1]); - else - data.f[0] = dot_f(op[0], op[1]); - break; - - case ir_binop_min: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = MIN2(op[0]->value.d[c0], op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - - break; - case ir_binop_max: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); - break; - case GLSL_TYPE_INT: - data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); - break; - case GLSL_TYPE_FLOAT: - data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = MAX2(op[0]->value.d[c0], op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - break; - - case ir_binop_add: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] + op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_sub: - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mul: - /* Check for equal types, or unequal types involving scalars */ - if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) - || op0_scalar || op1_scalar) { - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; - break; - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] * op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - } else { - assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); - - /* Multiply an N-by-M matrix with an M-by-P matrix. Since either - * matrix can be a GLSL vector, either N or P can be 1. - * - * For vec*mat, the vector is treated as a row vector. This - * means the vector is a 1-row x M-column matrix. - * - * For mat*vec, the vector is treated as a column vector. Since - * matrix_columns is 1 for vectors, this just works. - */ - const unsigned n = op[0]->type->is_vector() - ? 1 : op[0]->type->vector_elements; - const unsigned m = op[1]->type->vector_elements; - const unsigned p = op[1]->type->matrix_columns; - for (unsigned j = 0; j < p; j++) { - for (unsigned i = 0; i < n; i++) { - for (unsigned k = 0; k < m; k++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[i+n*j] += op[0]->value.d[i+n*k]*op[1]->value.d[k+m*j]; - else - data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; - } - } - } - } - - break; - case ir_binop_div: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) { - data.u[c] = 0; - } else { - data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; - } - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) { - data.i[c] = 0; - } else { - data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; - } - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[0]->value.d[c0] / op[1]->value.d[c1]; - break; - default: - assert(0); - } - } - - break; - case ir_binop_mod: - /* FINISHME: Emit warning when division-by-zero is detected. */ - assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - if (op[1]->value.u[c1] == 0) { - data.u[c] = 0; - } else { - data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; - } - break; - case GLSL_TYPE_INT: - if (op[1]->value.i[c1] == 0) { - data.i[c] = 0; - } else { - data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; - } - break; - case GLSL_TYPE_FLOAT: - /* We don't use fmod because it rounds toward zero; GLSL specifies - * the use of floor. - */ - data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] - * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); - break; - case GLSL_TYPE_DOUBLE: - /* We don't use fmod because it rounds toward zero; GLSL specifies - * the use of floor. - */ - data.d[c] = op[0]->value.d[c0] - op[1]->value.d[c1] - * floor(op[0]->value.d[c0] / op[1]->value.d[c1]); - break; - default: - assert(0); - } - } - - break; - - case ir_binop_logic_and: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; - break; - case ir_binop_logic_xor: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; - break; - case ir_binop_logic_or: - assert(op[0]->type->base_type == GLSL_TYPE_BOOL); - for (unsigned c = 0; c < op[0]->type->components(); c++) - data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; - break; - - case ir_binop_less: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] < op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_greater: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] > op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_lequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] <= op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_gequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < op[0]->type->components(); c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] >= op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_equal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] == op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_nequal: - assert(op[0]->type == op[1]->type); - for (unsigned c = 0; c < components; c++) { - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; - break; - case GLSL_TYPE_BOOL: - data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; - break; - case GLSL_TYPE_DOUBLE: - data.b[c] = op[0]->value.d[c] != op[1]->value.d[c]; - break; - default: - assert(0); - } - } - break; - case ir_binop_all_equal: - data.b[0] = op[0]->has_value(op[1]); - break; - case ir_binop_any_nequal: - data.b[0] = !op[0]->has_value(op[1]); - break; - - case ir_binop_lshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; - } - } - break; - - case ir_binop_rshift: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_INT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_INT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; - - } else if (op[0]->type->base_type == GLSL_TYPE_UINT && - op[1]->type->base_type == GLSL_TYPE_UINT) { - data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; - } - } - break; - - case ir_binop_bit_and: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_bit_or: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_binop_vector_extract: { - const int c = CLAMP(op[1]->value.i[0], 0, - (int) op[0]->type->vector_elements - 1); - - switch (op[0]->type->base_type) { - case GLSL_TYPE_UINT: - data.u[0] = op[0]->value.u[c]; - break; - case GLSL_TYPE_INT: - data.i[0] = op[0]->value.i[c]; - break; - case GLSL_TYPE_FLOAT: - data.f[0] = op[0]->value.f[c]; - break; - case GLSL_TYPE_DOUBLE: - data.d[0] = op[0]->value.d[c]; - break; - case GLSL_TYPE_BOOL: - data.b[0] = op[0]->value.b[c]; - break; - default: - assert(0); - } - break; - } - - case ir_binop_bit_xor: - for (unsigned c = 0, c0 = 0, c1 = 0; - c < components; - c0 += c0_inc, c1 += c1_inc, c++) { - - switch (op[0]->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; - break; - default: - assert(0); - } - } - break; - - case ir_unop_bitfield_reverse: - /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ - for (unsigned c = 0; c < components; c++) { - unsigned int v = op[0]->value.u[c]; // input bits to be reversed - unsigned int r = v; // r will be reversed bits of v; first get LSB of v - int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end - - for (v >>= 1; v; v >>= 1) { - r <<= 1; - r |= v & 1; - s--; - } - r <<= s; // shift when v's highest bits are zero - - data.u[c] = r; - } - break; - - case ir_unop_bit_count: - for (unsigned c = 0; c < components; c++) { - unsigned count = 0; - unsigned v = op[0]->value.u[c]; +#include "ir_expression_operation_constant.h" - for (; v; count++) { - v &= v - 1; - } - data.u[c] = count; - } - break; - - case ir_unop_find_msb: - for (unsigned c = 0; c < components; c++) { - int v = op[0]->value.i[c]; - - if (v == 0 || (op[0]->type->base_type == GLSL_TYPE_INT && v == -1)) - data.i[c] = -1; - else { - int count = 0; - unsigned top_bit = op[0]->type->base_type == GLSL_TYPE_UINT - ? 0 : v & (1u << 31); - - while (((v & (1u << 31)) == top_bit) && count != 32) { - count++; - v <<= 1; - } - - data.i[c] = 31 - count; - } - } - break; - - case ir_unop_find_lsb: - for (unsigned c = 0; c < components; c++) { - if (op[0]->value.i[c] == 0) - data.i[c] = -1; - else { - unsigned pos = 0; - unsigned v = op[0]->value.u[c]; - - for (; !(v & 1); v >>= 1) { - pos++; - } - data.u[c] = pos; - } - } - break; - - case ir_unop_saturate: - for (unsigned c = 0; c < components; c++) { - data.f[c] = CLAMP(op[0]->value.f[c], 0.0f, 1.0f); - } - break; - case ir_unop_pack_double_2x32: - /* XXX needs to be checked on big-endian */ - memcpy(&data.d[0], &op[0]->value.u[0], sizeof(double)); - break; - case ir_unop_unpack_double_2x32: - /* XXX needs to be checked on big-endian */ - memcpy(&data.u[0], &op[0]->value.d[0], sizeof(double)); - break; - - case ir_triop_bitfield_extract: { - for (unsigned c = 0; c < components; c++) { - int offset = op[1]->value.i[c]; - int bits = op[2]->value.i[c]; - - if (bits == 0) - data.u[c] = 0; - else if (offset < 0 || bits < 0) - data.u[c] = 0; /* Undefined, per spec. */ - else if (offset + bits > 32) - data.u[c] = 0; /* Undefined, per spec. */ - else { - if (op[0]->type->base_type == GLSL_TYPE_INT) { - /* int so that the right shift will sign-extend. */ - int value = op[0]->value.i[c]; - value <<= 32 - bits - offset; - value >>= 32 - bits; - data.i[c] = value; - } else { - unsigned value = op[0]->value.u[c]; - value <<= 32 - bits - offset; - value >>= 32 - bits; - data.u[c] = value; - } - } - } - break; - } - - case ir_binop_ldexp: - for (unsigned c = 0; c < components; c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) { - data.d[c] = ldexp(op[0]->value.d[c], op[1]->value.i[c]); - /* Flush subnormal values to zero. */ - if (!isnormal(data.d[c])) - data.d[c] = copysign(0.0, op[0]->value.d[c]); - } else { - data.f[c] = ldexpf(op[0]->value.f[c], op[1]->value.i[c]); - /* Flush subnormal values to zero. */ - if (!isnormal(data.f[c])) - data.f[c] = copysignf(0.0f, op[0]->value.f[c]); - } - } - break; - - case ir_triop_fma: - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || - op[0]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || - op[1]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || - op[2]->type->base_type == GLSL_TYPE_DOUBLE); - - for (unsigned c = 0; c < components; c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.d[c] * op[1]->value.d[c] - + op[2]->value.d[c]; - else - data.f[c] = op[0]->value.f[c] * op[1]->value.f[c] - + op[2]->value.f[c]; - } - break; - - case ir_triop_lrp: { - assert(op[0]->type->base_type == GLSL_TYPE_FLOAT || - op[0]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[1]->type->base_type == GLSL_TYPE_FLOAT || - op[1]->type->base_type == GLSL_TYPE_DOUBLE); - assert(op[2]->type->base_type == GLSL_TYPE_FLOAT || - op[2]->type->base_type == GLSL_TYPE_DOUBLE); - - unsigned c2_inc = op[2]->type->is_scalar() ? 0 : 1; - for (unsigned c = 0, c2 = 0; c < components; c2 += c2_inc, c++) { - if (op[0]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.d[c] * (1.0 - op[2]->value.d[c2]) + - (op[1]->value.d[c] * op[2]->value.d[c2]); - else - data.f[c] = op[0]->value.f[c] * (1.0f - op[2]->value.f[c2]) + - (op[1]->value.f[c] * op[2]->value.f[c2]); - } - break; - } - - case ir_triop_csel: - for (unsigned c = 0; c < components; c++) { - if (op[1]->type->base_type == GLSL_TYPE_DOUBLE) - data.d[c] = op[0]->value.b[c] ? op[1]->value.d[c] - : op[2]->value.d[c]; - else - data.u[c] = op[0]->value.b[c] ? op[1]->value.u[c] - : op[2]->value.u[c]; - } - break; - - case ir_triop_vector_insert: { - const unsigned idx = op[2]->value.u[0]; - - memcpy(&data, &op[0]->value, sizeof(data)); - - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[idx] = op[1]->value.i[0]; - break; - case GLSL_TYPE_UINT: - data.u[idx] = op[1]->value.u[0]; - break; - case GLSL_TYPE_FLOAT: - data.f[idx] = op[1]->value.f[0]; - break; - case GLSL_TYPE_BOOL: - data.b[idx] = op[1]->value.b[0]; - break; - case GLSL_TYPE_DOUBLE: - data.d[idx] = op[1]->value.d[0]; - break; - default: - assert(!"Should not get here."); - break; - } - break; - } - - case ir_quadop_bitfield_insert: { - for (unsigned c = 0; c < components; c++) { - int offset = op[2]->value.i[c]; - int bits = op[3]->value.i[c]; - - if (bits == 0) - data.u[c] = op[0]->value.u[c]; - else if (offset < 0 || bits < 0) - data.u[c] = 0; /* Undefined, per spec. */ - else if (offset + bits > 32) - data.u[c] = 0; /* Undefined, per spec. */ - else { - unsigned insert_mask = ((1ull << bits) - 1) << offset; - - unsigned insert = op[1]->value.u[c]; - insert <<= offset; - insert &= insert_mask; - - unsigned base = op[0]->value.u[c]; - base &= ~insert_mask; - - data.u[c] = base | insert; - } - } - break; - } - - case ir_quadop_vector: - for (unsigned c = 0; c < this->type->vector_elements; c++) { - switch (this->type->base_type) { - case GLSL_TYPE_INT: - data.i[c] = op[c]->value.i[0]; - break; - case GLSL_TYPE_UINT: - data.u[c] = op[c]->value.u[0]; - break; - case GLSL_TYPE_FLOAT: - data.f[c] = op[c]->value.f[0]; - break; - case GLSL_TYPE_DOUBLE: - data.d[c] = op[c]->value.d[0]; - break; - default: - assert(0); - } - } - break; - - default: - /* FINISHME: Should handle all expression types. */ - return NULL; - } - - return new(ctx) ir_constant(this->type, &data); + return new(mem_ctx) ir_constant(this->type, &data); } ir_constant * -ir_texture::constant_expression_value(struct hash_table *) +ir_texture::constant_expression_value(void *, struct hash_table *) { /* texture lookups aren't constant expressions */ return NULL; @@ -1750,9 +717,13 @@ ir_texture::constant_expression_value(struct hash_table *) ir_constant * -ir_swizzle::constant_expression_value(struct hash_table *variable_context) +ir_swizzle::constant_expression_value(void *mem_ctx, + struct hash_table *variable_context) { - ir_constant *v = this->val->constant_expression_value(variable_context); + assert(mem_ctx); + + ir_constant *v = this->val->constant_expression_value(mem_ctx, + variable_context); if (v != NULL) { ir_constant_data data = { { 0 } }; @@ -1768,27 +739,31 @@ ir_swizzle::constant_expression_value(struct hash_table *variable_context) case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; + case GLSL_TYPE_UINT64:data.u64[i] = v->value.u64[swiz_idx[i]]; break; + case GLSL_TYPE_INT64: data.i64[i] = v->value.i64[swiz_idx[i]]; break; default: assert(!"Should not get here."); break; } } - void *ctx = ralloc_parent(this); - return new(ctx) ir_constant(this->type, &data); + return new(mem_ctx) ir_constant(this->type, &data); } return NULL; } ir_constant * -ir_dereference_variable::constant_expression_value(struct hash_table *variable_context) +ir_dereference_variable::constant_expression_value(void *mem_ctx, + struct hash_table *variable_context) { assert(var); + assert(mem_ctx); /* Give priority to the context hashtable, if it exists */ if (variable_context) { - ir_constant *value = (ir_constant *)hash_table_find(variable_context, var); - if(value) - return value; + hash_entry *entry = _mesa_hash_table_search(variable_context, var); + + if(entry) + return (ir_constant *) entry->data; } /* The constant_value of a uniform variable is its initializer, @@ -1800,18 +775,20 @@ ir_dereference_variable::constant_expression_value(struct hash_table *variable_c if (!var->constant_value) return NULL; - return var->constant_value->clone(ralloc_parent(var), NULL); + return var->constant_value->clone(mem_ctx, NULL); } ir_constant * -ir_dereference_array::constant_expression_value(struct hash_table *variable_context) +ir_dereference_array::constant_expression_value(void *mem_ctx, + struct hash_table *variable_context) { - ir_constant *array = this->array->constant_expression_value(variable_context); - ir_constant *idx = this->array_index->constant_expression_value(variable_context); + assert(mem_ctx); + + ir_constant *array = this->array->constant_expression_value(mem_ctx, variable_context); + ir_constant *idx = this->array_index->constant_expression_value(mem_ctx, variable_context); if ((array != NULL) && (idx != NULL)) { - void *ctx = ralloc_parent(this); if (array->type->is_matrix()) { /* Array access of a matrix results in a vector. */ @@ -1851,14 +828,14 @@ ir_dereference_array::constant_expression_value(struct hash_table *variable_cont break; } - return new(ctx) ir_constant(column_type, &data); + return new(mem_ctx) ir_constant(column_type, &data); } else if (array->type->is_vector()) { const unsigned component = idx->value.u[0]; - return new(ctx) ir_constant(array, component); - } else { + return new(mem_ctx) ir_constant(array, component); + } else if (array->type->is_array()) { const unsigned index = idx->value.u[0]; - return array->get_array_element(index)->clone(ctx, NULL); + return array->get_array_element(index)->clone(mem_ctx, NULL); } } return NULL; @@ -1866,16 +843,19 @@ ir_dereference_array::constant_expression_value(struct hash_table *variable_cont ir_constant * -ir_dereference_record::constant_expression_value(struct hash_table *) +ir_dereference_record::constant_expression_value(void *mem_ctx, + struct hash_table *) { - ir_constant *v = this->record->constant_expression_value(); + assert(mem_ctx); + + ir_constant *v = this->record->constant_expression_value(mem_ctx); - return (v != NULL) ? v->get_record_field(this->field) : NULL; + return (v != NULL) ? v->get_record_field(this->field_idx) : NULL; } ir_constant * -ir_assignment::constant_expression_value(struct hash_table *) +ir_assignment::constant_expression_value(void *, struct hash_table *) { /* FINISHME: Handle CEs involving assignment (return RHS) */ return NULL; @@ -1883,30 +863,37 @@ ir_assignment::constant_expression_value(struct hash_table *) ir_constant * -ir_constant::constant_expression_value(struct hash_table *) +ir_constant::constant_expression_value(void *, struct hash_table *) { return this; } ir_constant * -ir_call::constant_expression_value(struct hash_table *variable_context) +ir_call::constant_expression_value(void *mem_ctx, struct hash_table *variable_context) { - return this->callee->constant_expression_value(&this->actual_parameters, variable_context); + assert(mem_ctx); + + return this->callee->constant_expression_value(mem_ctx, + &this->actual_parameters, + variable_context); } -bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body, +bool ir_function_signature::constant_expression_evaluate_expression_list(void *mem_ctx, + const struct exec_list &body, struct hash_table *variable_context, ir_constant **result) { + assert(mem_ctx); + foreach_in_list(ir_instruction, inst, &body) { switch(inst->ir_type) { /* (declare () type symbol) */ case ir_type_variable: { ir_variable *var = inst->as_variable(); - hash_table_insert(variable_context, ir_constant::zero(this, var->type), var); + _mesa_hash_table_insert(variable_context, var, ir_constant::zero(this, var->type)); break; } @@ -1914,7 +901,9 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s case ir_type_assignment: { ir_assignment *asg = inst->as_assignment(); if (asg->condition) { - ir_constant *cond = asg->condition->constant_expression_value(variable_context); + ir_constant *cond = + asg->condition->constant_expression_value(mem_ctx, + variable_context); if (!cond) return false; if (!cond->get_bool_component(0)) @@ -1927,7 +916,8 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s if (!constant_referenced(asg->lhs, variable_context, store, offset)) return false; - ir_constant *value = asg->rhs->constant_expression_value(variable_context); + ir_constant *value = + asg->rhs->constant_expression_value(mem_ctx, variable_context); if (!value) return false; @@ -1939,7 +929,9 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s /* (return (expression)) */ case ir_type_return: assert (result); - *result = inst->as_return()->value->constant_expression_value(variable_context); + *result = + inst->as_return()->value->constant_expression_value(mem_ctx, + variable_context); return *result != NULL; /* (call name (ref) (params))*/ @@ -1960,7 +952,8 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s store, offset)) return false; - ir_constant *value = call->constant_expression_value(variable_context); + ir_constant *value = + call->constant_expression_value(mem_ctx, variable_context); if(!value) return false; @@ -1973,14 +966,18 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s case ir_type_if: { ir_if *iif = inst->as_if(); - ir_constant *cond = iif->condition->constant_expression_value(variable_context); + ir_constant *cond = + iif->condition->constant_expression_value(mem_ctx, + variable_context); if (!cond || !cond->type->is_boolean()) return false; exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; *result = NULL; - if (!constant_expression_evaluate_expression_list(branch, variable_context, result)) + if (!constant_expression_evaluate_expression_list(mem_ctx, branch, + variable_context, + result)) return false; /* If there was a return in the branch chosen, drop out now. */ @@ -2004,8 +1001,12 @@ bool ir_function_signature::constant_expression_evaluate_expression_list(const s } ir_constant * -ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context) +ir_function_signature::constant_expression_value(void *mem_ctx, + exec_list *actual_parameters, + struct hash_table *variable_context) { + assert(mem_ctx); + const glsl_type *type = this->return_type; if (type == glsl_type::void_type) return NULL; @@ -2030,8 +1031,7 @@ ir_function_signature::constant_expression_value(exec_list *actual_parameters, s * We expect the correctness of the number of parameters to have * been checked earlier. */ - hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash, - hash_table_pointer_compare); + hash_table *deref_hash = _mesa_pointer_hash_table_create(NULL); /* If "origin" is non-NULL, then the function body is there. So we * have to use the variable objects from the object with the body, @@ -2040,15 +1040,16 @@ ir_function_signature::constant_expression_value(exec_list *actual_parameters, s const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw(); foreach_in_list(ir_rvalue, n, actual_parameters) { - ir_constant *constant = n->constant_expression_value(variable_context); + ir_constant *constant = + n->constant_expression_value(mem_ctx, variable_context); if (constant == NULL) { - hash_table_dtor(deref_hash); + _mesa_hash_table_destroy(deref_hash, NULL); return NULL; } ir_variable *var = (ir_variable *)parameter_info; - hash_table_insert(deref_hash, constant, var); + _mesa_hash_table_insert(deref_hash, var, constant); parameter_info = parameter_info->next; } @@ -2058,10 +1059,11 @@ ir_function_signature::constant_expression_value(exec_list *actual_parameters, s /* Now run the builtin function until something non-constant * happens or we get the result. */ - if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result) - result = result->clone(ralloc_parent(this), NULL); + if (constant_expression_evaluate_expression_list(mem_ctx, origin ? origin->body : body, deref_hash, &result) && + result) + result = result->clone(mem_ctx, NULL); - hash_table_dtor(deref_hash); + _mesa_hash_table_destroy(deref_hash, NULL); return result; }