X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fcpu%2Fsimple%2Ftiming.cc;h=4384178825df84532e30c7fb87aafe84d507b7bc;hb=4862879a9420c52d48532d957b616c458b643a1e;hp=1e5a628c7f45ee26d399a3cd14acc2c55095c1b9;hpb=cb0cf2dd8ab1cd60ef13de925ac862268c07297f;p=gem5.git diff --git a/src/cpu/simple/timing.cc b/src/cpu/simple/timing.cc index 1e5a628c7..438417882 100644 --- a/src/cpu/simple/timing.cc +++ b/src/cpu/simple/timing.cc @@ -28,50 +28,55 @@ * Authors: Steve Reinhardt */ +#include "arch/locked_mem.hh" #include "arch/utility.hh" #include "cpu/exetrace.hh" #include "cpu/simple/timing.hh" -#include "mem/packet_impl.hh" +#include "mem/packet.hh" +#include "mem/packet_access.hh" #include "sim/builder.hh" +#include "sim/system.hh" using namespace std; using namespace TheISA; +Port * +TimingSimpleCPU::getPort(const std::string &if_name, int idx) +{ + if (if_name == "dcache_port") + return &dcachePort; + else if (if_name == "icache_port") + return &icachePort; + else + panic("No Such Port\n"); +} void TimingSimpleCPU::init() { - //Create Memory Ports (conect them up) - Port *mem_dport = mem->getPort(""); - dcachePort.setPeer(mem_dport); - mem_dport->setPeer(&dcachePort); - - Port *mem_iport = mem->getPort(""); - icachePort.setPeer(mem_iport); - mem_iport->setPeer(&icachePort); - BaseCPU::init(); #if FULL_SYSTEM - for (int i = 0; i < execContexts.size(); ++i) { - ExecContext *xc = execContexts[i]; + for (int i = 0; i < threadContexts.size(); ++i) { + ThreadContext *tc = threadContexts[i]; // initialize CPU, including PC - TheISA::initCPU(xc, xc->readCpuId()); + TheISA::initCPU(tc, tc->readCpuId()); } #endif } Tick -TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt) +TimingSimpleCPU::CpuPort::recvAtomic(PacketPtr pkt) { panic("TimingSimpleCPU doesn't expect recvAtomic callback!"); return curTick; } void -TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt) +TimingSimpleCPU::CpuPort::recvFunctional(PacketPtr pkt) { - panic("TimingSimpleCPU doesn't expect recvFunctional callback!"); + //No internal storage to update, jusst return + return; } void @@ -83,11 +88,24 @@ TimingSimpleCPU::CpuPort::recvStatusChange(Status status) panic("TimingSimpleCPU doesn't expect recvStatusChange callback!"); } + +void +TimingSimpleCPU::CpuPort::TickEvent::schedule(PacketPtr _pkt, Tick t) +{ + pkt = _pkt; + Event::schedule(t); +} + TimingSimpleCPU::TimingSimpleCPU(Params *p) - : BaseSimpleCPU(p), icachePort(this), dcachePort(this) + : BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock), + cpu_id(p->cpu_id) { _status = Idle; ifetch_pkt = dcache_pkt = NULL; + drainEvent = NULL; + fetchEvent = NULL; + previousTick = 0; + changeState(SimObject::Running); } @@ -98,25 +116,68 @@ TimingSimpleCPU::~TimingSimpleCPU() void TimingSimpleCPU::serialize(ostream &os) { + SimObject::State so_state = SimObject::getState(); + SERIALIZE_ENUM(so_state); BaseSimpleCPU::serialize(os); - SERIALIZE_ENUM(_status); } void TimingSimpleCPU::unserialize(Checkpoint *cp, const string §ion) { + SimObject::State so_state; + UNSERIALIZE_ENUM(so_state); BaseSimpleCPU::unserialize(cp, section); - UNSERIALIZE_ENUM(_status); +} + +unsigned int +TimingSimpleCPU::drain(Event *drain_event) +{ + // TimingSimpleCPU is ready to drain if it's not waiting for + // an access to complete. + if (status() == Idle || status() == Running || status() == SwitchedOut) { + changeState(SimObject::Drained); + return 0; + } else { + changeState(SimObject::Draining); + drainEvent = drain_event; + return 1; + } } void -TimingSimpleCPU::switchOut(Sampler *s) +TimingSimpleCPU::resume() { - sampler = s; - if (status() == Running) { - _status = SwitchedOut; + if (_status != SwitchedOut && _status != Idle) { + assert(system->getMemoryMode() == System::Timing); + + // Delete the old event if it existed. + if (fetchEvent) { + if (fetchEvent->scheduled()) + fetchEvent->deschedule(); + + delete fetchEvent; + } + + fetchEvent = + new EventWrapper(this, false); + fetchEvent->schedule(curTick); } - sampler->signalSwitched(); + + changeState(SimObject::Running); + previousTick = curTick; +} + +void +TimingSimpleCPU::switchOut() +{ + assert(status() == Running || status() == Idle); + _status = SwitchedOut; + numCycles += curTick - previousTick; + + // If we've been scheduled to resume but are then told to switch out, + // we'll need to cancel it. + if (fetchEvent && fetchEvent->scheduled()) + fetchEvent->deschedule(); } @@ -125,15 +186,36 @@ TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU) { BaseCPU::takeOverFrom(oldCPU); - // if any of this CPU's ExecContexts are active, mark the CPU as + // if any of this CPU's ThreadContexts are active, mark the CPU as // running and schedule its tick event. - for (int i = 0; i < execContexts.size(); ++i) { - ExecContext *xc = execContexts[i]; - if (xc->status() == ExecContext::Active && _status != Running) { + for (int i = 0; i < threadContexts.size(); ++i) { + ThreadContext *tc = threadContexts[i]; + if (tc->status() == ThreadContext::Active && _status != Running) { _status = Running; break; } } + + if (_status != Running) { + _status = Idle; + } + + Port *peer; + if (icachePort.getPeer() == NULL) { + peer = oldCPU->getPort("icache_port")->getPeer(); + icachePort.setPeer(peer); + } else { + peer = icachePort.getPeer(); + } + peer->setPeer(&icachePort); + + if (dcachePort.getPeer() == NULL) { + peer = oldCPU->getPort("dcache_port")->getPeer(); + dcachePort.setPeer(peer); + } else { + peer = dcachePort.getPeer(); + } + peer->setPeer(&dcachePort); } @@ -141,16 +223,16 @@ void TimingSimpleCPU::activateContext(int thread_num, int delay) { assert(thread_num == 0); - assert(cpuXC); + assert(thread); assert(_status == Idle); notIdleFraction++; _status = Running; // kick things off by initiating the fetch of the next instruction - Event *e = - new EventWrapper(this, true); - e->schedule(curTick + cycles(delay)); + fetchEvent = + new EventWrapper(this, false); + fetchEvent->schedule(curTick + cycles(delay)); } @@ -158,7 +240,7 @@ void TimingSimpleCPU::suspendContext(int thread_num) { assert(thread_num == 0); - assert(cpuXC); + assert(thread); assert(_status == Running); @@ -174,35 +256,35 @@ template Fault TimingSimpleCPU::read(Addr addr, T &data, unsigned flags) { - // need to fill in CPU & thread IDs here - Request *data_read_req = new Request(); - - data_read_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC()); + Request *req = + new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(), + cpu_id, /* thread ID */ 0); if (traceData) { - traceData->setAddr(data_read_req->getVaddr()); + traceData->setAddr(req->getVaddr()); } // translate to physical address - Fault fault = cpuXC->translateDataReadReq(data_read_req); + Fault fault = thread->translateDataReadReq(req); // Now do the access. if (fault == NoFault) { - Packet *data_read_pkt = - new Packet(data_read_req, Packet::ReadReq, Packet::Broadcast); - data_read_pkt->dataDynamic(new T); + PacketPtr pkt = + new Packet(req, Packet::ReadReq, Packet::Broadcast); + pkt->dataDynamic(new T); - if (!dcachePort.sendTiming(data_read_pkt)) { + if (!dcachePort.sendTiming(pkt)) { _status = DcacheRetry; - dcache_pkt = data_read_pkt; + dcache_pkt = pkt; } else { _status = DcacheWaitResponse; + // memory system takes ownership of packet dcache_pkt = NULL; } } // This will need a new way to tell if it has a dcache attached. - if (data_read_req->getFlags() & UNCACHEABLE) + if (req->isUncacheable()) recordEvent("Uncached Read"); return fault; @@ -255,30 +337,39 @@ template Fault TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res) { - // need to fill in CPU & thread IDs here - Request *data_write_req = new Request(); - data_write_req->setVirt(0, addr, sizeof(T), flags, cpuXC->readPC()); + Request *req = + new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(), + cpu_id, /* thread ID */ 0); // translate to physical address - Fault fault = cpuXC->translateDataWriteReq(data_write_req); + Fault fault = thread->translateDataWriteReq(req); + // Now do the access. if (fault == NoFault) { - Packet *data_write_pkt = - new Packet(data_write_req, Packet::WriteReq, Packet::Broadcast); - data_write_pkt->allocate(); - data_write_pkt->set(data); + assert(dcache_pkt == NULL); + dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast); + dcache_pkt->allocate(); + dcache_pkt->set(data); - if (!dcachePort.sendTiming(data_write_pkt)) { - _status = DcacheRetry; - dcache_pkt = data_write_pkt; - } else { - _status = DcacheWaitResponse; - dcache_pkt = NULL; + bool do_access = true; // flag to suppress cache access + + if (req->isLocked()) { + do_access = TheISA::handleLockedWrite(thread, req); + } + + if (do_access) { + if (!dcachePort.sendTiming(dcache_pkt)) { + _status = DcacheRetry; + } else { + _status = DcacheWaitResponse; + // memory system takes ownership of packet + dcache_pkt = NULL; + } } } // This will need a new way to tell if it's hooked up to a cache or not. - if (data_write_req->getFlags() & UNCACHEABLE) + if (req->isUncacheable()) recordEvent("Uncached Write"); // If the write needs to have a fault on the access, consider calling @@ -336,10 +427,11 @@ TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res) void TimingSimpleCPU::fetch() { - checkForInterrupts(); + if (!curStaticInst || !curStaticInst->isDelayedCommit()) + checkForInterrupts(); - // need to fill in CPU & thread IDs here Request *ifetch_req = new Request(); + ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0); Fault fault = setupFetchRequest(ifetch_req); ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast); @@ -359,6 +451,9 @@ TimingSimpleCPU::fetch() // fetch fault: advance directly to next instruction (fault handler) advanceInst(fault); } + + numCycles += curTick - previousTick; + previousTick = curTick; } @@ -377,27 +472,44 @@ TimingSimpleCPU::advanceInst(Fault fault) void -TimingSimpleCPU::completeIfetch(Packet *pkt) +TimingSimpleCPU::completeIfetch(PacketPtr pkt) { // received a response from the icache: execute the received // instruction assert(pkt->result == Packet::Success); assert(_status == IcacheWaitResponse); + _status = Running; delete pkt->req; delete pkt; + numCycles += curTick - previousTick; + previousTick = curTick; + + if (getState() == SimObject::Draining) { + completeDrain(); + return; + } + preExecute(); if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) { // load or store: just send to dcache Fault fault = curStaticInst->initiateAcc(this, traceData); - if (fault == NoFault) { - // successfully initiated access: instruction will - // complete in dcache response callback - assert(_status == DcacheWaitResponse); + if (_status != Running) { + // instruction will complete in dcache response callback + assert(_status == DcacheWaitResponse || _status == DcacheRetry); + assert(fault == NoFault); } else { - // fault: complete now to invoke fault handler + if (fault == NoFault) { + // early fail on store conditional: complete now + assert(dcache_pkt != NULL); + fault = curStaticInst->completeAcc(dcache_pkt, this, + traceData); + delete dcache_pkt->req; + delete dcache_pkt; + dcache_pkt = NULL; + } postExecute(); advanceInst(fault); } @@ -409,12 +521,32 @@ TimingSimpleCPU::completeIfetch(Packet *pkt) } } +void +TimingSimpleCPU::IcachePort::ITickEvent::process() +{ + cpu->completeIfetch(pkt); +} bool -TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt) +TimingSimpleCPU::IcachePort::recvTiming(PacketPtr pkt) { - cpu->completeIfetch(pkt); - return true; + if (pkt->isResponse()) { + // delay processing of returned data until next CPU clock edge + Tick time = pkt->req->getTime(); + while (time < curTick) + time += lat; + + if (time == curTick) + cpu->completeIfetch(pkt); + else + tickEvent.schedule(pkt, time); + + return true; + } + else { + //Snooping a Coherence Request, do nothing + return true; + } } void @@ -424,7 +556,7 @@ TimingSimpleCPU::IcachePort::recvRetry() // waiting to transmit assert(cpu->ifetch_pkt != NULL); assert(cpu->_status == IcacheRetry); - Packet *tmp = cpu->ifetch_pkt; + PacketPtr tmp = cpu->ifetch_pkt; if (sendTiming(tmp)) { cpu->_status = IcacheWaitResponse; cpu->ifetch_pkt = NULL; @@ -432,7 +564,7 @@ TimingSimpleCPU::IcachePort::recvRetry() } void -TimingSimpleCPU::completeDataAccess(Packet *pkt) +TimingSimpleCPU::completeDataAccess(PacketPtr pkt) { // received a response from the dcache: complete the load or store // instruction @@ -440,22 +572,65 @@ TimingSimpleCPU::completeDataAccess(Packet *pkt) assert(_status == DcacheWaitResponse); _status = Running; + numCycles += curTick - previousTick; + previousTick = curTick; + Fault fault = curStaticInst->completeAcc(pkt, this, traceData); + if (pkt->isRead() && pkt->req->isLocked()) { + TheISA::handleLockedRead(thread, pkt->req); + } + delete pkt->req; delete pkt; postExecute(); + + if (getState() == SimObject::Draining) { + advancePC(fault); + completeDrain(); + + return; + } + advanceInst(fault); } +void +TimingSimpleCPU::completeDrain() +{ + DPRINTF(Config, "Done draining\n"); + changeState(SimObject::Drained); + drainEvent->process(); +} bool -TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt) +TimingSimpleCPU::DcachePort::recvTiming(PacketPtr pkt) +{ + if (pkt->isResponse()) { + // delay processing of returned data until next CPU clock edge + Tick time = pkt->req->getTime(); + while (time < curTick) + time += lat; + + if (time == curTick) + cpu->completeDataAccess(pkt); + else + tickEvent.schedule(pkt, time); + + return true; + } + else { + //Snooping a coherence req, do nothing + return true; + } +} + +void +TimingSimpleCPU::DcachePort::DTickEvent::process() { cpu->completeDataAccess(pkt); - return true; } void @@ -465,9 +640,10 @@ TimingSimpleCPU::DcachePort::recvRetry() // waiting to transmit assert(cpu->dcache_pkt != NULL); assert(cpu->_status == DcacheRetry); - Packet *tmp = cpu->dcache_pkt; + PacketPtr tmp = cpu->dcache_pkt; if (sendTiming(tmp)) { cpu->_status = DcacheWaitResponse; + // memory system takes ownership of packet cpu->dcache_pkt = NULL; } } @@ -483,13 +659,14 @@ BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU) Param max_insts_all_threads; Param max_loads_any_thread; Param max_loads_all_threads; + Param progress_interval; SimObjectParam mem; - -#if FULL_SYSTEM - SimObjectParam itb; - SimObjectParam dtb; SimObjectParam system; Param cpu_id; + +#if FULL_SYSTEM + SimObjectParam itb; + SimObjectParam dtb; Param profile; #else SimObjectParam workload; @@ -515,13 +692,14 @@ BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU) "terminate when any thread reaches this load count"), INIT_PARAM(max_loads_all_threads, "terminate when all threads have reached this load count"), + INIT_PARAM(progress_interval, "Progress interval"), INIT_PARAM(mem, "memory"), + INIT_PARAM(system, "system object"), + INIT_PARAM(cpu_id, "processor ID"), #if FULL_SYSTEM INIT_PARAM(itb, "Instruction TLB"), INIT_PARAM(dtb, "Data TLB"), - INIT_PARAM(system, "system object"), - INIT_PARAM(cpu_id, "processor ID"), INIT_PARAM(profile, ""), #else INIT_PARAM(workload, "processes to run"), @@ -546,17 +724,18 @@ CREATE_SIM_OBJECT(TimingSimpleCPU) params->max_insts_all_threads = max_insts_all_threads; params->max_loads_any_thread = max_loads_any_thread; params->max_loads_all_threads = max_loads_all_threads; + params->progress_interval = progress_interval; params->deferRegistration = defer_registration; params->clock = clock; params->functionTrace = function_trace; params->functionTraceStart = function_trace_start; params->mem = mem; + params->system = system; + params->cpu_id = cpu_id; #if FULL_SYSTEM params->itb = itb; params->dtb = dtb; - params->system = system; - params->cpu_id = cpu_id; params->profile = profile; #else params->process = workload;