X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fcompiler%2Fnir%2Fnir_opcodes.py;h=1ab4a3e7a315aaba1eb79fa0eb82d03728488b48;hb=c27b3758fa0dcd7fade9e85c5483b8310b8263d7;hp=28a04672285e58209ef2ba3e0a3e09d2b13f7c53;hpb=a0947921eb01f4c037de28b753fc10f86a25fc65;p=mesa.git diff --git a/src/compiler/nir/nir_opcodes.py b/src/compiler/nir/nir_opcodes.py index 28a04672285..1ab4a3e7a31 100644 --- a/src/compiler/nir/nir_opcodes.py +++ b/src/compiler/nir/nir_opcodes.py @@ -23,6 +23,7 @@ # Authors: # Connor Abbott (cwabbott0@gmail.com) +import re # Class that represents all the information we have about the opcode # NOTE: this must be kept in sync with nir_op_info @@ -32,12 +33,13 @@ class Opcode(object): NOTE: this must be kept in sync with nir_op_info """ def __init__(self, name, output_size, output_type, input_sizes, - input_types, algebraic_properties, const_expr): + input_types, is_conversion, algebraic_properties, const_expr): """Parameters: - name is the name of the opcode (prepend nir_op_ for the enum name) - all types are strings that get nir_type_ prepended to them - input_types is a list of types + - is_conversion is true if this opcode represents a type conversion - algebraic_properties is a space-seperated string, where nir_op_is_ is prepended before each entry - const_expr is an expression or series of statements that computes the @@ -69,6 +71,7 @@ class Opcode(object): assert isinstance(input_sizes[0], int) assert isinstance(input_types, list) assert isinstance(input_types[0], str) + assert isinstance(is_conversion, bool) assert isinstance(algebraic_properties, str) assert isinstance(const_expr, str) assert len(input_sizes) == len(input_types) @@ -83,14 +86,18 @@ class Opcode(object): self.output_type = output_type self.input_sizes = input_sizes self.input_types = input_types + self.is_conversion = is_conversion self.algebraic_properties = algebraic_properties self.const_expr = const_expr # helper variables for strings tfloat = "float" tint = "int" -tbool = "bool32" +tbool = "bool" +tbool1 = "bool1" +tbool32 = "bool32" tuint = "uint" +tuint16 = "uint16" tfloat32 = "float32" tint32 = "int32" tuint32 = "uint32" @@ -98,28 +105,63 @@ tint64 = "int64" tuint64 = "uint64" tfloat64 = "float64" -commutative = "commutative " +_TYPE_SPLIT_RE = re.compile(r'(?Pint|uint|float|bool)(?P\d+)?') + +def type_has_size(type_): + m = _TYPE_SPLIT_RE.match(type_) + assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) + return m.group('bits') is not None + +def type_size(type_): + m = _TYPE_SPLIT_RE.match(type_) + assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) + assert m.group('bits') is not None, \ + 'NIR type string has no bit size: "{}"'.format(type_) + return int(m.group('bits')) + +def type_sizes(type_): + if type_has_size(type_): + return [type_size(type_)] + elif type_ == 'bool': + return [1, 32] + elif type_ == 'float': + return [16, 32, 64] + else: + return [1, 8, 16, 32, 64] + +def type_base_type(type_): + m = _TYPE_SPLIT_RE.match(type_) + assert m is not None, 'Invalid NIR type string: "{}"'.format(type_) + return m.group('type') + +# Operation where the first two sources are commutative. +# +# For 2-source operations, this just mathematical commutativity. Some +# 3-source operations, like ffma, are only commutative in the first two +# sources. +_2src_commutative = "2src_commutative " associative = "associative " # global dictionary of opcodes opcodes = {} def opcode(name, output_size, output_type, input_sizes, input_types, - algebraic_properties, const_expr): + is_conversion, algebraic_properties, const_expr): assert name not in opcodes opcodes[name] = Opcode(name, output_size, output_type, input_sizes, - input_types, algebraic_properties, const_expr) + input_types, is_conversion, algebraic_properties, + const_expr) def unop_convert(name, out_type, in_type, const_expr): - opcode(name, 0, out_type, [0], [in_type], "", const_expr) + opcode(name, 0, out_type, [0], [in_type], False, "", const_expr) def unop(name, ty, const_expr): - opcode(name, 0, ty, [0], [ty], "", const_expr) + opcode(name, 0, ty, [0], [ty], False, "", const_expr) def unop_horiz(name, output_size, output_type, input_size, input_type, const_expr): - opcode(name, output_size, output_type, [input_size], [input_type], "", - const_expr) + opcode(name, output_size, output_type, [input_size], [input_type], + False, "", const_expr) def unop_reduce(name, output_size, output_type, input_type, prereduce_expr, reduce_expr, final_expr): @@ -140,11 +182,10 @@ def unop_reduce(name, output_size, output_type, input_type, prereduce_expr, unop_horiz(name + "4", output_size, output_type, 4, input_type, final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) +def unop_numeric_convert(name, out_type, in_type, const_expr): + opcode(name, 0, out_type, [0], [in_type], True, "", const_expr) -# These two move instructions differ in what modifiers they support and what -# the negate modifier means. Otherwise, they are identical. -unop("fmov", tfloat, "src0") -unop("imov", tint, "src0") +unop("mov", tuint, "src0") unop("ineg", tint, "-src0") unop("fneg", tfloat, "-src0") @@ -167,27 +208,28 @@ unop("fexp2", tfloat, "exp2f(src0)") unop("flog2", tfloat, "log2f(src0)") # Generate all of the numeric conversion opcodes -for src_t in [tint, tuint, tfloat]: - if src_t in (tint, tuint): - dst_types = [tfloat, src_t] +for src_t in [tint, tuint, tfloat, tbool]: + if src_t == tbool: + dst_types = [tfloat, tint] + elif src_t == tint: + dst_types = [tfloat, tint, tbool] + elif src_t == tuint: + dst_types = [tfloat, tuint] elif src_t == tfloat: - dst_types = [tint, tuint, tfloat] + dst_types = [tint, tuint, tfloat, tbool] for dst_t in dst_types: - if dst_t == tfloat: - bit_sizes = [16, 32, 64] - else: - bit_sizes = [8, 16, 32, 64] - for bit_size in bit_sizes: - unop_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size), - dst_t + str(bit_size), src_t, "src0") - -# We'll hand-code the to/from bool conversion opcodes. Because bool doesn't -# have multiple bit-sizes, we can always infer the size from the other type. -unop_convert("f2b", tbool, tfloat, "src0 != 0.0") -unop_convert("i2b", tbool, tint, "src0 != 0") -unop_convert("b2f", tfloat, tbool, "src0 ? 1.0 : 0.0") -unop_convert("b2i", tint, tbool, "src0 ? 1 : 0") + for bit_size in type_sizes(dst_t): + if bit_size == 16 and dst_t == tfloat and src_t == tfloat: + rnd_modes = ['_rtne', '_rtz', ''] + for rnd_mode in rnd_modes: + unop_numeric_convert("{0}2{1}{2}{3}".format(src_t[0], dst_t[0], + bit_size, rnd_mode), + dst_t + str(bit_size), src_t, "src0") + else: + conv_expr = "src0 != 0" if dst_t == tbool else "src0" + unop_numeric_convert("{0}2{1}{2}".format(src_t[0], dst_t[0], bit_size), + dst_t + str(bit_size), src_t, conv_expr) # Unary floating-point rounding operations. @@ -207,6 +249,9 @@ unop("fquantize2f16", tfloat, "(fabs(src0) < ldexpf(1.0, -14)) ? copysignf(0.0f, unop("fsin", tfloat, "bit_size == 64 ? sin(src0) : sinf(src0)") unop("fcos", tfloat, "bit_size == 64 ? cos(src0) : cosf(src0)") +# dfrexp +unop_convert("frexp_exp", tint32, tfloat, "frexp(src0, &dst);") +unop_convert("frexp_sig", tfloat, tfloat, "int n; dst = frexp(src0, &n);") # Partial derivatives. @@ -272,19 +317,34 @@ dst.x = (src0.x << 0) | (src0.w << 24); """) +unop_horiz("pack_32_2x16", 1, tuint32, 2, tuint16, + "dst.x = src0.x | ((uint32_t)src0.y << 16);") + unop_horiz("pack_64_2x32", 1, tuint64, 2, tuint32, "dst.x = src0.x | ((uint64_t)src0.y << 32);") +unop_horiz("pack_64_4x16", 1, tuint64, 4, tuint16, + "dst.x = src0.x | ((uint64_t)src0.y << 16) | ((uint64_t)src0.z << 32) | ((uint64_t)src0.w << 48);") + unop_horiz("unpack_64_2x32", 2, tuint32, 1, tuint64, "dst.x = src0.x; dst.y = src0.x >> 32;") +unop_horiz("unpack_64_4x16", 4, tuint16, 1, tuint64, + "dst.x = src0.x; dst.y = src0.x >> 16; dst.z = src0.x >> 32; dst.w = src0.w >> 48;") + +unop_horiz("unpack_32_2x16", 2, tuint16, 1, tuint32, + "dst.x = src0.x; dst.y = src0.x >> 16;") + # Lowered floating point unpacking operations. -unop_horiz("unpack_half_2x16_split_x", 1, tfloat32, 1, tuint32, - "unpack_half_1x16((uint16_t)(src0.x & 0xffff))") -unop_horiz("unpack_half_2x16_split_y", 1, tfloat32, 1, tuint32, - "unpack_half_1x16((uint16_t)(src0.x >> 16))") +unop_convert("unpack_half_2x16_split_x", tfloat32, tuint32, + "unpack_half_1x16((uint16_t)(src0 & 0xffff))") +unop_convert("unpack_half_2x16_split_y", tfloat32, tuint32, + "unpack_half_1x16((uint16_t)(src0 >> 16))") + +unop_convert("unpack_32_2x16_split_x", tuint16, tuint32, "src0") +unop_convert("unpack_32_2x16_split_y", tuint16, tuint32, "src0 >> 16") unop_convert("unpack_64_2x32_split_x", tuint32, tuint64, "src0") unop_convert("unpack_64_2x32_split_y", tuint32, tuint64, "src0 >> 32") @@ -298,17 +358,17 @@ dst = 0; for (unsigned bit = 0; bit < 32; bit++) dst |= ((src0 >> bit) & 1) << (31 - bit); """) -unop("bit_count", tuint32, """ +unop_convert("bit_count", tuint32, tuint, """ dst = 0; -for (unsigned bit = 0; bit < 32; bit++) { +for (unsigned bit = 0; bit < bit_size; bit++) { if ((src0 >> bit) & 1) dst++; } """) -unop_convert("ufind_msb", tint32, tuint32, """ +unop_convert("ufind_msb", tint32, tuint, """ dst = -1; -for (int bit = 31; bit >= 0; bit--) { +for (int bit = bit_size - 1; bit >= 0; bit--) { if ((src0 >> bit) & 1) { dst = bit; break; @@ -330,9 +390,9 @@ for (int bit = 31; bit >= 0; bit--) { } """) -unop("find_lsb", tint32, """ +unop_convert("find_lsb", tint32, tint, """ dst = -1; -for (unsigned bit = 0; bit < 32; bit++) { +for (unsigned bit = 0; bit < bit_size; bit++) { if ((src0 >> bit) & 1) { dst = bit; break; @@ -341,23 +401,64 @@ for (unsigned bit = 0; bit < 32; bit++) { """) -for i in xrange(1, 5): - for j in xrange(1, 5): +for i in range(1, 5): + for j in range(1, 5): unop_horiz("fnoise{0}_{1}".format(i, j), i, tfloat, j, tfloat, "0.0f") + +# AMD_gcn_shader extended instructions +unop_horiz("cube_face_coord", 2, tfloat32, 3, tfloat32, """ +dst.x = dst.y = 0.0; +float absX = fabs(src0.x); +float absY = fabs(src0.y); +float absZ = fabs(src0.z); + +float ma = 0.0; +if (absX >= absY && absX >= absZ) { ma = 2 * src0.x; } +if (absY >= absX && absY >= absZ) { ma = 2 * src0.y; } +if (absZ >= absX && absZ >= absY) { ma = 2 * src0.z; } + +if (src0.x >= 0 && absX >= absY && absX >= absZ) { dst.x = -src0.z; dst.y = -src0.y; } +if (src0.x < 0 && absX >= absY && absX >= absZ) { dst.x = src0.z; dst.y = -src0.y; } +if (src0.y >= 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = src0.z; } +if (src0.y < 0 && absY >= absX && absY >= absZ) { dst.x = src0.x; dst.y = -src0.z; } +if (src0.z >= 0 && absZ >= absX && absZ >= absY) { dst.x = src0.x; dst.y = -src0.y; } +if (src0.z < 0 && absZ >= absX && absZ >= absY) { dst.x = -src0.x; dst.y = -src0.y; } + +dst.x = dst.x / ma + 0.5; +dst.y = dst.y / ma + 0.5; +""") + +unop_horiz("cube_face_index", 1, tfloat32, 3, tfloat32, """ +float absX = fabs(src0.x); +float absY = fabs(src0.y); +float absZ = fabs(src0.z); +if (src0.x >= 0 && absX >= absY && absX >= absZ) dst.x = 0; +if (src0.x < 0 && absX >= absY && absX >= absZ) dst.x = 1; +if (src0.y >= 0 && absY >= absX && absY >= absZ) dst.x = 2; +if (src0.y < 0 && absY >= absX && absY >= absZ) dst.x = 3; +if (src0.z >= 0 && absZ >= absX && absZ >= absY) dst.x = 4; +if (src0.z < 0 && absZ >= absX && absZ >= absY) dst.x = 5; +""") + + def binop_convert(name, out_type, in_type, alg_props, const_expr): - opcode(name, 0, out_type, [0, 0], [in_type, in_type], alg_props, const_expr) + opcode(name, 0, out_type, [0, 0], [in_type, in_type], + False, alg_props, const_expr) def binop(name, ty, alg_props, const_expr): binop_convert(name, ty, ty, alg_props, const_expr) def binop_compare(name, ty, alg_props, const_expr): - binop_convert(name, tbool, ty, alg_props, const_expr) + binop_convert(name, tbool1, ty, alg_props, const_expr) + +def binop_compare32(name, ty, alg_props, const_expr): + binop_convert(name, tbool32, ty, alg_props, const_expr) def binop_horiz(name, out_size, out_type, src1_size, src1_type, src2_size, src2_type, const_expr): opcode(name, out_size, out_type, [src1_size, src2_size], [src1_type, src2_type], - "", const_expr) + False, "", const_expr) def binop_reduce(name, output_size, output_type, src_type, prereduce_expr, reduce_expr, final_expr): @@ -372,44 +473,132 @@ def binop_reduce(name, output_size, output_type, src_type, prereduce_expr, src2 = prereduce("src0.z", "src1.z") src3 = prereduce("src0.w", "src1.w") opcode(name + "2", output_size, output_type, - [2, 2], [src_type, src_type], commutative, + [2, 2], [src_type, src_type], False, _2src_commutative, final(reduce_(src0, src1))) opcode(name + "3", output_size, output_type, - [3, 3], [src_type, src_type], commutative, + [3, 3], [src_type, src_type], False, _2src_commutative, final(reduce_(reduce_(src0, src1), src2))) opcode(name + "4", output_size, output_type, - [4, 4], [src_type, src_type], commutative, + [4, 4], [src_type, src_type], False, _2src_commutative, final(reduce_(reduce_(src0, src1), reduce_(src2, src3)))) -binop("fadd", tfloat, commutative + associative, "src0 + src1") -binop("iadd", tint, commutative + associative, "src0 + src1") +binop("fadd", tfloat, _2src_commutative + associative, "src0 + src1") +binop("iadd", tint, _2src_commutative + associative, "src0 + src1") +binop("iadd_sat", tint, _2src_commutative, """ + src1 > 0 ? + (src0 + src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 + src1) : + (src0 < src0 + src1 ? (1ull << (bit_size - 1)) : src0 + src1) +""") +binop("uadd_sat", tuint, _2src_commutative, + "(src0 + src1) < src0 ? MAX_UINT_FOR_SIZE(sizeof(src0) * 8) : (src0 + src1)") +binop("isub_sat", tint, "", """ + src1 < 0 ? + (src0 - src1 < src0 ? (1ull << (bit_size - 1)) - 1 : src0 - src1) : + (src0 < src0 - src1 ? (1ull << (bit_size - 1)) : src0 - src1) +""") +binop("usub_sat", tuint, "", "src0 < src1 ? 0 : src0 - src1") + binop("fsub", tfloat, "", "src0 - src1") binop("isub", tint, "", "src0 - src1") -binop("fmul", tfloat, commutative + associative, "src0 * src1") +binop("fmul", tfloat, _2src_commutative + associative, "src0 * src1") # low 32-bits of signed/unsigned integer multiply -binop("imul", tint, commutative + associative, "src0 * src1") +binop("imul", tint, _2src_commutative + associative, "src0 * src1") + +# Generate 64 bit result from 2 32 bits quantity +binop_convert("imul_2x32_64", tint64, tint32, _2src_commutative, + "(int64_t)src0 * (int64_t)src1") +binop_convert("umul_2x32_64", tuint64, tuint32, _2src_commutative, + "(uint64_t)src0 * (uint64_t)src1") + # high 32-bits of signed integer multiply -binop("imul_high", tint32, commutative, - "(int32_t)(((int64_t) src0 * (int64_t) src1) >> 32)") +binop("imul_high", tint, _2src_commutative, """ +if (bit_size == 64) { + /* We need to do a full 128-bit x 128-bit multiply in order for the sign + * extension to work properly. The casts are kind-of annoying but needed + * to prevent compiler warnings. + */ + uint32_t src0_u32[4] = { + src0, + (int64_t)src0 >> 32, + (int64_t)src0 >> 63, + (int64_t)src0 >> 63, + }; + uint32_t src1_u32[4] = { + src1, + (int64_t)src1 >> 32, + (int64_t)src1 >> 63, + (int64_t)src1 >> 63, + }; + uint32_t prod_u32[4]; + ubm_mul_u32arr(prod_u32, src0_u32, src1_u32); + dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32); +} else { + dst = ((int64_t)src0 * (int64_t)src1) >> bit_size; +} +""") + # high 32-bits of unsigned integer multiply -binop("umul_high", tuint32, commutative, - "(uint32_t)(((uint64_t) src0 * (uint64_t) src1) >> 32)") +binop("umul_high", tuint, _2src_commutative, """ +if (bit_size == 64) { + /* The casts are kind-of annoying but needed to prevent compiler warnings. */ + uint32_t src0_u32[2] = { src0, (uint64_t)src0 >> 32 }; + uint32_t src1_u32[2] = { src1, (uint64_t)src1 >> 32 }; + uint32_t prod_u32[4]; + ubm_mul_u32arr(prod_u32, src0_u32, src1_u32); + dst = (uint64_t)prod_u32[2] | ((uint64_t)prod_u32[3] << 32); +} else { + dst = ((uint64_t)src0 * (uint64_t)src1) >> bit_size; +} +""") + +# low 32-bits of unsigned integer multiply +binop("umul_low", tuint32, _2src_commutative, """ +uint64_t mask = (1 << (bit_size / 2)) - 1; +dst = ((uint64_t)src0 & mask) * ((uint64_t)src1 & mask); +""") + binop("fdiv", tfloat, "", "src0 / src1") -binop("idiv", tint, "", "src0 / src1") -binop("udiv", tuint, "", "src0 / src1") +binop("idiv", tint, "", "src1 == 0 ? 0 : (src0 / src1)") +binop("udiv", tuint, "", "src1 == 0 ? 0 : (src0 / src1)") # returns a boolean representing the carry resulting from the addition of # the two unsigned arguments. -binop_convert("uadd_carry", tuint, tuint, commutative, "src0 + src1 < src0") +binop_convert("uadd_carry", tuint, tuint, _2src_commutative, "src0 + src1 < src0") # returns a boolean representing the borrow resulting from the subtraction # of the two unsigned arguments. binop_convert("usub_borrow", tuint, tuint, "", "src0 < src1") +# hadd: (a + b) >> 1 (without overflow) +# x + y = x - (x & ~y) + (x & ~y) + y - (~x & y) + (~x & y) +# = (x & y) + (x & ~y) + (x & y) + (~x & y) +# = 2 * (x & y) + (x & ~y) + (~x & y) +# = ((x & y) << 1) + (x ^ y) +# +# Since we know that the bottom bit of (x & y) << 1 is zero, +# +# (x + y) >> 1 = (((x & y) << 1) + (x ^ y)) >> 1 +# = (x & y) + ((x ^ y) >> 1) +binop("ihadd", tint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)") +binop("uhadd", tuint, _2src_commutative, "(src0 & src1) + ((src0 ^ src1) >> 1)") + +# rhadd: (a + b + 1) >> 1 (without overflow) +# x + y + 1 = x + (~x & y) - (~x & y) + y + (x & ~y) - (x & ~y) + 1 +# = (x | y) - (~x & y) + (x | y) - (x & ~y) + 1 +# = 2 * (x | y) - ((~x & y) + (x & ~y)) + 1 +# = ((x | y) << 1) - (x ^ y) + 1 +# +# Since we know that the bottom bit of (x & y) << 1 is zero, +# +# (x + y + 1) >> 1 = (x | y) + (-(x ^ y) + 1) >> 1) +# = (x | y) - ((x ^ y) >> 1) +binop("irhadd", tint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)") +binop("urhadd", tuint, _2src_commutative, "(src0 | src1) + ((src0 ^ src1) >> 1)") + binop("umod", tuint, "", "src1 == 0 ? 0 : src0 % src1") # For signed integers, there are several different possible definitions of @@ -436,24 +625,43 @@ binop("frem", tfloat, "", "src0 - src1 * truncf(src0 / src1)") binop_compare("flt", tfloat, "", "src0 < src1") binop_compare("fge", tfloat, "", "src0 >= src1") -binop_compare("feq", tfloat, commutative, "src0 == src1") -binop_compare("fne", tfloat, commutative, "src0 != src1") +binop_compare("feq", tfloat, _2src_commutative, "src0 == src1") +binop_compare("fne", tfloat, _2src_commutative, "src0 != src1") binop_compare("ilt", tint, "", "src0 < src1") binop_compare("ige", tint, "", "src0 >= src1") -binop_compare("ieq", tint, commutative, "src0 == src1") -binop_compare("ine", tint, commutative, "src0 != src1") +binop_compare("ieq", tint, _2src_commutative, "src0 == src1") +binop_compare("ine", tint, _2src_commutative, "src0 != src1") binop_compare("ult", tuint, "", "src0 < src1") binop_compare("uge", tuint, "", "src0 >= src1") +binop_compare32("flt32", tfloat, "", "src0 < src1") +binop_compare32("fge32", tfloat, "", "src0 >= src1") +binop_compare32("feq32", tfloat, _2src_commutative, "src0 == src1") +binop_compare32("fne32", tfloat, _2src_commutative, "src0 != src1") +binop_compare32("ilt32", tint, "", "src0 < src1") +binop_compare32("ige32", tint, "", "src0 >= src1") +binop_compare32("ieq32", tint, _2src_commutative, "src0 == src1") +binop_compare32("ine32", tint, _2src_commutative, "src0 != src1") +binop_compare32("ult32", tuint, "", "src0 < src1") +binop_compare32("uge32", tuint, "", "src0 >= src1") # integer-aware GLSL-style comparisons that compare floats and ints -binop_reduce("ball_fequal", 1, tbool, tfloat, "{src0} == {src1}", +binop_reduce("ball_fequal", 1, tbool1, tfloat, "{src0} == {src1}", "{src0} && {src1}", "{src}") -binop_reduce("bany_fnequal", 1, tbool, tfloat, "{src0} != {src1}", +binop_reduce("bany_fnequal", 1, tbool1, tfloat, "{src0} != {src1}", "{src0} || {src1}", "{src}") -binop_reduce("ball_iequal", 1, tbool, tint, "{src0} == {src1}", +binop_reduce("ball_iequal", 1, tbool1, tint, "{src0} == {src1}", "{src0} && {src1}", "{src}") -binop_reduce("bany_inequal", 1, tbool, tint, "{src0} != {src1}", +binop_reduce("bany_inequal", 1, tbool1, tint, "{src0} != {src1}", + "{src0} || {src1}", "{src}") + +binop_reduce("b32all_fequal", 1, tbool32, tfloat, "{src0} == {src1}", + "{src0} && {src1}", "{src}") +binop_reduce("b32any_fnequal", 1, tbool32, tfloat, "{src0} != {src1}", + "{src0} || {src1}", "{src}") +binop_reduce("b32all_iequal", 1, tbool32, tint, "{src0} == {src1}", + "{src0} && {src1}", "{src}") +binop_reduce("b32any_inequal", 1, tbool32, tint, "{src0} != {src1}", "{src0} || {src1}", "{src}") # non-integer-aware GLSL-style comparisons that return 0.0 or 1.0 @@ -468,13 +676,18 @@ binop_reduce("fany_nequal", 1, tfloat32, tfloat32, "{src0} != {src1}", binop("slt", tfloat32, "", "(src0 < src1) ? 1.0f : 0.0f") # Set on Less Than binop("sge", tfloat, "", "(src0 >= src1) ? 1.0f : 0.0f") # Set on Greater or Equal -binop("seq", tfloat32, commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal -binop("sne", tfloat32, commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal - - -opcode("ishl", 0, tint, [0, 0], [tint, tuint32], "", "src0 << src1") -opcode("ishr", 0, tint, [0, 0], [tint, tuint32], "", "src0 >> src1") -opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], "", "src0 >> src1") +binop("seq", tfloat32, _2src_commutative, "(src0 == src1) ? 1.0f : 0.0f") # Set on Equal +binop("sne", tfloat32, _2src_commutative, "(src0 != src1) ? 1.0f : 0.0f") # Set on Not Equal + +# SPIRV shifts are undefined for shift-operands >= bitsize, +# but SM5 shifts are defined to use the least significant bits, only +# The NIR definition is according to the SM5 specification. +opcode("ishl", 0, tint, [0, 0], [tint, tuint32], False, "", + "src0 << (src1 & (sizeof(src0) * 8 - 1))") +opcode("ishr", 0, tint, [0, 0], [tint, tuint32], False, "", + "src0 >> (src1 & (sizeof(src0) * 8 - 1))") +opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], False, "", + "src0 >> (src1 & (sizeof(src0) * 8 - 1))") # bitwise logic operators # @@ -482,9 +695,9 @@ opcode("ushr", 0, tuint, [0, 0], [tuint, tuint32], "", "src0 >> src1") # integers. -binop("iand", tuint, commutative + associative, "src0 & src1") -binop("ior", tuint, commutative + associative, "src0 | src1") -binop("ixor", tuint, commutative + associative, "src0 ^ src1") +binop("iand", tuint, _2src_commutative + associative, "src0 & src1") +binop("ior", tuint, _2src_commutative + associative, "src0 | src1") +binop("ixor", tuint, _2src_commutative + associative, "src0 ^ src1") # floating point logic operators @@ -492,11 +705,11 @@ binop("ixor", tuint, commutative + associative, "src0 ^ src1") # These use (src != 0.0) for testing the truth of the input, and output 1.0 # for true and 0.0 for false -binop("fand", tfloat32, commutative, +binop("fand", tfloat32, _2src_commutative, "((src0 != 0.0f) && (src1 != 0.0f)) ? 1.0f : 0.0f") -binop("for", tfloat32, commutative, +binop("for", tfloat32, _2src_commutative, "((src0 != 0.0f) || (src1 != 0.0f)) ? 1.0f : 0.0f") -binop("fxor", tfloat32, commutative, +binop("fxor", tfloat32, _2src_commutative, "(src0 != 0.0f && src1 == 0.0f) || (src0 == 0.0f && src1 != 0.0f) ? 1.0f : 0.0f") binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", @@ -505,20 +718,20 @@ binop_reduce("fdot", 1, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", binop_reduce("fdot_replicated", 4, tfloat, tfloat, "{src0} * {src1}", "{src0} + {src1}", "{src}") -opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], "", +opcode("fdph", 1, tfloat, [3, 4], [tfloat, tfloat], False, "", "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w") -opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], "", +opcode("fdph_replicated", 4, tfloat, [3, 4], [tfloat, tfloat], False, "", "src0.x * src1.x + src0.y * src1.y + src0.z * src1.z + src1.w") binop("fmin", tfloat, "", "fminf(src0, src1)") -binop("imin", tint, commutative + associative, "src1 > src0 ? src0 : src1") -binop("umin", tuint, commutative + associative, "src1 > src0 ? src0 : src1") +binop("imin", tint, _2src_commutative + associative, "src1 > src0 ? src0 : src1") +binop("umin", tuint, _2src_commutative + associative, "src1 > src0 ? src0 : src1") binop("fmax", tfloat, "", "fmaxf(src0, src1)") -binop("imax", tint, commutative + associative, "src1 > src0 ? src1 : src0") -binop("umax", tuint, commutative + associative, "src1 > src0 ? src1 : src0") +binop("imax", tint, _2src_commutative + associative, "src1 > src0 ? src1 : src0") +binop("umax", tuint, _2src_commutative + associative, "src1 > src0 ? src1 : src0") # Saturated vector add for 4 8bit ints. -binop("usadd_4x8", tint32, commutative + associative, """ +binop("usadd_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MIN2(((src0 >> i) & 0xff) + ((src1 >> i) & 0xff), 0xff) << i; @@ -537,7 +750,7 @@ for (int i = 0; i < 32; i += 8) { """) # vector min for 4 8bit ints. -binop("umin_4x8", tint32, commutative + associative, """ +binop("umin_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MIN2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i; @@ -545,7 +758,7 @@ for (int i = 0; i < 32; i += 8) { """) # vector max for 4 8bit ints. -binop("umax_4x8", tint32, commutative + associative, """ +binop("umax_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { dst |= MAX2((src0 >> i) & 0xff, (src1 >> i) & 0xff) << i; @@ -553,7 +766,7 @@ for (int i = 0; i < 32; i += 8) { """) # unorm multiply: (a * b) / 255. -binop("umul_unorm_4x8", tint32, commutative + associative, """ +binop("umul_unorm_4x8", tint32, _2src_commutative + associative, """ dst = 0; for (int i = 0; i < 32; i += 8) { int src0_chan = (src0 >> i) & 0xff; @@ -570,6 +783,9 @@ binop_horiz("pack_half_2x16_split", 1, tuint32, 1, tfloat32, 1, tfloat32, binop_convert("pack_64_2x32_split", tuint64, tuint32, "", "src0 | ((uint64_t)src1 << 32)") +binop_convert("pack_32_2x16_split", tuint32, tuint16, "", + "src0 | ((uint32_t)src1 << 16)") + # bfm implements the behavior of the first operation of the SM5 "bfi" assembly # and that of the "bfi1" i965 instruction. That is, it has undefined behavior # if either of its arguments are 32. @@ -581,7 +797,7 @@ else dst = ((1u << bits) - 1) << offset; """) -opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], "", """ +opcode("ldexp", 0, tfloat, [0, 0], [tfloat, tint32], False, "", """ dst = (bit_size == 64) ? ldexp(src0, src1) : ldexpf(src0, src1); /* flush denormals to zero. */ if (!isnormal(dst)) @@ -604,16 +820,16 @@ binop("extract_u16", tuint, "", "(uint16_t)(src0 >> (src1 * 16))") binop("extract_i16", tint, "", "(int16_t)(src0 >> (src1 * 16))") -def triop(name, ty, const_expr): - opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], "", const_expr) +def triop(name, ty, alg_props, const_expr): + opcode(name, 0, ty, [0, 0, 0], [ty, ty, ty], False, alg_props, const_expr) def triop_horiz(name, output_size, src1_size, src2_size, src3_size, const_expr): opcode(name, output_size, tuint, [src1_size, src2_size, src3_size], - [tuint, tuint, tuint], "", const_expr) + [tuint, tuint, tuint], False, "", const_expr) -triop("ffma", tfloat, "src0 * src1 + src2") +triop("ffma", tfloat, _2src_commutative, "src0 * src1 + src2") -triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2") +triop("flrp", tfloat, "", "src0 * (1 - src2) + src1 * src2") # Conditional Select # @@ -622,12 +838,28 @@ triop("flrp", tfloat, "src0 * (1 - src2) + src1 * src2") # bools (0.0 vs 1.0) and one for integer bools (0 vs ~0). -triop("fcsel", tfloat32, "(src0 != 0.0f) ? src1 : src2") +triop("fcsel", tfloat32, "", "(src0 != 0.0f) ? src1 : src2") + +# 3 way min/max/med +triop("fmin3", tfloat, "", "fminf(src0, fminf(src1, src2))") +triop("imin3", tint, "", "MIN2(src0, MIN2(src1, src2))") +triop("umin3", tuint, "", "MIN2(src0, MIN2(src1, src2))") + +triop("fmax3", tfloat, "", "fmaxf(src0, fmaxf(src1, src2))") +triop("imax3", tint, "", "MAX2(src0, MAX2(src1, src2))") +triop("umax3", tuint, "", "MAX2(src0, MAX2(src1, src2))") + +triop("fmed3", tfloat, "", "fmaxf(fminf(fmaxf(src0, src1), src2), fminf(src0, src1))") +triop("imed3", tint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))") +triop("umed3", tuint, "", "MAX2(MIN2(MAX2(src0, src1), src2), MIN2(src0, src1))") + opcode("bcsel", 0, tuint, [0, 0, 0], - [tbool, tuint, tuint], "", "src0 ? src1 : src2") + [tbool1, tuint, tuint], False, "", "src0 ? src1 : src2") +opcode("b32csel", 0, tuint, [0, 0, 0], + [tbool32, tuint, tuint], False, "", "src0 ? src1 : src2") # SM5 bfi assembly -triop("bfi", tuint32, """ +triop("bfi", tuint32, "", """ unsigned mask = src0, insert = src1, base = src2; if (mask == 0) { dst = base; @@ -643,7 +875,7 @@ if (mask == 0) { # SM5 ubfe/ibfe assembly opcode("ubfe", 0, tuint32, - [0, 0, 0], [tuint32, tint32, tint32], "", """ + [0, 0, 0], [tuint32, tint32, tint32], False, "", """ unsigned base = src0; int offset = src1, bits = src2; if (bits == 0) { @@ -657,7 +889,7 @@ if (bits == 0) { } """) opcode("ibfe", 0, tint32, - [0, 0, 0], [tint32, tint32, tint32], "", """ + [0, 0, 0], [tint32, tint32, tint32], False, "", """ int base = src0; int offset = src1, bits = src2; if (bits == 0) { @@ -673,7 +905,7 @@ if (bits == 0) { # GLSL bitfieldExtract() opcode("ubitfield_extract", 0, tuint32, - [0, 0, 0], [tuint32, tint32, tint32], "", """ + [0, 0, 0], [tuint32, tint32, tint32], False, "", """ unsigned base = src0; int offset = src1, bits = src2; if (bits == 0) { @@ -685,7 +917,7 @@ if (bits == 0) { } """) opcode("ibitfield_extract", 0, tint32, - [0, 0, 0], [tint32, tint32, tint32], "", """ + [0, 0, 0], [tint32, tint32, tint32], False, "", """ int base = src0; int offset = src1, bits = src2; if (bits == 0) { @@ -710,19 +942,19 @@ def quadop_horiz(name, output_size, src1_size, src2_size, src3_size, opcode(name, output_size, tuint, [src1_size, src2_size, src3_size, src4_size], [tuint, tuint, tuint, tuint], - "", const_expr) + False, "", const_expr) opcode("bitfield_insert", 0, tuint32, [0, 0, 0, 0], - [tuint32, tuint32, tint32, tint32], "", """ + [tuint32, tuint32, tint32, tint32], False, "", """ unsigned base = src0, insert = src1; int offset = src2, bits = src3; if (bits == 0) { - dst = 0; + dst = base; } else if (offset < 0 || bits < 0 || bits + offset > 32) { dst = 0; } else { unsigned mask = ((1ull << bits) - 1) << offset; - dst = (base & ~mask) | ((insert << bits) & mask); + dst = (base & ~mask) | ((insert << offset) & mask); } """) @@ -733,4 +965,10 @@ dst.z = src2.x; dst.w = src3.x; """) - +# ir3-specific instruction that maps directly to mul-add shift high mix, +# (IMADSH_MIX16 i.e. ah * bl << 16 + c). It is used for lowering integer +# multiplication (imul) on Freedreno backend.. +opcode("imadsh_mix16", 1, tint32, + [1, 1, 1], [tint32, tint32, tint32], False, "", """ +dst.x = ((((src0.x & 0xffff0000) >> 16) * (src1.x & 0x0000ffff)) << 16) + src2.x; +""")