X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fgallium%2Fdrivers%2Fradeonsi%2Fsi_cp_dma.c;h=e2fc6f30edfb5e50e07682e6fb6e272f58498831;hb=e2e700f6053d0b16ba46e4d5c5b20e965fb2224e;hp=0cf7b3b3cbc2ee5e018d2477aaffde9b5f61414d;hpb=f0d9af772e0fbb5854fc8293186a70ea3721748a;p=mesa.git diff --git a/src/gallium/drivers/radeonsi/si_cp_dma.c b/src/gallium/drivers/radeonsi/si_cp_dma.c index 0cf7b3b3cbc..e2fc6f30edf 100644 --- a/src/gallium/drivers/radeonsi/si_cp_dma.c +++ b/src/gallium/drivers/radeonsi/si_cp_dma.c @@ -1,5 +1,6 @@ /* * Copyright 2013 Advanced Micro Devices, Inc. + * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), @@ -19,239 +20,228 @@ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. - * - * Authors: - * Marek Olšák */ #include "si_pipe.h" #include "sid.h" -#include "radeon/r600_cs.h" - -/* The max number of bytes to copy per packet. */ -#define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - SI_CPDMA_ALIGNMENT) /* Set this if you want the ME to wait until CP DMA is done. * It should be set on the last CP DMA packet. */ -#define CP_DMA_SYNC (1 << 0) +#define CP_DMA_SYNC (1 << 0) /* Set this if the source data was used as a destination in a previous CP DMA * packet. It's for preventing a read-after-write (RAW) hazard between two * CP DMA packets. */ -#define CP_DMA_RAW_WAIT (1 << 1) -#define CP_DMA_USE_L2 (1 << 2) /* CIK+ */ -#define CP_DMA_CLEAR (1 << 3) +#define CP_DMA_RAW_WAIT (1 << 1) +#define CP_DMA_DST_IS_GDS (1 << 2) +#define CP_DMA_CLEAR (1 << 3) +#define CP_DMA_PFP_SYNC_ME (1 << 4) +#define CP_DMA_SRC_IS_GDS (1 << 5) + +/* The max number of bytes that can be copied per packet. */ +static inline unsigned cp_dma_max_byte_count(struct si_context *sctx) +{ + unsigned max = + sctx->chip_class >= GFX9 ? S_414_BYTE_COUNT_GFX9(~0u) : S_414_BYTE_COUNT_GFX6(~0u); + + /* make it aligned for optimal performance */ + return max & ~(SI_CPDMA_ALIGNMENT - 1); +} /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit * clear value. */ -static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va, - uint64_t src_va, unsigned size, unsigned flags, - enum r600_coherency coher) -{ - struct radeon_winsys_cs *cs = sctx->b.gfx.cs; - uint32_t header = 0, command = S_414_BYTE_COUNT(size); - - assert(size); - assert(size <= CP_DMA_MAX_BYTE_COUNT); - - /* Sync flags. */ - if (flags & CP_DMA_SYNC) - header |= S_411_CP_SYNC(1); - else - command |= S_414_DISABLE_WR_CONFIRM(1); - - if (flags & CP_DMA_RAW_WAIT) - command |= S_414_RAW_WAIT(1); - - /* Src and dst flags. */ - if (flags & CP_DMA_USE_L2) - header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2); - - if (flags & CP_DMA_CLEAR) - header |= S_411_SRC_SEL(V_411_DATA); - else if (flags & CP_DMA_USE_L2) - header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2); - - if (sctx->b.chip_class >= CIK) { - radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); - radeon_emit(cs, header); - radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ - radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ - radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ - radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ - radeon_emit(cs, command); - } else { - header |= S_411_SRC_ADDR_HI(src_va >> 32); - - radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); - radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ - radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */ - radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ - radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ - radeon_emit(cs, command); - } - - /* CP DMA is executed in ME, but index buffers are read by PFP. - * This ensures that ME (CP DMA) is idle before PFP starts fetching - * indices. If we wanted to execute CP DMA in PFP, this packet - * should precede it. - */ - if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) { - radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); - radeon_emit(cs, 0); - } -} - -static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher) +static void si_emit_cp_dma(struct si_context *sctx, struct radeon_cmdbuf *cs, uint64_t dst_va, + uint64_t src_va, unsigned size, unsigned flags, + enum si_cache_policy cache_policy) { - switch (coher) { - default: - case R600_COHERENCY_NONE: - return 0; - case R600_COHERENCY_SHADER: - return SI_CONTEXT_INV_SMEM_L1 | - SI_CONTEXT_INV_VMEM_L1 | - (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0); - case R600_COHERENCY_CB_META: - return SI_CONTEXT_FLUSH_AND_INV_CB; - } + uint32_t header = 0, command = 0; + + assert(size <= cp_dma_max_byte_count(sctx)); + assert(sctx->chip_class != GFX6 || cache_policy == L2_BYPASS); + + if (sctx->chip_class >= GFX9) + command |= S_414_BYTE_COUNT_GFX9(size); + else + command |= S_414_BYTE_COUNT_GFX6(size); + + /* Sync flags. */ + if (flags & CP_DMA_SYNC) + header |= S_411_CP_SYNC(1); + else { + if (sctx->chip_class >= GFX9) + command |= S_414_DISABLE_WR_CONFIRM_GFX9(1); + else + command |= S_414_DISABLE_WR_CONFIRM_GFX6(1); + } + + if (flags & CP_DMA_RAW_WAIT) + command |= S_414_RAW_WAIT(1); + + /* Src and dst flags. */ + if (sctx->chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) && src_va == dst_va) { + header |= S_411_DST_SEL(V_411_NOWHERE); /* prefetch only */ + } else if (flags & CP_DMA_DST_IS_GDS) { + header |= S_411_DST_SEL(V_411_GDS); + /* GDS increments the address, not CP. */ + command |= S_414_DAS(V_414_REGISTER) | S_414_DAIC(V_414_NO_INCREMENT); + } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) { + header |= + S_411_DST_SEL(V_411_DST_ADDR_TC_L2) | S_500_DST_CACHE_POLICY(cache_policy == L2_STREAM); + } + + if (flags & CP_DMA_CLEAR) { + header |= S_411_SRC_SEL(V_411_DATA); + } else if (flags & CP_DMA_SRC_IS_GDS) { + header |= S_411_SRC_SEL(V_411_GDS); + /* Both of these are required for GDS. It does increment the address. */ + command |= S_414_SAS(V_414_REGISTER) | S_414_SAIC(V_414_NO_INCREMENT); + } else if (sctx->chip_class >= GFX7 && cache_policy != L2_BYPASS) { + header |= + S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2) | S_500_SRC_CACHE_POLICY(cache_policy == L2_STREAM); + } + + if (sctx->chip_class >= GFX7) { + radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0)); + radeon_emit(cs, header); + radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ + radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */ + radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ + radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */ + radeon_emit(cs, command); + } else { + header |= S_411_SRC_ADDR_HI(src_va >> 32); + + radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0)); + radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */ + radeon_emit(cs, header); /* SRC_ADDR_HI [15:0] + flags. */ + radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */ + radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */ + radeon_emit(cs, command); + } + + /* CP DMA is executed in ME, but index buffers are read by PFP. + * This ensures that ME (CP DMA) is idle before PFP starts fetching + * indices. If we wanted to execute CP DMA in PFP, this packet + * should precede it. + */ + if (sctx->has_graphics && flags & CP_DMA_PFP_SYNC_ME) { + radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0)); + radeon_emit(cs, 0); + } } -static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher) +void si_cp_dma_wait_for_idle(struct si_context *sctx) { - return coher == R600_COHERENCY_SHADER && - sctx->b.chip_class >= CIK ? CP_DMA_USE_L2 : 0; + /* Issue a dummy DMA that copies zero bytes. + * + * The DMA engine will see that there's no work to do and skip this + * DMA request, however, the CP will see the sync flag and still wait + * for all DMAs to complete. + */ + si_emit_cp_dma(sctx, sctx->gfx_cs, 0, 0, 0, CP_DMA_SYNC, L2_BYPASS); } static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst, - struct pipe_resource *src, unsigned byte_count, - uint64_t remaining_size, unsigned user_flags, - bool *is_first, unsigned *packet_flags) + struct pipe_resource *src, unsigned byte_count, + uint64_t remaining_size, unsigned user_flags, enum si_coherency coher, + bool *is_first, unsigned *packet_flags) { - /* Fast exit for a CPDMA prefetch. */ - if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) { - *is_first = false; - return; - } - - if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { - /* Count memory usage in so that need_cs_space can take it into account. */ - r600_context_add_resource_size(&sctx->b.b, dst); - if (src) - r600_context_add_resource_size(&sctx->b.b, src); - } - - if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE)) - si_need_cs_space(sctx); - - /* This must be done after need_cs_space. */ - if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { - radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, - (struct r600_resource*)dst, - RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); - if (src) - radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx, - (struct r600_resource*)src, - RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); - } - - /* Flush the caches for the first copy only. - * Also wait for the previous CP DMA operations. - */ - if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags) - si_emit_cache_flush(sctx); - - if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first) - *packet_flags |= CP_DMA_RAW_WAIT; - - *is_first = false; - - /* Do the synchronization after the last dma, so that all data - * is written to memory. - */ - if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && - byte_count == remaining_size) - *packet_flags |= CP_DMA_SYNC; + /* Fast exit for a CPDMA prefetch. */ + if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) { + *is_first = false; + return; + } + + if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { + /* Count memory usage in so that need_cs_space can take it into account. */ + if (dst) + si_context_add_resource_size(sctx, dst); + if (src) + si_context_add_resource_size(sctx, src); + } + + if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE)) + si_need_gfx_cs_space(sctx); + + /* This must be done after need_cs_space. */ + if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) { + if (dst) + radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(dst), RADEON_USAGE_WRITE, + RADEON_PRIO_CP_DMA); + if (src) + radeon_add_to_buffer_list(sctx, sctx->gfx_cs, si_resource(src), RADEON_USAGE_READ, + RADEON_PRIO_CP_DMA); + } + + /* Flush the caches for the first copy only. + * Also wait for the previous CP DMA operations. + */ + if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->flags) + sctx->emit_cache_flush(sctx); + + if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first && !(*packet_flags & CP_DMA_CLEAR)) + *packet_flags |= CP_DMA_RAW_WAIT; + + *is_first = false; + + /* Do the synchronization after the last dma, so that all data + * is written to memory. + */ + if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) && byte_count == remaining_size) { + *packet_flags |= CP_DMA_SYNC; + + if (coher == SI_COHERENCY_SHADER) + *packet_flags |= CP_DMA_PFP_SYNC_ME; + } } -static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, - uint64_t offset, uint64_t size, unsigned value, - enum r600_coherency coher) +void si_cp_dma_clear_buffer(struct si_context *sctx, struct radeon_cmdbuf *cs, + struct pipe_resource *dst, uint64_t offset, uint64_t size, + unsigned value, unsigned user_flags, enum si_coherency coher, + enum si_cache_policy cache_policy) { - struct si_context *sctx = (struct si_context*)ctx; - struct radeon_winsys *ws = sctx->b.ws; - struct r600_resource *rdst = r600_resource(dst); - unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher); - unsigned flush_flags = get_flush_flags(sctx, coher); - bool is_first = true; - - if (!size) - return; - - /* Mark the buffer range of destination as valid (initialized), - * so that transfer_map knows it should wait for the GPU when mapping - * that range. */ - util_range_add(&rdst->valid_buffer_range, offset, - offset + size); - - /* Fallback for unaligned clears. */ - if (size % 4 != 0) { - uint8_t *map = r600_buffer_map_sync_with_rings(&sctx->b, rdst, - PIPE_TRANSFER_WRITE); - map += offset; - for (uint64_t i = 0; i < size; i++) { - unsigned byte_within_dword = (offset + i) % 4; - *map++ = (value >> (byte_within_dword * 8)) & 0xff; - } - return; - } - - /* dma_clear_buffer can use clear_buffer on failure. Make sure that - * doesn't happen. We don't want an infinite recursion: */ - if (sctx->b.dma.cs && - (offset % 4 == 0) && - /* CP DMA is very slow. Always use SDMA for big clears. This - * alone improves DeusEx:MD performance by 70%. */ - (size > 128 * 1024 || - /* Buffers not used by the GFX IB yet will be cleared by SDMA. - * This happens to move most buffer clears to SDMA, including - * DCC and CMASK clears, because pipe->clear clears them before - * si_emit_framebuffer_state (in a draw call) adds them. - * For example, DeusEx:MD has 21 buffer clears per frame and all - * of them are moved to SDMA thanks to this. */ - !ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf, - RADEON_USAGE_READWRITE))) { - sctx->b.dma_clear_buffer(ctx, dst, offset, size, value); - } else { - uint64_t va = rdst->gpu_address + offset; - - /* Flush the caches. */ - sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | - SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags; - - while (size) { - unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); - unsigned dma_flags = tc_l2_flag | CP_DMA_CLEAR; - - si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, 0, - &is_first, &dma_flags); - - /* Emit the clear packet. */ - si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher); - - size -= byte_count; - va += byte_count; - } - - if (tc_l2_flag) - rdst->TC_L2_dirty = true; - - /* If it's not a framebuffer fast clear... */ - if (coher == R600_COHERENCY_SHADER) - sctx->b.num_cp_dma_calls++; - } + struct si_resource *sdst = si_resource(dst); + uint64_t va = (sdst ? sdst->gpu_address : 0) + offset; + bool is_first = true; + + assert(size && size % 4 == 0); + + /* Mark the buffer range of destination as valid (initialized), + * so that transfer_map knows it should wait for the GPU when mapping + * that range. */ + if (sdst) + util_range_add(dst, &sdst->valid_buffer_range, offset, offset + size); + + /* Flush the caches. */ + if (sdst && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) { + sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | + si_get_flush_flags(sctx, coher, cache_policy); + } + + while (size) { + unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx)); + unsigned dma_flags = CP_DMA_CLEAR | (sdst ? 0 : CP_DMA_DST_IS_GDS); + + si_cp_dma_prepare(sctx, dst, NULL, byte_count, size, user_flags, coher, &is_first, + &dma_flags); + + /* Emit the clear packet. */ + si_emit_cp_dma(sctx, cs, va, value, byte_count, dma_flags, cache_policy); + + size -= byte_count; + va += byte_count; + } + + if (sdst && cache_policy != L2_BYPASS) + sdst->TC_L2_dirty = true; + + /* If it's not a framebuffer fast clear... */ + if (coher == SI_COHERENCY_SHADER) { + sctx->num_cp_dma_calls++; + si_prim_discard_signal_next_compute_ib_start(sctx); + } } /** @@ -260,192 +250,366 @@ static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst, * * \param size Remaining size to the CP DMA alignment. */ -static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, - unsigned user_flags, bool *is_first) +static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size, unsigned user_flags, + enum si_coherency coher, enum si_cache_policy cache_policy, + bool *is_first) { - uint64_t va; - unsigned dma_flags = 0; - unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2; - - assert(size < SI_CPDMA_ALIGNMENT); - - /* Use the scratch buffer as the dummy buffer. The 3D engine should be - * idle at this point. - */ - if (!sctx->scratch_buffer || - sctx->scratch_buffer->b.b.width0 < scratch_size) { - r600_resource_reference(&sctx->scratch_buffer, NULL); - sctx->scratch_buffer = (struct r600_resource*) - r600_aligned_buffer_create(&sctx->screen->b.b, - R600_RESOURCE_FLAG_UNMAPPABLE, - PIPE_USAGE_DEFAULT, - scratch_size, 256); - if (!sctx->scratch_buffer) - return; - - si_mark_atom_dirty(sctx, &sctx->scratch_state); - } - - si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, - &sctx->scratch_buffer->b.b, size, size, user_flags, - is_first, &dma_flags); - - va = sctx->scratch_buffer->gpu_address; - si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, - R600_COHERENCY_SHADER); + uint64_t va; + unsigned dma_flags = 0; + unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2; + + assert(size < SI_CPDMA_ALIGNMENT); + + /* Use the scratch buffer as the dummy buffer. The 3D engine should be + * idle at this point. + */ + if (!sctx->scratch_buffer || sctx->scratch_buffer->b.b.width0 < scratch_size) { + si_resource_reference(&sctx->scratch_buffer, NULL); + sctx->scratch_buffer = si_aligned_buffer_create(&sctx->screen->b, SI_RESOURCE_FLAG_UNMAPPABLE, + PIPE_USAGE_DEFAULT, scratch_size, 256); + if (!sctx->scratch_buffer) + return; + + si_mark_atom_dirty(sctx, &sctx->atoms.s.scratch_state); + } + + si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b, &sctx->scratch_buffer->b.b, size, size, + user_flags, coher, is_first, &dma_flags); + + va = sctx->scratch_buffer->gpu_address; + si_emit_cp_dma(sctx, sctx->gfx_cs, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags, cache_policy); } /** * Do memcpy between buffers using CP DMA. + * If src or dst is NULL, it means read or write GDS, respectively. * - * \param user_flags bitmask of SI_CPDMA_* + * \param user_flags bitmask of SI_CPDMA_* */ -void si_copy_buffer(struct si_context *sctx, - struct pipe_resource *dst, struct pipe_resource *src, - uint64_t dst_offset, uint64_t src_offset, unsigned size, - unsigned user_flags) +void si_cp_dma_copy_buffer(struct si_context *sctx, struct pipe_resource *dst, + struct pipe_resource *src, uint64_t dst_offset, uint64_t src_offset, + unsigned size, unsigned user_flags, enum si_coherency coher, + enum si_cache_policy cache_policy) +{ + uint64_t main_dst_offset, main_src_offset; + unsigned skipped_size = 0; + unsigned realign_size = 0; + unsigned gds_flags = (dst ? 0 : CP_DMA_DST_IS_GDS) | (src ? 0 : CP_DMA_SRC_IS_GDS); + bool is_first = true; + + assert(size); + + if (dst) { + /* Skip this for the L2 prefetch. */ + if (dst != src || dst_offset != src_offset) { + /* Mark the buffer range of destination as valid (initialized), + * so that transfer_map knows it should wait for the GPU when mapping + * that range. */ + util_range_add(dst, &si_resource(dst)->valid_buffer_range, dst_offset, dst_offset + size); + } + + dst_offset += si_resource(dst)->gpu_address; + } + if (src) + src_offset += si_resource(src)->gpu_address; + + /* The workarounds aren't needed on Fiji and beyond. */ + if (sctx->family <= CHIP_CARRIZO || sctx->family == CHIP_STONEY) { + /* If the size is not aligned, we must add a dummy copy at the end + * just to align the internal counter. Otherwise, the DMA engine + * would slow down by an order of magnitude for following copies. + */ + if (size % SI_CPDMA_ALIGNMENT) + realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT); + + /* If the copy begins unaligned, we must start copying from the next + * aligned block and the skipped part should be copied after everything + * else has been copied. Only the src alignment matters, not dst. + * + * GDS doesn't need the source address to be aligned. + */ + if (src && src_offset % SI_CPDMA_ALIGNMENT) { + skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT); + /* The main part will be skipped if the size is too small. */ + skipped_size = MIN2(skipped_size, size); + size -= skipped_size; + } + } + + /* TMZ handling */ + if (unlikely(sctx->ws->ws_is_secure(sctx->ws) && + !(user_flags & SI_CPDMA_SKIP_TMZ))) { + bool secure = src && (si_resource(src)->flags & RADEON_FLAG_ENCRYPTED); + assert(!secure || (!dst || (si_resource(dst)->flags & RADEON_FLAG_ENCRYPTED))); + if (secure != sctx->ws->cs_is_secure(sctx->gfx_cs)) { + si_flush_gfx_cs(sctx, RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL); + sctx->ws->cs_set_secure(sctx->gfx_cs, secure); + } + } + + /* Flush the caches. */ + if ((dst || src) && !(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) { + sctx->flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | SI_CONTEXT_CS_PARTIAL_FLUSH | + si_get_flush_flags(sctx, coher, cache_policy); + } + + /* This is the main part doing the copying. Src is always aligned. */ + main_dst_offset = dst_offset + skipped_size; + main_src_offset = src_offset + skipped_size; + + while (size) { + unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx)); + unsigned dma_flags = gds_flags; + + si_cp_dma_prepare(sctx, dst, src, byte_count, size + skipped_size + realign_size, user_flags, + coher, &is_first, &dma_flags); + + si_emit_cp_dma(sctx, sctx->gfx_cs, main_dst_offset, main_src_offset, byte_count, dma_flags, + cache_policy); + + size -= byte_count; + main_src_offset += byte_count; + main_dst_offset += byte_count; + } + + /* Copy the part we skipped because src wasn't aligned. */ + if (skipped_size) { + unsigned dma_flags = gds_flags; + + si_cp_dma_prepare(sctx, dst, src, skipped_size, skipped_size + realign_size, user_flags, + coher, &is_first, &dma_flags); + + si_emit_cp_dma(sctx, sctx->gfx_cs, dst_offset, src_offset, skipped_size, dma_flags, + cache_policy); + } + + /* Finally, realign the engine if the size wasn't aligned. */ + if (realign_size) { + si_cp_dma_realign_engine(sctx, realign_size, user_flags, coher, cache_policy, &is_first); + } + + if (dst && cache_policy != L2_BYPASS) + si_resource(dst)->TC_L2_dirty = true; + + /* If it's not a prefetch or GDS copy... */ + if (dst && src && (dst != src || dst_offset != src_offset)) { + sctx->num_cp_dma_calls++; + si_prim_discard_signal_next_compute_ib_start(sctx); + } +} + +void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, uint64_t offset, + unsigned size) { - uint64_t main_dst_offset, main_src_offset; - unsigned skipped_size = 0; - unsigned realign_size = 0; - unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER); - unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER); - bool is_first = true; - - if (!size) - return; - - if (dst != src || dst_offset != src_offset) { - /* Mark the buffer range of destination as valid (initialized), - * so that transfer_map knows it should wait for the GPU when mapping - * that range. */ - util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset, - dst_offset + size); - } - - dst_offset += r600_resource(dst)->gpu_address; - src_offset += r600_resource(src)->gpu_address; - - /* The workarounds aren't needed on Fiji and beyond. */ - if (sctx->b.family <= CHIP_CARRIZO || - sctx->b.family == CHIP_STONEY) { - /* If the size is not aligned, we must add a dummy copy at the end - * just to align the internal counter. Otherwise, the DMA engine - * would slow down by an order of magnitude for following copies. - */ - if (size % SI_CPDMA_ALIGNMENT) - realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT); - - /* If the copy begins unaligned, we must start copying from the next - * aligned block and the skipped part should be copied after everything - * else has been copied. Only the src alignment matters, not dst. - */ - if (src_offset % SI_CPDMA_ALIGNMENT) { - skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT); - /* The main part will be skipped if the size is too small. */ - skipped_size = MIN2(skipped_size, size); - size -= skipped_size; - } - } - - /* Flush the caches. */ - if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC)) - sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH | - SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags; - - /* This is the main part doing the copying. Src is always aligned. */ - main_dst_offset = dst_offset + skipped_size; - main_src_offset = src_offset + skipped_size; - - while (size) { - unsigned dma_flags = tc_l2_flag; - unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT); - - si_cp_dma_prepare(sctx, dst, src, byte_count, - size + skipped_size + realign_size, - user_flags, &is_first, &dma_flags); - - si_emit_cp_dma(sctx, main_dst_offset, main_src_offset, - byte_count, dma_flags, R600_COHERENCY_SHADER); - - size -= byte_count; - main_src_offset += byte_count; - main_dst_offset += byte_count; - } - - /* Copy the part we skipped because src wasn't aligned. */ - if (skipped_size) { - unsigned dma_flags = tc_l2_flag; - - si_cp_dma_prepare(sctx, dst, src, skipped_size, - skipped_size + realign_size, user_flags, - &is_first, &dma_flags); - - si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size, - dma_flags, R600_COHERENCY_SHADER); - } - - /* Finally, realign the engine if the size wasn't aligned. */ - if (realign_size) - si_cp_dma_realign_engine(sctx, realign_size, user_flags, - &is_first); - - if (tc_l2_flag) - r600_resource(dst)->TC_L2_dirty = true; - - /* If it's not a prefetch... */ - if (dst_offset != src_offset) - sctx->b.num_cp_dma_calls++; + assert(sctx->chip_class >= GFX7); + + si_cp_dma_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL, + SI_COHERENCY_SHADER, L2_LRU); } -void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf, - uint64_t offset, unsigned size) +static void cik_prefetch_shader_async(struct si_context *sctx, struct si_pm4_state *state) { - assert(sctx->b.chip_class >= CIK); + struct pipe_resource *bo = &state->shader->bo->b.b; - si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL); + cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0); } -static void cik_prefetch_shader_async(struct si_context *sctx, - struct si_pm4_state *state) +static void cik_prefetch_VBO_descriptors(struct si_context *sctx) { - if (state) { - struct pipe_resource *bo = &state->bo[0]->b.b; - assert(state->nbo == 1); + if (!sctx->vertex_elements || !sctx->vertex_elements->vb_desc_list_alloc_size) + return; - cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0); - } + cik_prefetch_TC_L2_async(sctx, &sctx->vb_descriptors_buffer->b.b, sctx->vb_descriptors_offset, + sctx->vertex_elements->vb_desc_list_alloc_size); } -static void cik_emit_prefetch_L2(struct si_context *sctx, struct r600_atom *atom) +/** + * Prefetch shaders and VBO descriptors. + * + * \param vertex_stage_only Whether only the the API VS and VBO descriptors + * should be prefetched. + */ +void cik_emit_prefetch_L2(struct si_context *sctx, bool vertex_stage_only) +{ + unsigned mask = sctx->prefetch_L2_mask; + assert(mask); + + /* Prefetch shaders and VBO descriptors to TC L2. */ + if (sctx->chip_class >= GFX9) { + /* Choose the right spot for the VBO prefetch. */ + if (sctx->queued.named.hs) { + if (mask & SI_PREFETCH_HS) + cik_prefetch_shader_async(sctx, sctx->queued.named.hs); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_HS | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + + if (mask & SI_PREFETCH_GS) + cik_prefetch_shader_async(sctx, sctx->queued.named.gs); + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + } else if (sctx->queued.named.gs) { + if (mask & SI_PREFETCH_GS) + cik_prefetch_shader_async(sctx, sctx->queued.named.gs); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_GS | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + } else { + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + } + } else { + /* GFX6-GFX8 */ + /* Choose the right spot for the VBO prefetch. */ + if (sctx->tes_shader.cso) { + if (mask & SI_PREFETCH_LS) + cik_prefetch_shader_async(sctx, sctx->queued.named.ls); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_LS | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + + if (mask & SI_PREFETCH_HS) + cik_prefetch_shader_async(sctx, sctx->queued.named.hs); + if (mask & SI_PREFETCH_ES) + cik_prefetch_shader_async(sctx, sctx->queued.named.es); + if (mask & SI_PREFETCH_GS) + cik_prefetch_shader_async(sctx, sctx->queued.named.gs); + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + } else if (sctx->gs_shader.cso) { + if (mask & SI_PREFETCH_ES) + cik_prefetch_shader_async(sctx, sctx->queued.named.es); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_ES | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + + if (mask & SI_PREFETCH_GS) + cik_prefetch_shader_async(sctx, sctx->queued.named.gs); + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + } else { + if (mask & SI_PREFETCH_VS) + cik_prefetch_shader_async(sctx, sctx->queued.named.vs); + if (mask & SI_PREFETCH_VBO_DESCRIPTORS) + cik_prefetch_VBO_descriptors(sctx); + if (vertex_stage_only) { + sctx->prefetch_L2_mask &= ~(SI_PREFETCH_VS | SI_PREFETCH_VBO_DESCRIPTORS); + return; + } + } + } + + if (mask & SI_PREFETCH_PS) + cik_prefetch_shader_async(sctx, sctx->queued.named.ps); + + sctx->prefetch_L2_mask = 0; +} + +void si_test_gds(struct si_context *sctx) { - /* Prefetch shaders and VBO descriptors to TC L2. */ - if (si_pm4_state_changed(sctx, ls)) - cik_prefetch_shader_async(sctx, sctx->queued.named.ls); - if (si_pm4_state_changed(sctx, hs)) - cik_prefetch_shader_async(sctx, sctx->queued.named.hs); - if (si_pm4_state_changed(sctx, es)) - cik_prefetch_shader_async(sctx, sctx->queued.named.es); - if (si_pm4_state_changed(sctx, gs)) - cik_prefetch_shader_async(sctx, sctx->queued.named.gs); - if (si_pm4_state_changed(sctx, vs)) - cik_prefetch_shader_async(sctx, sctx->queued.named.vs); - - /* Vertex buffer descriptors are uploaded uncached, so prefetch - * them right after the VS binary. */ - if (sctx->vertex_buffer_pointer_dirty) { - cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b, - sctx->vertex_buffers.buffer_offset, - sctx->vertex_elements->desc_list_byte_size); - } - if (si_pm4_state_changed(sctx, ps)) - cik_prefetch_shader_async(sctx, sctx->queued.named.ps); + struct pipe_context *ctx = &sctx->b; + struct pipe_resource *src, *dst; + unsigned r[4] = {}; + unsigned offset = debug_get_num_option("OFFSET", 16); + + src = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16); + dst = pipe_buffer_create(ctx->screen, 0, PIPE_USAGE_DEFAULT, 16); + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 0, 4, 0xabcdef01, 0, SI_COHERENCY_SHADER, + L2_BYPASS); + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 4, 4, 0x23456789, 0, SI_COHERENCY_SHADER, + L2_BYPASS); + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 8, 4, 0x87654321, 0, SI_COHERENCY_SHADER, + L2_BYPASS); + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, src, 12, 4, 0xfedcba98, 0, SI_COHERENCY_SHADER, + L2_BYPASS); + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, dst, 0, 16, 0xdeadbeef, 0, SI_COHERENCY_SHADER, + L2_BYPASS); + + si_cp_dma_copy_buffer(sctx, NULL, src, offset, 0, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); + si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); + + pipe_buffer_read(ctx, dst, 0, sizeof(r), r); + printf("GDS copy = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3], + r[0] == 0xabcdef01 && r[1] == 0x23456789 && r[2] == 0x87654321 && r[3] == 0xfedcba98 + ? "pass" + : "fail"); + + si_cp_dma_clear_buffer(sctx, sctx->gfx_cs, NULL, offset, 16, 0xc1ea4146, 0, SI_COHERENCY_NONE, + L2_BYPASS); + si_cp_dma_copy_buffer(sctx, dst, NULL, 0, offset, 16, 0, SI_COHERENCY_NONE, L2_BYPASS); + + pipe_buffer_read(ctx, dst, 0, sizeof(r), r); + printf("GDS clear = %08x %08x %08x %08x -> %s\n", r[0], r[1], r[2], r[3], + r[0] == 0xc1ea4146 && r[1] == 0xc1ea4146 && r[2] == 0xc1ea4146 && r[3] == 0xc1ea4146 + ? "pass" + : "fail"); + + pipe_resource_reference(&src, NULL); + pipe_resource_reference(&dst, NULL); + exit(0); } -void si_init_cp_dma_functions(struct si_context *sctx) +void si_cp_write_data(struct si_context *sctx, struct si_resource *buf, unsigned offset, + unsigned size, unsigned dst_sel, unsigned engine, const void *data) { - sctx->b.clear_buffer = si_clear_buffer; + struct radeon_cmdbuf *cs = sctx->gfx_cs; - si_init_atom(sctx, &sctx->prefetch_L2, &sctx->atoms.s.prefetch_L2, - cik_emit_prefetch_L2); + assert(offset % 4 == 0); + assert(size % 4 == 0); + + if (sctx->chip_class == GFX6 && dst_sel == V_370_MEM) + dst_sel = V_370_MEM_GRBM; + + radeon_add_to_buffer_list(sctx, cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); + uint64_t va = buf->gpu_address + offset; + + radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 2 + size / 4, 0)); + radeon_emit(cs, S_370_DST_SEL(dst_sel) | S_370_WR_CONFIRM(1) | S_370_ENGINE_SEL(engine)); + radeon_emit(cs, va); + radeon_emit(cs, va >> 32); + radeon_emit_array(cs, (const uint32_t *)data, size / 4); +} + +void si_cp_copy_data(struct si_context *sctx, struct radeon_cmdbuf *cs, unsigned dst_sel, + struct si_resource *dst, unsigned dst_offset, unsigned src_sel, + struct si_resource *src, unsigned src_offset) +{ + /* cs can point to the compute IB, which has the buffer list in gfx_cs. */ + if (dst) { + radeon_add_to_buffer_list(sctx, sctx->gfx_cs, dst, RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA); + } + if (src) { + radeon_add_to_buffer_list(sctx, sctx->gfx_cs, src, RADEON_USAGE_READ, RADEON_PRIO_CP_DMA); + } + + uint64_t dst_va = (dst ? dst->gpu_address : 0ull) + dst_offset; + uint64_t src_va = (src ? src->gpu_address : 0ull) + src_offset; + + radeon_emit(cs, PKT3(PKT3_COPY_DATA, 4, 0)); + radeon_emit(cs, COPY_DATA_SRC_SEL(src_sel) | COPY_DATA_DST_SEL(dst_sel) | COPY_DATA_WR_CONFIRM); + radeon_emit(cs, src_va); + radeon_emit(cs, src_va >> 32); + radeon_emit(cs, dst_va); + radeon_emit(cs, dst_va >> 32); }