X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fglsl%2Fast_function.cpp;h=26d4c62ce36ce99bf2609a2796d59456c1cd60b3;hb=c272bb58f5cded827b8a4c94a419504f8ff4cc9e;hp=4b84470679e3c4d9dad5b000c21a9de59b638dcb;hpb=248606a5f065b88ee6328c233e54f163088de5d5;p=mesa.git diff --git a/src/glsl/ast_function.cpp b/src/glsl/ast_function.cpp index 4b84470679e..26d4c62ce36 100644 --- a/src/glsl/ast_function.cpp +++ b/src/glsl/ast_function.cpp @@ -26,6 +26,7 @@ #include "glsl_types.h" #include "ir.h" #include "main/core.h" /* for MIN2 */ +#include "main/shaderobj.h" static ir_rvalue * convert_component(ir_rvalue *src, const glsl_type *desired_type); @@ -41,8 +42,7 @@ process_parameters(exec_list *instructions, exec_list *actual_parameters, { unsigned count = 0; - foreach_list (n, parameters) { - ast_node *const ast = exec_node_data(ast_node, n, link); + foreach_list_typed(ast_node, ast, link, parameters) { ir_rvalue *result = ast->hir(instructions, state); ir_constant *const constant = result->constant_expression_value(); @@ -82,9 +82,7 @@ prototype_string(const glsl_type *return_type, const char *name, ralloc_asprintf_append(&str, "%s(", name); const char *comma = ""; - foreach_list(node, parameters) { - const ir_variable *const param = (ir_variable *) node; - + foreach_in_list(const ir_variable, param, parameters) { ralloc_asprintf_append(&str, "%s%s", comma, param->type->name); comma = ", "; } @@ -106,35 +104,35 @@ verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, * qualifiers. [...] It is legal to have additional qualifiers * on a formal parameter, but not to have fewer." */ - if (actual->data.image.coherent && !formal->data.image.coherent) { + if (actual->data.image_coherent && !formal->data.image_coherent) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`coherent' qualifier", formal->name); return false; } - if (actual->data.image._volatile && !formal->data.image._volatile) { + if (actual->data.image_volatile && !formal->data.image_volatile) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`volatile' qualifier", formal->name); return false; } - if (actual->data.image.restrict_flag && !formal->data.image.restrict_flag) { + if (actual->data.image_restrict && !formal->data.image_restrict) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`restrict' qualifier", formal->name); return false; } - if (actual->data.image.read_only && !formal->data.image.read_only) { + if (actual->data.image_read_only && !formal->data.image_read_only) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`readonly' qualifier", formal->name); return false; } - if (actual->data.image.write_only && !formal->data.image.write_only) { + if (actual->data.image_write_only && !formal->data.image_write_only) { _mesa_glsl_error(loc, state, "function call parameter `%s' drops " "`writeonly' qualifier", formal->name); @@ -144,6 +142,31 @@ verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, return true; } +static bool +verify_first_atomic_ssbo_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state, + ir_variable *var) +{ + if (!var || !var->is_in_shader_storage_block()) { + _mesa_glsl_error(loc, state, "First argument to atomic function " + "must be a buffer variable"); + return false; + } + return true; +} + +static bool +is_atomic_ssbo_function(const char *func_name) +{ + return !strcmp(func_name, "atomicAdd") || + !strcmp(func_name, "atomicMin") || + !strcmp(func_name, "atomicMax") || + !strcmp(func_name, "atomicAnd") || + !strcmp(func_name, "atomicOr") || + !strcmp(func_name, "atomicXor") || + !strcmp(func_name, "atomicExchange") || + !strcmp(func_name, "atomicCompSwap"); +} + /** * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify * that 'const_in' formal parameters (an extension in our IR) correspond to @@ -158,12 +181,11 @@ verify_parameter_modes(_mesa_glsl_parse_state *state, exec_node *actual_ir_node = actual_ir_parameters.head; exec_node *actual_ast_node = actual_ast_parameters.head; - foreach_list(formal_node, &sig->parameters) { + foreach_in_list(const ir_variable, formal, &sig->parameters) { /* The lists must be the same length. */ assert(!actual_ir_node->is_tail_sentinel()); assert(!actual_ast_node->is_tail_sentinel()); - const ir_variable *const formal = (ir_variable *) formal_node; const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node; const ast_expression *const actual_ast = exec_node_data(ast_expression, actual_ast_node, link); @@ -182,6 +204,24 @@ verify_parameter_modes(_mesa_glsl_parse_state *state, return false; } + /* Verify that shader_in parameters are shader inputs */ + if (formal->data.must_be_shader_input) { + ir_variable *var = actual->variable_referenced(); + if (var && var->data.mode != ir_var_shader_in) { + _mesa_glsl_error(&loc, state, + "parameter `%s` must be a shader input", + formal->name); + return false; + } + + if (actual->ir_type == ir_type_swizzle) { + _mesa_glsl_error(&loc, state, + "parameter `%s` must not be swizzled", + formal->name); + return false; + } + } + /* Verify that 'out' and 'inout' actual parameters are lvalues. */ if (formal->data.mode == ir_var_function_out || formal->data.mode == ir_var_function_inout) { @@ -241,6 +281,23 @@ verify_parameter_modes(_mesa_glsl_parse_state *state, actual_ir_node = actual_ir_node->next; actual_ast_node = actual_ast_node->next; } + + /* The first parameter of atomic functions must be a buffer variable */ + const char *func_name = sig->function_name(); + bool is_atomic_ssbo = is_atomic_ssbo_function(func_name); + if (is_atomic_ssbo) { + const ir_rvalue *const actual = (ir_rvalue *) actual_ir_parameters.head; + + const ast_expression *const actual_ast = + exec_node_data(ast_expression, actual_ast_parameters.head, link); + YYLTYPE loc = actual_ast->get_location(); + + if (!verify_first_atomic_ssbo_parameter(&loc, state, + actual->variable_referenced())) { + return false; + } + } + return true; } @@ -341,6 +398,8 @@ fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type, static ir_rvalue * generate_call(exec_list *instructions, ir_function_signature *sig, exec_list *actual_parameters, + ir_variable *sub_var, + ir_rvalue *array_idx, struct _mesa_glsl_parse_state *state) { void *ctx = state; @@ -394,17 +453,21 @@ generate_call(exec_list *instructions, ir_function_signature *sig, ir_dereference_variable *deref = NULL; if (!sig->return_type->is_void()) { /* Create a new temporary to hold the return value. */ + char *const name = ir_variable::temporaries_allocate_names + ? ralloc_asprintf(ctx, "%s_retval", sig->function_name()) + : NULL; + ir_variable *var; - var = new(ctx) ir_variable(sig->return_type, - ralloc_asprintf(ctx, "%s_retval", - sig->function_name()), - ir_var_temporary); + var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary); instructions->push_tail(var); + ralloc_free(name); + deref = new(ctx) ir_dereference_variable(var); } - ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters); + + ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters, sub_var, array_idx); instructions->push_tail(call); /* Also emit any necessary out-parameter conversions. */ @@ -436,20 +499,21 @@ match_function_by_name(const char *name, goto done; /* no match */ if (f != NULL) { + /* In desktop GL, the presence of a user-defined signature hides any + * built-in signatures, so we must ignore them. In contrast, in ES2 + * user-defined signatures add new overloads, so we must consider them. + */ + bool allow_builtins = state->es_shader || !f->has_user_signature(); + /* Look for a match in the local shader. If exact, we're done. */ bool is_exact = false; sig = local_sig = f->matching_signature(state, actual_parameters, - &is_exact); + allow_builtins, &is_exact); if (is_exact) goto done; - if (!state->es_shader && f->has_user_signature()) { - /* In desktop GL, the presence of a user-defined signature hides any - * built-in signatures, so we must ignore them. In contrast, in ES2 - * user-defined signatures add new overloads, so we must proceed. - */ + if (!allow_builtins) goto done; - } } /* Local shader has no exact candidates; check the built-ins. */ @@ -471,6 +535,40 @@ done: return sig; } +static ir_function_signature * +match_subroutine_by_name(const char *name, + exec_list *actual_parameters, + struct _mesa_glsl_parse_state *state, + ir_variable **var_r) +{ + void *ctx = state; + ir_function_signature *sig = NULL; + ir_function *f, *found = NULL; + const char *new_name; + ir_variable *var; + bool is_exact = false; + + new_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), name); + var = state->symbols->get_variable(new_name); + if (!var) + return NULL; + + for (int i = 0; i < state->num_subroutine_types; i++) { + f = state->subroutine_types[i]; + if (strcmp(f->name, var->type->without_array()->name)) + continue; + found = f; + break; + } + + if (!found) + return NULL; + *var_r = var; + sig = found->matching_signature(state, actual_parameters, + false, &is_exact); + return sig; +} + static void print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc, ir_function *f) @@ -478,9 +576,7 @@ print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc, if (f == NULL) return; - foreach_list (node, &f->signatures) { - ir_function_signature *sig = (ir_function_signature *) node; - + foreach_in_list(ir_function_signature, sig, &f->signatures) { if (sig->is_builtin() && !sig->is_builtin_available(state)) continue; @@ -557,6 +653,9 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type) result = new(ctx) ir_expression(ir_unop_i2u, new(ctx) ir_expression(ir_unop_b2i, src)); break; + case GLSL_TYPE_DOUBLE: + result = new(ctx) ir_expression(ir_unop_d2u, src); + break; } break; case GLSL_TYPE_INT: @@ -570,6 +669,9 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type) case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2i, src); break; + case GLSL_TYPE_DOUBLE: + result = new(ctx) ir_expression(ir_unop_d2i, src); + break; } break; case GLSL_TYPE_FLOAT: @@ -583,6 +685,9 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type) case GLSL_TYPE_BOOL: result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL); break; + case GLSL_TYPE_DOUBLE: + result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL); + break; } break; case GLSL_TYPE_BOOL: @@ -597,8 +702,27 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type) case GLSL_TYPE_FLOAT: result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL); break; + case GLSL_TYPE_DOUBLE: + result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL); + break; } break; + case GLSL_TYPE_DOUBLE: + switch (b) { + case GLSL_TYPE_INT: + result = new(ctx) ir_expression(ir_unop_i2d, src); + break; + case GLSL_TYPE_UINT: + result = new(ctx) ir_expression(ir_unop_u2d, src); + break; + case GLSL_TYPE_BOOL: + result = new(ctx) ir_expression(ir_unop_f2d, + new(ctx) ir_expression(ir_unop_b2f, src)); + break; + case GLSL_TYPE_FLOAT: + result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL); + break; + } } assert(result != NULL); @@ -690,18 +814,17 @@ process_vec_mat_constructor(exec_list *instructions, bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants. */ - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *ir = (ir_rvalue *) n; + foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { ir_rvalue *result = ir; /* Apply implicit conversions (not the scalar constructor rules!). See * the spec quote above. */ - if (constructor_type->is_float()) { + if (constructor_type->base_type != result->type->base_type) { const glsl_type *desired_type = - glsl_type::get_instance(GLSL_TYPE_FLOAT, + glsl_type::get_instance(constructor_type->base_type, ir->type->vector_elements, ir->type->matrix_columns); - if (result->type->can_implicitly_convert_to(desired_type)) { + if (result->type->can_implicitly_convert_to(desired_type, state)) { /* Even though convert_component() implements the constructor * conversion rules (not the implicit conversion rules), its safe * to use it here because we already checked that the implicit @@ -749,12 +872,22 @@ process_vec_mat_constructor(exec_list *instructions, instructions->push_tail(var); int i = 0; - foreach_list(node, &actual_parameters) { - ir_rvalue *rhs = (ir_rvalue *) node; - ir_rvalue *lhs = new(ctx) ir_dereference_array(var, - new(ctx) ir_constant(i)); - ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL); + foreach_in_list(ir_rvalue, rhs, &actual_parameters) { + ir_instruction *assignment = NULL; + + if (var->type->is_matrix()) { + ir_rvalue *lhs = new(ctx) ir_dereference_array(var, + new(ctx) ir_constant(i)); + assignment = new(ctx) ir_assignment(lhs, rhs, NULL); + } else { + /* use writemask rather than index for vector */ + assert(var->type->is_vector()); + assert(i < 4); + ir_dereference *lhs = new(ctx) ir_dereference_variable(var); + assignment = new(ctx) ir_assignment(lhs, rhs, NULL, (unsigned)(1 << i)); + } + instructions->push_tail(assignment); i++; @@ -810,7 +943,7 @@ process_array_constructor(exec_list *instructions, if (is_unsized_array) { constructor_type = - glsl_type::get_array_instance(constructor_type->element_type(), + glsl_type::get_array_instance(constructor_type->fields.array, parameter_count); assert(constructor_type != NULL); assert(constructor_type->length == parameter_count); @@ -819,18 +952,21 @@ process_array_constructor(exec_list *instructions, bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants. */ - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *ir = (ir_rvalue *) n; + foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { ir_rvalue *result = ir; + const glsl_base_type element_base_type = + constructor_type->fields.array->base_type; + /* Apply implicit conversions (not the scalar constructor rules!). See * the spec quote above. */ - if (constructor_type->element_type()->is_float()) { - const glsl_type *desired_type = - glsl_type::get_instance(GLSL_TYPE_FLOAT, - ir->type->vector_elements, - ir->type->matrix_columns); - if (result->type->can_implicitly_convert_to(desired_type)) { + if (element_base_type != result->type->base_type) { + const glsl_type *desired_type = + glsl_type::get_instance(element_base_type, + ir->type->vector_elements, + ir->type->matrix_columns); + + if (result->type->can_implicitly_convert_to(desired_type, state)) { /* Even though convert_component() implements the constructor * conversion rules (not the implicit conversion rules), its safe * to use it here because we already checked that the implicit @@ -840,10 +976,10 @@ process_array_constructor(exec_list *instructions, } } - if (result->type != constructor_type->element_type()) { + if (result->type != constructor_type->fields.array) { _mesa_glsl_error(loc, state, "type error in array constructor: " "expected: %s, found %s", - constructor_type->element_type()->name, + constructor_type->fields.array->name, result->type->name); return ir_rvalue::error_value(ctx); } @@ -870,8 +1006,7 @@ process_array_constructor(exec_list *instructions, instructions->push_tail(var); int i = 0; - foreach_list(node, &actual_parameters) { - ir_rvalue *rhs = (ir_rvalue *) node; + foreach_in_list(ir_rvalue, rhs, &actual_parameters) { ir_rvalue *lhs = new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i)); @@ -892,8 +1027,8 @@ static ir_constant * constant_record_constructor(const glsl_type *constructor_type, exec_list *parameters, void *mem_ctx) { - foreach_list(node, parameters) { - ir_constant *constant = ((ir_instruction *) node)->as_constant(); + foreach_in_list(ir_instruction, node, parameters) { + ir_constant *constant = node->as_constant(); if (constant == NULL) return NULL; node->replace_with(constant); @@ -938,11 +1073,15 @@ emit_inline_vector_constructor(const glsl_type *type, ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary); instructions->push_tail(var); - /* There are two kinds of vector constructors. + /* There are three kinds of vector constructors. * * - Construct a vector from a single scalar by replicating that scalar to * all components of the vector. * + * - Construct a vector from at least a matrix. This case should already + * have been taken care of in ast_function_expression::hir by breaking + * down the matrix into a series of column vectors. + * * - Construct a vector from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned * to the vector in order until the vector is full. @@ -967,8 +1106,7 @@ emit_inline_vector_constructor(const glsl_type *type, memset(&data, 0, sizeof(data)); - foreach_list(node, parameters) { - ir_rvalue *param = (ir_rvalue *) node; + foreach_in_list(ir_rvalue, param, parameters) { unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! @@ -990,6 +1128,9 @@ emit_inline_vector_constructor(const glsl_type *type, case GLSL_TYPE_FLOAT: data.f[i + base_component] = c->get_float_component(i); break; + case GLSL_TYPE_DOUBLE: + data.d[i + base_component] = c->get_double_component(i); + break; case GLSL_TYPE_BOOL: data.b[i + base_component] = c->get_bool_component(i); break; @@ -1025,8 +1166,7 @@ emit_inline_vector_constructor(const glsl_type *type, } base_component = 0; - foreach_list(node, parameters) { - ir_rvalue *param = (ir_rvalue *) node; + foreach_in_list(ir_rvalue, param, parameters) { unsigned rhs_components = param->type->components(); /* Do not try to assign more components to the vector than it has! @@ -1035,6 +1175,14 @@ emit_inline_vector_constructor(const glsl_type *type, rhs_components = lhs_components - base_component; } + /* If we do not have any components left to copy, break out of the + * loop. This can happen when initializing a vec4 with a mat3 as the + * mat3 would have been broken into a series of column vectors. + */ + if (rhs_components == 0) { + break; + } + const ir_constant *const c = param->as_constant(); if (c == NULL) { /* Mask of fields to be written in the assignment. @@ -1135,7 +1283,7 @@ emit_inline_matrix_constructor(const glsl_type *type, * * - Construct a matrix from an arbirary combination of vectors and * scalars. The components of the constructor parameters are assigned - * to the matrix in colum-major order until the matrix is full. + * to the matrix in column-major order until the matrix is full. * * - Construct a matrix from a single matrix. The source matrix is copied * to the upper left portion of the constructed matrix, and the remaining @@ -1146,16 +1294,21 @@ emit_inline_matrix_constructor(const glsl_type *type, /* Assign the scalar to the X component of a vec4, and fill the remaining * components with zero. */ + glsl_base_type param_base_type = first_param->type->base_type; + assert(param_base_type == GLSL_TYPE_FLOAT || + param_base_type == GLSL_TYPE_DOUBLE); ir_variable *rhs_var = - new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec", - ir_var_temporary); + new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1), + "mat_ctor_vec", + ir_var_temporary); instructions->push_tail(rhs_var); ir_constant_data zero; - zero.f[0] = 0.0; - zero.f[1] = 0.0; - zero.f[2] = 0.0; - zero.f[3] = 0.0; + for (unsigned i = 0; i < 4; i++) + if (param_base_type == GLSL_TYPE_FLOAT) + zero.f[i] = 0.0; + else + zero.d[i] = 0.0; ir_instruction *inst = new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var), @@ -1309,72 +1462,59 @@ emit_inline_matrix_constructor(const glsl_type *type, } else { const unsigned cols = type->matrix_columns; const unsigned rows = type->vector_elements; + unsigned remaining_slots = rows * cols; unsigned col_idx = 0; unsigned row_idx = 0; - foreach_list (node, parameters) { - ir_rvalue *const rhs = (ir_rvalue *) node; - const unsigned components_remaining_this_column = rows - row_idx; - unsigned rhs_components = rhs->type->components(); - unsigned rhs_base = 0; - - /* Since the parameter might be used in the RHS of two assignments, - * generate a temporary and copy the paramter there. - */ - ir_variable *rhs_var = - new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); - instructions->push_tail(rhs_var); - - ir_dereference *rhs_var_ref = - new(ctx) ir_dereference_variable(rhs_var); - ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); - instructions->push_tail(inst); - - /* Assign the current parameter to as many components of the matrix - * as it will fill. - * - * NOTE: A single vector parameter can span two matrix columns. A - * single vec4, for example, can completely fill a mat2. - */ - if (rhs_components >= components_remaining_this_column) { - const unsigned count = MIN2(rhs_components, - components_remaining_this_column); - - rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); - - ir_instruction *inst = assign_to_matrix_column(var, col_idx, - row_idx, - rhs_var_ref, 0, - count, ctx); - instructions->push_tail(inst); - - rhs_base = count; - - col_idx++; - row_idx = 0; - } - - /* If there is data left in the parameter and components left to be - * set in the destination, emit another assignment. It is possible - * that the assignment could be of a vec4 to the last element of the - * matrix. In this case col_idx==cols, but there is still data - * left in the source parameter. Obviously, don't emit an assignment - * to data outside the destination matrix. - */ - if ((col_idx < cols) && (rhs_base < rhs_components)) { - const unsigned count = rhs_components - rhs_base; - - rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); - - ir_instruction *inst = assign_to_matrix_column(var, col_idx, - row_idx, - rhs_var_ref, - rhs_base, - count, ctx); - instructions->push_tail(inst); - - row_idx += count; - } + foreach_in_list(ir_rvalue, rhs, parameters) { + unsigned rhs_components = rhs->type->components(); + unsigned rhs_base = 0; + + if (remaining_slots == 0) + break; + + /* Since the parameter might be used in the RHS of two assignments, + * generate a temporary and copy the paramter there. + */ + ir_variable *rhs_var = + new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary); + instructions->push_tail(rhs_var); + + ir_dereference *rhs_var_ref = + new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL); + instructions->push_tail(inst); + + do { + /* Assign the current parameter to as many components of the matrix + * as it will fill. + * + * NOTE: A single vector parameter can span two matrix columns. A + * single vec4, for example, can completely fill a mat2. + */ + unsigned count = MIN2(rows - row_idx, + rhs_components - rhs_base); + + rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var); + ir_instruction *inst = assign_to_matrix_column(var, col_idx, + row_idx, + rhs_var_ref, + rhs_base, + count, ctx); + instructions->push_tail(inst); + rhs_base += count; + row_idx += count; + remaining_slots -= count; + + /* Sometimes, there is still data left in the parameters and + * components left to be set in the destination but in other + * column. + */ + if (row_idx >= rows) { + row_idx = 0; + col_idx++; + } + } while(remaining_slots > 0 && rhs_base < rhs_components); } } @@ -1471,6 +1611,70 @@ process_record_constructor(exec_list *instructions, &actual_parameters, state); } +ir_rvalue * +ast_function_expression::handle_method(exec_list *instructions, + struct _mesa_glsl_parse_state *state) +{ + const ast_expression *field = subexpressions[0]; + ir_rvalue *op; + ir_rvalue *result; + void *ctx = state; + /* Handle "method calls" in GLSL 1.20 - namely, array.length() */ + YYLTYPE loc = get_location(); + state->check_version(120, 300, &loc, "methods not supported"); + + const char *method; + method = field->primary_expression.identifier; + + op = field->subexpressions[0]->hir(instructions, state); + if (strcmp(method, "length") == 0) { + if (!this->expressions.is_empty()) { + _mesa_glsl_error(&loc, state, "length method takes no arguments"); + goto fail; + } + + if (op->type->is_array()) { + if (op->type->is_unsized_array()) { + if (!state->has_shader_storage_buffer_objects()) { + _mesa_glsl_error(&loc, state, "length called on unsized array" + " only available with " + "ARB_shader_storage_buffer_object"); + } + /* Calculate length of an unsized array in run-time */ + result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length, op); + } else { + result = new(ctx) ir_constant(op->type->array_size()); + } + } else if (op->type->is_vector()) { + if (state->ARB_shading_language_420pack_enable) { + /* .length() returns int. */ + result = new(ctx) ir_constant((int) op->type->vector_elements); + } else { + _mesa_glsl_error(&loc, state, "length method on matrix only available" + "with ARB_shading_language_420pack"); + goto fail; + } + } else if (op->type->is_matrix()) { + if (state->ARB_shading_language_420pack_enable) { + /* .length() returns int. */ + result = new(ctx) ir_constant((int) op->type->matrix_columns); + } else { + _mesa_glsl_error(&loc, state, "length method on matrix only available" + "with ARB_shading_language_420pack"); + goto fail; + } + } else { + _mesa_glsl_error(&loc, state, "length called on scalar."); + goto fail; + } + } else { + _mesa_glsl_error(&loc, state, "unknown method: `%s'", method); + goto fail; + } + return result; +fail: + return ir_rvalue::error_value(ctx); +} ir_rvalue * ast_function_expression::hir(exec_list *instructions, @@ -1483,8 +1687,6 @@ ast_function_expression::hir(exec_list *instructions, * 2. methods - Only the .length() method of array types. * 3. functions - Calls to regular old functions. * - * Method calls are actually detected when the ast_field_selection - * expression is handled. */ if (is_constructor()) { const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0]; @@ -1504,10 +1706,10 @@ ast_function_expression::hir(exec_list *instructions, } - /* Constructors for samplers are illegal. + /* Constructors for opaque types are illegal. */ - if (constructor_type->is_sampler()) { - _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'", + if (constructor_type->contains_opaque()) { + _mesa_glsl_error(& loc, state, "cannot construct opaque type `%s'", constructor_type->name); return ir_rvalue::error_value(ctx); } @@ -1558,9 +1760,8 @@ ast_function_expression::hir(exec_list *instructions, unsigned nonmatrix_parameters = 0; exec_list actual_parameters; - foreach_list (n, &this->expressions) { - ast_node *ast = exec_node_data(ast_node, n, link); - ir_rvalue *result = ast->hir(instructions, state)->as_rvalue(); + foreach_list_typed(ast_node, ast, link, &this->expressions) { + ir_rvalue *result = ast->hir(instructions, state); /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec: * @@ -1634,14 +1835,12 @@ ast_function_expression::hir(exec_list *instructions, return ir_rvalue::error_value(ctx); } - /* Later, we cast each parameter to the same base type as the - * constructor. Since there are no non-floating point matrices, we - * need to break them up into a series of column vectors. + /* Matrices can never be consumed as is by any constructor but matrix + * constructors. If the constructor type is not matrix, always break the + * matrix up into a series of column vectors. */ - if (constructor_type->base_type != GLSL_TYPE_FLOAT) { - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *matrix = (ir_rvalue *) n; - + if (!constructor_type->is_matrix()) { + foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) { if (!matrix->type->is_matrix()) continue; @@ -1665,9 +1864,7 @@ ast_function_expression::hir(exec_list *instructions, bool all_parameters_are_constant = true; /* Type cast each parameter and, if possible, fold constants.*/ - foreach_list_safe(n, &actual_parameters) { - ir_rvalue *ir = (ir_rvalue *) n; - + foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) { const glsl_type *desired_type = glsl_type::get_instance(constructor_type->base_type, ir->type->vector_elements, @@ -1710,11 +1907,22 @@ ast_function_expression::hir(exec_list *instructions, &actual_parameters, ctx); } + } else if (subexpressions[0]->oper == ast_field_selection) { + return handle_method(instructions, state); } else { const ast_expression *id = subexpressions[0]; - const char *func_name = id->primary_expression.identifier; + const char *func_name; YYLTYPE loc = get_location(); exec_list actual_parameters; + ir_variable *sub_var = NULL; + ir_rvalue *array_idx = NULL; + + if (id->oper == ast_array_index) { + func_name = id->subexpressions[0]->primary_expression.identifier; + array_idx = id->subexpressions[1]->hir(instructions, state); + } else { + func_name = id->primary_expression.identifier; + } process_parameters(instructions, &actual_parameters, &this->expressions, state); @@ -1723,6 +1931,10 @@ ast_function_expression::hir(exec_list *instructions, match_function_by_name(func_name, &actual_parameters, state); ir_rvalue *value = NULL; + if (sig == NULL) { + sig = match_subroutine_by_name(func_name, &actual_parameters, state, &sub_var); + } + if (sig == NULL) { no_matching_function_error(func_name, &loc, &actual_parameters, state); value = ir_rvalue::error_value(ctx); @@ -1730,13 +1942,20 @@ ast_function_expression::hir(exec_list *instructions, /* an error has already been emitted */ value = ir_rvalue::error_value(ctx); } else { - value = generate_call(instructions, sig, &actual_parameters, state); + value = generate_call(instructions, sig, &actual_parameters, sub_var, array_idx, state); + if (!value) { + ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type, + "void_var", + ir_var_temporary); + instructions->push_tail(tmp); + value = new(ctx) ir_dereference_variable(tmp); + } } return value; } - return ir_rvalue::error_value(ctx); + unreachable("not reached"); } ir_rvalue *