X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fgallium%2Fdrivers%2Fllvmpipe%2Flp_bld_depth.c;h=d5d5c5a786e95bc5cc0add9272e8f629356a0444;hb=f58e0405b6ca15d9b82122d82311e8b82f4a0939;hp=d438c0e63d7d43695775d89ed9ca137c8cf4d9db;hpb=b5e256c76dea2182c82af2a4f66224735701d55a;p=mesa.git diff --git a/src/gallium/drivers/llvmpipe/lp_bld_depth.c b/src/gallium/drivers/llvmpipe/lp_bld_depth.c index d438c0e63d7..d5d5c5a786e 100644 --- a/src/gallium/drivers/llvmpipe/lp_bld_depth.c +++ b/src/gallium/drivers/llvmpipe/lp_bld_depth.c @@ -1,6 +1,6 @@ /************************************************************************** * - * Copyright 2009 VMware, Inc. + * Copyright 2009-2010 VMware, Inc. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a @@ -36,178 +36,1115 @@ * flushing would avoid this, but it would most likely result in depth fighting * artifacts. * - * We are free to use a different pixel layout though. Since our basic - * processing unit is a quad (2x2 pixel block) we store the depth/stencil - * values tiled, a quad at time. That is, a depth buffer containing + * Since we're using linear layout for everything, but we need to deal with + * 2x2 quads, we need to load/store multiple values and swizzle them into + * place (we could avoid this by doing depth/stencil testing in linear format, + * which would be easy for late depth/stencil test as we could do that after + * the fragment shader loop just as we do for color buffers, but more tricky + * for early depth test as we'd need both masks and interpolated depth in + * linear format). * - * Z11 Z12 Z13 Z14 ... - * Z21 Z22 Z23 Z24 ... - * Z31 Z32 Z33 Z34 ... - * Z41 Z42 Z43 Z44 ... - * ... ... ... ... ... - * - * will actually be stored in memory as - * - * Z11 Z12 Z21 Z22 Z13 Z14 Z23 Z24 ... - * Z31 Z32 Z41 Z42 Z33 Z34 Z43 Z44 ... - * ... ... ... ... ... ... ... ... ... - * - * FIXME: Code generate stencil test * * @author Jose Fonseca + * @author Brian Paul */ #include "pipe/p_state.h" #include "util/u_format.h" +#include "util/u_cpu_detect.h" + +#include "gallivm/lp_bld_type.h" +#include "gallivm/lp_bld_arit.h" +#include "gallivm/lp_bld_bitarit.h" +#include "gallivm/lp_bld_const.h" +#include "gallivm/lp_bld_conv.h" +#include "gallivm/lp_bld_logic.h" +#include "gallivm/lp_bld_flow.h" +#include "gallivm/lp_bld_intr.h" +#include "gallivm/lp_bld_debug.h" +#include "gallivm/lp_bld_swizzle.h" +#include "gallivm/lp_bld_pack.h" -#include "lp_bld_type.h" -#include "lp_bld_const.h" -#include "lp_bld_logic.h" -#include "lp_bld_flow.h" -#include "lp_bld_debug.h" #include "lp_bld_depth.h" +/** Used to select fields from pipe_stencil_state */ +enum stencil_op { + S_FAIL_OP, + Z_FAIL_OP, + Z_PASS_OP +}; + + + /** - * Return a type appropriate for depth/stencil testing. + * Do the stencil test comparison (compare FB stencil values against ref value). + * This will be used twice when generating two-sided stencil code. + * \param stencil the front/back stencil state + * \param stencilRef the stencil reference value, replicated as a vector + * \param stencilVals vector of stencil values from framebuffer + * \return vector mask of pass/fail values (~0 or 0) + */ +static LLVMValueRef +lp_build_stencil_test_single(struct lp_build_context *bld, + const struct pipe_stencil_state *stencil, + LLVMValueRef stencilRef, + LLVMValueRef stencilVals) +{ + LLVMBuilderRef builder = bld->gallivm->builder; + const unsigned stencilMax = 255; /* XXX fix */ + struct lp_type type = bld->type; + LLVMValueRef res; + + /* + * SSE2 has intrinsics for signed comparisons, but not unsigned ones. Values + * are between 0..255 so ensure we generate the fastest comparisons for + * wider elements. + */ + if (type.width <= 8) { + assert(!type.sign); + } else { + assert(type.sign); + } + + assert(stencil->enabled); + + if (stencil->valuemask != stencilMax) { + /* compute stencilRef = stencilRef & valuemask */ + LLVMValueRef valuemask = lp_build_const_int_vec(bld->gallivm, type, stencil->valuemask); + stencilRef = LLVMBuildAnd(builder, stencilRef, valuemask, ""); + /* compute stencilVals = stencilVals & valuemask */ + stencilVals = LLVMBuildAnd(builder, stencilVals, valuemask, ""); + } + + res = lp_build_cmp(bld, stencil->func, stencilRef, stencilVals); + + return res; +} + + +/** + * Do the one or two-sided stencil test comparison. + * \sa lp_build_stencil_test_single + * \param front_facing an integer vector mask, indicating front (~0) or back + * (0) facing polygon. If NULL, assume front-facing. + */ +static LLVMValueRef +lp_build_stencil_test(struct lp_build_context *bld, + const struct pipe_stencil_state stencil[2], + LLVMValueRef stencilRefs[2], + LLVMValueRef stencilVals, + LLVMValueRef front_facing) +{ + LLVMValueRef res; + + assert(stencil[0].enabled); + + /* do front face test */ + res = lp_build_stencil_test_single(bld, &stencil[0], + stencilRefs[0], stencilVals); + + if (stencil[1].enabled && front_facing != NULL) { + /* do back face test */ + LLVMValueRef back_res; + + back_res = lp_build_stencil_test_single(bld, &stencil[1], + stencilRefs[1], stencilVals); + + res = lp_build_select(bld, front_facing, res, back_res); + } + + return res; +} + + +/** + * Apply the stencil operator (add/sub/keep/etc) to the given vector + * of stencil values. + * \return new stencil values vector + */ +static LLVMValueRef +lp_build_stencil_op_single(struct lp_build_context *bld, + const struct pipe_stencil_state *stencil, + enum stencil_op op, + LLVMValueRef stencilRef, + LLVMValueRef stencilVals) + +{ + LLVMBuilderRef builder = bld->gallivm->builder; + struct lp_type type = bld->type; + LLVMValueRef res; + LLVMValueRef max = lp_build_const_int_vec(bld->gallivm, type, 0xff); + unsigned stencil_op; + + assert(type.sign); + + switch (op) { + case S_FAIL_OP: + stencil_op = stencil->fail_op; + break; + case Z_FAIL_OP: + stencil_op = stencil->zfail_op; + break; + case Z_PASS_OP: + stencil_op = stencil->zpass_op; + break; + default: + assert(0 && "Invalid stencil_op mode"); + stencil_op = PIPE_STENCIL_OP_KEEP; + } + + switch (stencil_op) { + case PIPE_STENCIL_OP_KEEP: + res = stencilVals; + /* we can return early for this case */ + return res; + case PIPE_STENCIL_OP_ZERO: + res = bld->zero; + break; + case PIPE_STENCIL_OP_REPLACE: + res = stencilRef; + break; + case PIPE_STENCIL_OP_INCR: + res = lp_build_add(bld, stencilVals, bld->one); + res = lp_build_min(bld, res, max); + break; + case PIPE_STENCIL_OP_DECR: + res = lp_build_sub(bld, stencilVals, bld->one); + res = lp_build_max(bld, res, bld->zero); + break; + case PIPE_STENCIL_OP_INCR_WRAP: + res = lp_build_add(bld, stencilVals, bld->one); + res = LLVMBuildAnd(builder, res, max, ""); + break; + case PIPE_STENCIL_OP_DECR_WRAP: + res = lp_build_sub(bld, stencilVals, bld->one); + res = LLVMBuildAnd(builder, res, max, ""); + break; + case PIPE_STENCIL_OP_INVERT: + res = LLVMBuildNot(builder, stencilVals, ""); + res = LLVMBuildAnd(builder, res, max, ""); + break; + default: + assert(0 && "bad stencil op mode"); + res = bld->undef; + } + + return res; +} + + +/** + * Do the one or two-sided stencil test op/update. + */ +static LLVMValueRef +lp_build_stencil_op(struct lp_build_context *bld, + const struct pipe_stencil_state stencil[2], + enum stencil_op op, + LLVMValueRef stencilRefs[2], + LLVMValueRef stencilVals, + LLVMValueRef mask, + LLVMValueRef front_facing) + +{ + LLVMBuilderRef builder = bld->gallivm->builder; + LLVMValueRef res; + + assert(stencil[0].enabled); + + /* do front face op */ + res = lp_build_stencil_op_single(bld, &stencil[0], op, + stencilRefs[0], stencilVals); + + if (stencil[1].enabled && front_facing != NULL) { + /* do back face op */ + LLVMValueRef back_res; + + back_res = lp_build_stencil_op_single(bld, &stencil[1], op, + stencilRefs[1], stencilVals); + + res = lp_build_select(bld, front_facing, res, back_res); + } + + if (stencil[0].writemask != 0xff || + (stencil[1].enabled && front_facing != NULL && stencil[1].writemask != 0xff)) { + /* mask &= stencil[0].writemask */ + LLVMValueRef writemask = lp_build_const_int_vec(bld->gallivm, bld->type, + stencil[0].writemask); + if (stencil[1].enabled && stencil[1].writemask != stencil[0].writemask && front_facing != NULL) { + LLVMValueRef back_writemask = lp_build_const_int_vec(bld->gallivm, bld->type, + stencil[1].writemask); + writemask = lp_build_select(bld, front_facing, writemask, back_writemask); + } + + mask = LLVMBuildAnd(builder, mask, writemask, ""); + /* res = (res & mask) | (stencilVals & ~mask) */ + res = lp_build_select_bitwise(bld, mask, res, stencilVals); + } + else { + /* res = mask ? res : stencilVals */ + res = lp_build_select(bld, mask, res, stencilVals); + } + + return res; +} + + + +/** + * Return a type that matches the depth/stencil format. */ struct lp_type lp_depth_type(const struct util_format_description *format_desc, unsigned length) { struct lp_type type; - unsigned swizzle; + unsigned z_swizzle; assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS); assert(format_desc->block.width == 1); assert(format_desc->block.height == 1); - swizzle = format_desc->swizzle[0]; - assert(swizzle < 4); - memset(&type, 0, sizeof type); type.width = format_desc->block.bits; - if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_FLOAT) { - type.floating = TRUE; - assert(swizzle == 0); - assert(format_desc->channel[swizzle].size == format_desc->block.bits); - } - else if(format_desc->channel[swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) { - assert(format_desc->block.bits <= 32); - if(format_desc->channel[swizzle].normalized) - type.norm = TRUE; + z_swizzle = format_desc->swizzle[0]; + if (z_swizzle < 4) { + if (format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_FLOAT) { + type.floating = TRUE; + assert(z_swizzle == 0); + assert(format_desc->channel[z_swizzle].size == 32); + } + else if(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED) { + assert(format_desc->block.bits <= 32); + assert(format_desc->channel[z_swizzle].normalized); + if (format_desc->channel[z_swizzle].size < format_desc->block.bits) { + /* Prefer signed integers when possible, as SSE has less support + * for unsigned comparison; + */ + type.sign = TRUE; + } + } + else + assert(0); } - else - assert(0); - assert(type.width <= length); - type.length = length / type.width; + type.length = length; return type; } /** - * Depth test. + * Compute bitmask and bit shift to apply to the incoming fragment Z values + * and the Z buffer values needed before doing the Z comparison. + * + * Note that we leave the Z bits in the position that we find them + * in the Z buffer (typically 0xffffff00 or 0x00ffffff). That lets us + * get by with fewer bit twiddling steps. */ -void -lp_build_depth_test(LLVMBuilderRef builder, - const struct pipe_depth_state *state, - struct lp_type type, - const struct util_format_description *format_desc, - struct lp_build_mask_context *mask, - LLVMValueRef src, - LLVMValueRef dst_ptr) +static boolean +get_z_shift_and_mask(const struct util_format_description *format_desc, + unsigned *shift, unsigned *width, unsigned *mask) { - struct lp_build_context bld; + unsigned total_bits; unsigned z_swizzle; - LLVMValueRef dst; - LLVMValueRef z_bitmask = NULL; - LLVMValueRef test; - - if(!state->enabled) - return; assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS); assert(format_desc->block.width == 1); assert(format_desc->block.height == 1); + /* 64bit d/s format is special already extracted 32 bits */ + total_bits = format_desc->block.bits > 32 ? 32 : format_desc->block.bits; + z_swizzle = format_desc->swizzle[0]; - if(z_swizzle == UTIL_FORMAT_SWIZZLE_NONE) - return; - /* Sanity checking */ - assert(z_swizzle < 4); - assert(format_desc->block.bits == type.width); - if(type.floating) { - assert(z_swizzle == 0); - assert(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_FLOAT); - assert(format_desc->channel[z_swizzle].size == format_desc->block.bits); + if (z_swizzle == PIPE_SWIZZLE_NONE) + return FALSE; + + *width = format_desc->channel[z_swizzle].size; + /* & 31 is for the same reason as the 32-bit limit above */ + *shift = format_desc->channel[z_swizzle].shift & 31; + + if (*width == total_bits) { + *mask = 0xffffffff; + } else { + *mask = ((1 << *width) - 1) << *shift; + } + + return TRUE; +} + + +/** + * Compute bitmask and bit shift to apply to the framebuffer pixel values + * to put the stencil bits in the least significant position. + * (i.e. 0x000000ff) + */ +static boolean +get_s_shift_and_mask(const struct util_format_description *format_desc, + unsigned *shift, unsigned *mask) +{ + unsigned s_swizzle; + unsigned sz; + + s_swizzle = format_desc->swizzle[1]; + + if (s_swizzle == PIPE_SWIZZLE_NONE) + return FALSE; + + /* just special case 64bit d/s format */ + if (format_desc->block.bits > 32) { + /* XXX big-endian? */ + assert(format_desc->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT); + *shift = 0; + *mask = 0xff; + return TRUE; + } + + *shift = format_desc->channel[s_swizzle].shift; + sz = format_desc->channel[s_swizzle].size; + *mask = (1U << sz) - 1U; + + return TRUE; +} + + +/** + * Perform the occlusion test and increase the counter. + * Test the depth mask. Add the number of channel which has none zero mask + * into the occlusion counter. e.g. maskvalue is {-1, -1, -1, -1}. + * The counter will add 4. + * TODO: could get that out of the fs loop. + * + * \param type holds element type of the mask vector. + * \param maskvalue is the depth test mask. + * \param counter is a pointer of the uint32 counter. + */ +void +lp_build_occlusion_count(struct gallivm_state *gallivm, + struct lp_type type, + LLVMValueRef maskvalue, + LLVMValueRef counter) +{ + LLVMBuilderRef builder = gallivm->builder; + LLVMContextRef context = gallivm->context; + LLVMValueRef countmask = lp_build_const_int_vec(gallivm, type, 1); + LLVMValueRef count, newcount; + + assert(type.length <= 16); + assert(type.floating); + + if(util_cpu_caps.has_sse && type.length == 4) { + const char *movmskintr = "llvm.x86.sse.movmsk.ps"; + const char *popcntintr = "llvm.ctpop.i32"; + LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue, + lp_build_vec_type(gallivm, type), ""); + bits = lp_build_intrinsic_unary(builder, movmskintr, + LLVMInt32TypeInContext(context), bits); + count = lp_build_intrinsic_unary(builder, popcntintr, + LLVMInt32TypeInContext(context), bits); + count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), ""); + } + else if(util_cpu_caps.has_avx && type.length == 8) { + const char *movmskintr = "llvm.x86.avx.movmsk.ps.256"; + const char *popcntintr = "llvm.ctpop.i32"; + LLVMValueRef bits = LLVMBuildBitCast(builder, maskvalue, + lp_build_vec_type(gallivm, type), ""); + bits = lp_build_intrinsic_unary(builder, movmskintr, + LLVMInt32TypeInContext(context), bits); + count = lp_build_intrinsic_unary(builder, popcntintr, + LLVMInt32TypeInContext(context), bits); + count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), ""); } else { - assert(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED); - assert(format_desc->channel[z_swizzle].normalized); - assert(!type.fixed); - assert(!type.sign); - assert(type.norm); + unsigned i; + LLVMValueRef countv = LLVMBuildAnd(builder, maskvalue, countmask, "countv"); + LLVMTypeRef counttype = LLVMIntTypeInContext(context, type.length * 8); + LLVMTypeRef i8vntype = LLVMVectorType(LLVMInt8TypeInContext(context), type.length * 4); + LLVMValueRef shufflev, countd; + LLVMValueRef shuffles[16]; + const char *popcntintr = NULL; + + countv = LLVMBuildBitCast(builder, countv, i8vntype, ""); + + for (i = 0; i < type.length; i++) { + shuffles[i] = lp_build_const_int32(gallivm, 4*i); + } + + shufflev = LLVMConstVector(shuffles, type.length); + countd = LLVMBuildShuffleVector(builder, countv, LLVMGetUndef(i8vntype), shufflev, ""); + countd = LLVMBuildBitCast(builder, countd, counttype, "countd"); + + /* + * XXX FIXME + * this is bad on cpus without popcount (on x86 supported by intel + * nehalem, amd barcelona, and up - not tied to sse42). + * Would be much faster to just sum the 4 elements of the vector with + * some horizontal add (shuffle/add/shuffle/add after the initial and). + */ + switch (type.length) { + case 4: + popcntintr = "llvm.ctpop.i32"; + break; + case 8: + popcntintr = "llvm.ctpop.i64"; + break; + case 16: + popcntintr = "llvm.ctpop.i128"; + break; + default: + assert(0); + } + count = lp_build_intrinsic_unary(builder, popcntintr, counttype, countd); + + if (type.length > 8) { + count = LLVMBuildTrunc(builder, count, LLVMIntTypeInContext(context, 64), ""); + } + else if (type.length < 8) { + count = LLVMBuildZExt(builder, count, LLVMIntTypeInContext(context, 64), ""); + } + } + newcount = LLVMBuildLoad(builder, counter, "origcount"); + newcount = LLVMBuildAdd(builder, newcount, count, "newcount"); + LLVMBuildStore(builder, newcount, counter); +} + + +/** + * Load depth/stencil values. + * The stored values are linear, swizzle them. + * + * \param type the data type of the fragment depth/stencil values + * \param format_desc description of the depth/stencil surface + * \param is_1d whether this resource has only one dimension + * \param loop_counter the current loop iteration + * \param depth_ptr pointer to the depth/stencil values of this 4x4 block + * \param depth_stride stride of the depth/stencil buffer + * \param z_fb contains z values loaded from fb (may include padding) + * \param s_fb contains s values loaded from fb (may include padding) + */ +void +lp_build_depth_stencil_load_swizzled(struct gallivm_state *gallivm, + struct lp_type z_src_type, + const struct util_format_description *format_desc, + boolean is_1d, + LLVMValueRef depth_ptr, + LLVMValueRef depth_stride, + LLVMValueRef *z_fb, + LLVMValueRef *s_fb, + LLVMValueRef loop_counter) +{ + LLVMBuilderRef builder = gallivm->builder; + LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4]; + LLVMValueRef zs_dst1, zs_dst2; + LLVMValueRef zs_dst_ptr; + LLVMValueRef depth_offset1, depth_offset2; + LLVMTypeRef load_ptr_type; + unsigned depth_bytes = format_desc->block.bits / 8; + struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length); + struct lp_type zs_load_type = zs_type; + + zs_load_type.length = zs_load_type.length / 2; + load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0); + + if (z_src_type.length == 4) { + unsigned i; + LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter, + lp_build_const_int32(gallivm, 1), ""); + LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter, + lp_build_const_int32(gallivm, 2), ""); + LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb, + depth_stride, ""); + depth_offset1 = LLVMBuildMul(builder, looplsb, + lp_build_const_int32(gallivm, depth_bytes * 2), ""); + depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, ""); + + /* just concatenate the loaded 2x2 values into 4-wide vector */ + for (i = 0; i < 4; i++) { + shuffles[i] = lp_build_const_int32(gallivm, i); + } + } + else { + unsigned i; + LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter, + lp_build_const_int32(gallivm, 1), ""); + assert(z_src_type.length == 8); + depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, ""); + /* + * We load 2x4 values, and need to swizzle them (order + * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately. + */ + for (i = 0; i < 8; i++) { + shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2); + } } - /* Setup build context */ - lp_build_context_init(&bld, builder, type); + depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, ""); - dst = LLVMBuildLoad(builder, dst_ptr, ""); + /* Load current z/stencil values from z/stencil buffer */ + zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, ""); + zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, ""); + zs_dst1 = LLVMBuildLoad(builder, zs_dst_ptr, ""); + if (is_1d) { + zs_dst2 = lp_build_undef(gallivm, zs_load_type); + } + else { + zs_dst_ptr = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, ""); + zs_dst_ptr = LLVMBuildBitCast(builder, zs_dst_ptr, load_ptr_type, ""); + zs_dst2 = LLVMBuildLoad(builder, zs_dst_ptr, ""); + } - lp_build_name(dst, "zsbuf"); + *z_fb = LLVMBuildShuffleVector(builder, zs_dst1, zs_dst2, + LLVMConstVector(shuffles, zs_type.length), ""); + *s_fb = *z_fb; - /* Align the source depth bits with the destination's, and mask out any - * stencil or padding bits from both */ - if(format_desc->channel[z_swizzle].size == format_desc->block.bits) { - assert(z_swizzle == 0); - /* nothing to do */ + if (format_desc->block.bits < z_src_type.width) { + /* Extend destination ZS values (e.g., when reading from Z16_UNORM) */ + *z_fb = LLVMBuildZExt(builder, *z_fb, + lp_build_int_vec_type(gallivm, z_src_type), ""); + } + + else if (format_desc->block.bits > 32) { + /* rely on llvm to handle too wide vector we have here nicely */ + unsigned i; + struct lp_type typex2 = zs_type; + struct lp_type s_type = zs_type; + LLVMValueRef shuffles1[LP_MAX_VECTOR_LENGTH / 4]; + LLVMValueRef shuffles2[LP_MAX_VECTOR_LENGTH / 4]; + LLVMValueRef tmp; + + typex2.width = typex2.width / 2; + typex2.length = typex2.length * 2; + s_type.width = s_type.width / 2; + s_type.floating = 0; + + tmp = LLVMBuildBitCast(builder, *z_fb, + lp_build_vec_type(gallivm, typex2), ""); + + for (i = 0; i < zs_type.length; i++) { + shuffles1[i] = lp_build_const_int32(gallivm, i * 2); + shuffles2[i] = lp_build_const_int32(gallivm, i * 2 + 1); + } + *z_fb = LLVMBuildShuffleVector(builder, tmp, tmp, + LLVMConstVector(shuffles1, zs_type.length), ""); + *s_fb = LLVMBuildShuffleVector(builder, tmp, tmp, + LLVMConstVector(shuffles2, zs_type.length), ""); + *s_fb = LLVMBuildBitCast(builder, *s_fb, + lp_build_vec_type(gallivm, s_type), ""); + lp_build_name(*s_fb, "s_dst"); + } + + lp_build_name(*z_fb, "z_dst"); + lp_build_name(*s_fb, "s_dst"); + lp_build_name(*z_fb, "z_dst"); +} + +/** + * Store depth/stencil values. + * Incoming values are swizzled (typically n 2x2 quads), stored linear. + * If there's a mask it will do select/store otherwise just store. + * + * \param type the data type of the fragment depth/stencil values + * \param format_desc description of the depth/stencil surface + * \param is_1d whether this resource has only one dimension + * \param mask the alive/dead pixel mask for the quad (vector) + * \param z_fb z values read from fb (with padding) + * \param s_fb s values read from fb (with padding) + * \param loop_counter the current loop iteration + * \param depth_ptr pointer to the depth/stencil values of this 4x4 block + * \param depth_stride stride of the depth/stencil buffer + * \param z_value the depth values to store (with padding) + * \param s_value the stencil values to store (with padding) + */ +void +lp_build_depth_stencil_write_swizzled(struct gallivm_state *gallivm, + struct lp_type z_src_type, + const struct util_format_description *format_desc, + boolean is_1d, + struct lp_build_mask_context *mask, + LLVMValueRef z_fb, + LLVMValueRef s_fb, + LLVMValueRef loop_counter, + LLVMValueRef depth_ptr, + LLVMValueRef depth_stride, + LLVMValueRef z_value, + LLVMValueRef s_value) +{ + struct lp_build_context z_bld; + LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 4]; + LLVMBuilderRef builder = gallivm->builder; + LLVMValueRef mask_value = NULL; + LLVMValueRef zs_dst1, zs_dst2; + LLVMValueRef zs_dst_ptr1, zs_dst_ptr2; + LLVMValueRef depth_offset1, depth_offset2; + LLVMTypeRef load_ptr_type; + unsigned depth_bytes = format_desc->block.bits / 8; + struct lp_type zs_type = lp_depth_type(format_desc, z_src_type.length); + struct lp_type z_type = zs_type; + struct lp_type zs_load_type = zs_type; + + zs_load_type.length = zs_load_type.length / 2; + load_ptr_type = LLVMPointerType(lp_build_vec_type(gallivm, zs_load_type), 0); + + z_type.width = z_src_type.width; + + lp_build_context_init(&z_bld, gallivm, z_type); + + /* + * This is far from ideal, at least for late depth write we should do this + * outside the fs loop to avoid all the swizzle stuff. + */ + if (z_src_type.length == 4) { + LLVMValueRef looplsb = LLVMBuildAnd(builder, loop_counter, + lp_build_const_int32(gallivm, 1), ""); + LLVMValueRef loopmsb = LLVMBuildAnd(builder, loop_counter, + lp_build_const_int32(gallivm, 2), ""); + LLVMValueRef offset2 = LLVMBuildMul(builder, loopmsb, + depth_stride, ""); + depth_offset1 = LLVMBuildMul(builder, looplsb, + lp_build_const_int32(gallivm, depth_bytes * 2), ""); + depth_offset1 = LLVMBuildAdd(builder, depth_offset1, offset2, ""); } else { - unsigned padding_left; - unsigned padding_right; - unsigned chan; + unsigned i; + LLVMValueRef loopx2 = LLVMBuildShl(builder, loop_counter, + lp_build_const_int32(gallivm, 1), ""); + assert(z_src_type.length == 8); + depth_offset1 = LLVMBuildMul(builder, loopx2, depth_stride, ""); + /* + * We load 2x4 values, and need to swizzle them (order + * 0,1,4,5,2,3,6,7) - not so hot with avx unfortunately. + */ + for (i = 0; i < 8; i++) { + shuffles[i] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2); + } + } + + depth_offset2 = LLVMBuildAdd(builder, depth_offset1, depth_stride, ""); - assert(format_desc->layout == UTIL_FORMAT_LAYOUT_ARITH); - assert(format_desc->channel[z_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED); - assert(format_desc->channel[z_swizzle].size <= format_desc->block.bits); - assert(format_desc->channel[z_swizzle].normalized); + zs_dst_ptr1 = LLVMBuildGEP(builder, depth_ptr, &depth_offset1, 1, ""); + zs_dst_ptr1 = LLVMBuildBitCast(builder, zs_dst_ptr1, load_ptr_type, ""); + zs_dst_ptr2 = LLVMBuildGEP(builder, depth_ptr, &depth_offset2, 1, ""); + zs_dst_ptr2 = LLVMBuildBitCast(builder, zs_dst_ptr2, load_ptr_type, ""); - padding_right = 0; - for(chan = 0; chan < z_swizzle; ++chan) - padding_right += format_desc->channel[chan].size; - padding_left = format_desc->block.bits - - (padding_right + format_desc->channel[z_swizzle].size); + if (format_desc->block.bits > 32) { + s_value = LLVMBuildBitCast(builder, s_value, z_bld.vec_type, ""); + } - if(padding_left || padding_right) { - const unsigned long long mask_left = ((unsigned long long)1 << (format_desc->block.bits - padding_left)) - 1; - const unsigned long long mask_right = ((unsigned long long)1 << (padding_right)) - 1; - z_bitmask = lp_build_int_const_scalar(type, mask_left ^ mask_right); + if (mask) { + mask_value = lp_build_mask_value(mask); + z_value = lp_build_select(&z_bld, mask_value, z_value, z_fb); + if (format_desc->block.bits > 32) { + s_fb = LLVMBuildBitCast(builder, s_fb, z_bld.vec_type, ""); + s_value = lp_build_select(&z_bld, mask_value, s_value, s_fb); } + } - if(padding_left) - src = LLVMBuildLShr(builder, src, lp_build_int_const_scalar(type, padding_left), ""); - if(padding_right) - src = LLVMBuildAnd(builder, src, z_bitmask, ""); - if(padding_left || padding_right) - dst = LLVMBuildAnd(builder, dst, z_bitmask, ""); + if (zs_type.width < z_src_type.width) { + /* Truncate ZS values (e.g., when writing to Z16_UNORM) */ + z_value = LLVMBuildTrunc(builder, z_value, + lp_build_int_vec_type(gallivm, zs_type), ""); } - lp_build_name(dst, "zsbuf.z"); + if (format_desc->block.bits <= 32) { + if (z_src_type.length == 4) { + zs_dst1 = lp_build_extract_range(gallivm, z_value, 0, 2); + zs_dst2 = lp_build_extract_range(gallivm, z_value, 2, 2); + } + else { + assert(z_src_type.length == 8); + zs_dst1 = LLVMBuildShuffleVector(builder, z_value, z_value, + LLVMConstVector(&shuffles[0], + zs_load_type.length), ""); + zs_dst2 = LLVMBuildShuffleVector(builder, z_value, z_value, + LLVMConstVector(&shuffles[4], + zs_load_type.length), ""); + } + } + else { + if (z_src_type.length == 4) { + zs_dst1 = lp_build_interleave2(gallivm, z_type, + z_value, s_value, 0); + zs_dst2 = lp_build_interleave2(gallivm, z_type, + z_value, s_value, 1); + } + else { + unsigned i; + LLVMValueRef shuffles[LP_MAX_VECTOR_LENGTH / 2]; + assert(z_src_type.length == 8); + for (i = 0; i < 8; i++) { + shuffles[i*2] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2); + shuffles[i*2+1] = lp_build_const_int32(gallivm, (i&1) + (i&2) * 2 + (i&4) / 2 + + z_src_type.length); + } + zs_dst1 = LLVMBuildShuffleVector(builder, z_value, s_value, + LLVMConstVector(&shuffles[0], + z_src_type.length), ""); + zs_dst2 = LLVMBuildShuffleVector(builder, z_value, s_value, + LLVMConstVector(&shuffles[8], + z_src_type.length), ""); + } + zs_dst1 = LLVMBuildBitCast(builder, zs_dst1, + lp_build_vec_type(gallivm, zs_load_type), ""); + zs_dst2 = LLVMBuildBitCast(builder, zs_dst2, + lp_build_vec_type(gallivm, zs_load_type), ""); + } - test = lp_build_cmp(&bld, state->func, src, dst); - lp_build_mask_update(mask, test); + LLVMBuildStore(builder, zs_dst1, zs_dst_ptr1); + if (!is_1d) { + LLVMBuildStore(builder, zs_dst2, zs_dst_ptr2); + } +} - if(state->writemask) { - if(z_bitmask) - z_bitmask = LLVMBuildAnd(builder, mask->value, z_bitmask, ""); - else - z_bitmask = mask->value; +/** + * Generate code for performing depth and/or stencil tests. + * We operate on a vector of values (typically n 2x2 quads). + * + * \param depth the depth test state + * \param stencil the front/back stencil state + * \param type the data type of the fragment depth/stencil values + * \param format_desc description of the depth/stencil surface + * \param mask the alive/dead pixel mask for the quad (vector) + * \param stencil_refs the front/back stencil ref values (scalar) + * \param z_src the incoming depth/stencil values (n 2x2 quad values, float32) + * \param zs_dst the depth/stencil values in framebuffer + * \param face contains boolean value indicating front/back facing polygon + */ +void +lp_build_depth_stencil_test(struct gallivm_state *gallivm, + const struct pipe_depth_state *depth, + const struct pipe_stencil_state stencil[2], + struct lp_type z_src_type, + const struct util_format_description *format_desc, + struct lp_build_mask_context *mask, + LLVMValueRef stencil_refs[2], + LLVMValueRef z_src, + LLVMValueRef z_fb, + LLVMValueRef s_fb, + LLVMValueRef face, + LLVMValueRef *z_value, + LLVMValueRef *s_value, + boolean do_branch) +{ + LLVMBuilderRef builder = gallivm->builder; + struct lp_type z_type; + struct lp_build_context z_bld; + struct lp_build_context s_bld; + struct lp_type s_type; + unsigned z_shift = 0, z_width = 0, z_mask = 0; + LLVMValueRef z_dst = NULL; + LLVMValueRef stencil_vals = NULL; + LLVMValueRef z_bitmask = NULL, stencil_shift = NULL; + LLVMValueRef z_pass = NULL, s_pass_mask = NULL; + LLVMValueRef current_mask = lp_build_mask_value(mask); + LLVMValueRef front_facing = NULL; + boolean have_z, have_s; - dst = lp_build_select(&bld, z_bitmask, src, dst); - LLVMBuildStore(builder, dst, dst_ptr); + /* + * Depths are expected to be between 0 and 1, even if they are stored in + * floats. Setting these bits here will ensure that the lp_build_conv() call + * below won't try to unnecessarily clamp the incoming values. + */ + if(z_src_type.floating) { + z_src_type.sign = FALSE; + z_src_type.norm = TRUE; } + else { + assert(!z_src_type.sign); + assert(z_src_type.norm); + } + + /* Pick the type matching the depth-stencil format. */ + z_type = lp_depth_type(format_desc, z_src_type.length); + + /* Pick the intermediate type for depth operations. */ + z_type.width = z_src_type.width; + assert(z_type.length == z_src_type.length); + + /* FIXME: for non-float depth/stencil might generate better code + * if we'd always split it up to use 128bit operations. + * For stencil we'd almost certainly want to pack to 8xi16 values, + * for z just run twice. + */ + + /* Sanity checking */ + { + const unsigned z_swizzle = format_desc->swizzle[0]; + const unsigned s_swizzle = format_desc->swizzle[1]; + + assert(z_swizzle != PIPE_SWIZZLE_NONE || + s_swizzle != PIPE_SWIZZLE_NONE); + + assert(depth->enabled || stencil[0].enabled); + + assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS); + assert(format_desc->block.width == 1); + assert(format_desc->block.height == 1); + + if (stencil[0].enabled) { + assert(s_swizzle < 4); + assert(format_desc->channel[s_swizzle].type == UTIL_FORMAT_TYPE_UNSIGNED); + assert(format_desc->channel[s_swizzle].pure_integer); + assert(!format_desc->channel[s_swizzle].normalized); + assert(format_desc->channel[s_swizzle].size == 8); + } + + if (depth->enabled) { + assert(z_swizzle < 4); + if (z_type.floating) { + assert(z_swizzle == 0); + assert(format_desc->channel[z_swizzle].type == + UTIL_FORMAT_TYPE_FLOAT); + assert(format_desc->channel[z_swizzle].size == 32); + } + else { + assert(format_desc->channel[z_swizzle].type == + UTIL_FORMAT_TYPE_UNSIGNED); + assert(format_desc->channel[z_swizzle].normalized); + assert(!z_type.fixed); + } + } + } + + + /* Setup build context for Z vals */ + lp_build_context_init(&z_bld, gallivm, z_type); + + /* Setup build context for stencil vals */ + s_type = lp_int_type(z_type); + lp_build_context_init(&s_bld, gallivm, s_type); + + /* Compute and apply the Z/stencil bitmasks and shifts. + */ + { + unsigned s_shift, s_mask; + + z_dst = z_fb; + stencil_vals = s_fb; + + have_z = get_z_shift_and_mask(format_desc, &z_shift, &z_width, &z_mask); + have_s = get_s_shift_and_mask(format_desc, &s_shift, &s_mask); + + if (have_z) { + if (z_mask != 0xffffffff) { + z_bitmask = lp_build_const_int_vec(gallivm, z_type, z_mask); + } + + /* + * Align the framebuffer Z 's LSB to the right. + */ + if (z_shift) { + LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift); + z_dst = LLVMBuildLShr(builder, z_dst, shift, "z_dst"); + } else if (z_bitmask) { + z_dst = LLVMBuildAnd(builder, z_dst, z_bitmask, "z_dst"); + } else { + lp_build_name(z_dst, "z_dst"); + } + } + + if (have_s) { + if (s_shift) { + LLVMValueRef shift = lp_build_const_int_vec(gallivm, s_type, s_shift); + stencil_vals = LLVMBuildLShr(builder, stencil_vals, shift, ""); + stencil_shift = shift; /* used below */ + } + + if (s_mask != 0xffffffff) { + LLVMValueRef mask = lp_build_const_int_vec(gallivm, s_type, s_mask); + stencil_vals = LLVMBuildAnd(builder, stencil_vals, mask, ""); + } + + lp_build_name(stencil_vals, "s_dst"); + } + } + + if (stencil[0].enabled) { + + if (face) { + if (0) { + /* + * XXX: the scalar expansion below produces atrocious code + * (basically producing a 64bit scalar value, then moving the 2 + * 32bit pieces separately to simd, plus 4 shuffles, which is + * seriously lame). But the scalar-simd transitions are always + * tricky, so no big surprise there. + * This here would be way better, however llvm has some serious + * trouble later using it in the select, probably because it will + * recognize the expression as constant and move the simd value + * away (out of the loop) - and then it will suddenly try + * constructing i1 high-bit masks out of it later... + * (Try piglit stencil-twoside.) + * Note this is NOT due to using SExt/Trunc, it fails exactly the + * same even when using native compare/select. + * I cannot reproduce this problem when using stand-alone compiler + * though, suggesting some problem with optimization passes... + * (With stand-alone compilation, the construction of this mask + * value, no matter if the easy 3 instruction here or the complex + * 16+ one below, never gets separated from where it's used.) + * The scalar code still has the same problem, but the generated + * code looks a bit better at least for some reason, even if + * mostly by luck (the fundamental issue clearly is the same). + */ + front_facing = lp_build_broadcast(gallivm, s_bld.vec_type, face); + /* front_facing = face != 0 ? ~0 : 0 */ + front_facing = lp_build_compare(gallivm, s_bld.type, + PIPE_FUNC_NOTEQUAL, + front_facing, s_bld.zero); + } else { + LLVMValueRef zero = lp_build_const_int32(gallivm, 0); + + /* front_facing = face != 0 ? ~0 : 0 */ + front_facing = LLVMBuildICmp(builder, LLVMIntNE, face, zero, ""); + front_facing = LLVMBuildSExt(builder, front_facing, + LLVMIntTypeInContext(gallivm->context, + s_bld.type.length*s_bld.type.width), + ""); + front_facing = LLVMBuildBitCast(builder, front_facing, + s_bld.int_vec_type, ""); + + } + } + + s_pass_mask = lp_build_stencil_test(&s_bld, stencil, + stencil_refs, stencil_vals, + front_facing); + + /* apply stencil-fail operator */ + { + LLVMValueRef s_fail_mask = lp_build_andnot(&s_bld, current_mask, s_pass_mask); + stencil_vals = lp_build_stencil_op(&s_bld, stencil, S_FAIL_OP, + stencil_refs, stencil_vals, + s_fail_mask, front_facing); + } + } + + if (depth->enabled) { + /* + * Convert fragment Z to the desired type, aligning the LSB to the right. + */ + + assert(z_type.width == z_src_type.width); + assert(z_type.length == z_src_type.length); + assert(lp_check_value(z_src_type, z_src)); + if (z_src_type.floating) { + /* + * Convert from floating point values + */ + + if (!z_type.floating) { + z_src = lp_build_clamped_float_to_unsigned_norm(gallivm, + z_src_type, + z_width, + z_src); + } + } else { + /* + * Convert from unsigned normalized values. + */ + + assert(!z_src_type.sign); + assert(!z_src_type.fixed); + assert(z_src_type.norm); + assert(!z_type.floating); + if (z_src_type.width > z_width) { + LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_src_type, + z_src_type.width - z_width); + z_src = LLVMBuildLShr(builder, z_src, shift, ""); + } + } + assert(lp_check_value(z_type, z_src)); + + lp_build_name(z_src, "z_src"); + + /* compare src Z to dst Z, returning 'pass' mask */ + z_pass = lp_build_cmp(&z_bld, depth->func, z_src, z_dst); + + /* mask off bits that failed stencil test */ + if (s_pass_mask) { + current_mask = LLVMBuildAnd(builder, current_mask, s_pass_mask, ""); + } + + if (!stencil[0].enabled) { + /* We can potentially skip all remaining operations here, but only + * if stencil is disabled because we still need to update the stencil + * buffer values. Don't need to update Z buffer values. + */ + lp_build_mask_update(mask, z_pass); + + if (do_branch) { + lp_build_mask_check(mask); + } + } + + if (depth->writemask) { + LLVMValueRef z_pass_mask; + + /* mask off bits that failed Z test */ + z_pass_mask = LLVMBuildAnd(builder, current_mask, z_pass, ""); + + /* Mix the old and new Z buffer values. + * z_dst[i] = zselectmask[i] ? z_src[i] : z_dst[i] + */ + z_dst = lp_build_select(&z_bld, z_pass_mask, z_src, z_dst); + } + + if (stencil[0].enabled) { + /* update stencil buffer values according to z pass/fail result */ + LLVMValueRef z_fail_mask, z_pass_mask; + + /* apply Z-fail operator */ + z_fail_mask = lp_build_andnot(&s_bld, current_mask, z_pass); + stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_FAIL_OP, + stencil_refs, stencil_vals, + z_fail_mask, front_facing); + + /* apply Z-pass operator */ + z_pass_mask = LLVMBuildAnd(builder, current_mask, z_pass, ""); + stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP, + stencil_refs, stencil_vals, + z_pass_mask, front_facing); + } + } + else { + /* No depth test: apply Z-pass operator to stencil buffer values which + * passed the stencil test. + */ + s_pass_mask = LLVMBuildAnd(builder, current_mask, s_pass_mask, ""); + stencil_vals = lp_build_stencil_op(&s_bld, stencil, Z_PASS_OP, + stencil_refs, stencil_vals, + s_pass_mask, front_facing); + } + + /* Put Z and stencil bits in the right place */ + if (have_z && z_shift) { + LLVMValueRef shift = lp_build_const_int_vec(gallivm, z_type, z_shift); + z_dst = LLVMBuildShl(builder, z_dst, shift, ""); + } + if (stencil_vals && stencil_shift) + stencil_vals = LLVMBuildShl(builder, stencil_vals, + stencil_shift, ""); + + /* Finally, merge the z/stencil values */ + if (format_desc->block.bits <= 32) { + if (have_z && have_s) + *z_value = LLVMBuildOr(builder, z_dst, stencil_vals, ""); + else if (have_z) + *z_value = z_dst; + else + *z_value = stencil_vals; + *s_value = *z_value; + } + else { + *z_value = z_dst; + *s_value = stencil_vals; + } + + if (s_pass_mask) + lp_build_mask_update(mask, s_pass_mask); + + if (depth->enabled && stencil[0].enabled) + lp_build_mask_update(mask, z_pass); } +