X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fmain%2Fimports.h;h=d79e2a339f35a3bdc348041780a25be260477a6e;hb=73b78f9c9f86dd38fb165f4730aeac9519635b07;hp=5ea647ad8d73a038e6fc2f8b1817f8fa5c08f793;hpb=b2ddb93ff3b8c88682634ccdef247967e31fab84;p=mesa.git diff --git a/src/mesa/main/imports.h b/src/mesa/main/imports.h index 5ea647ad8d7..d79e2a339f3 100644 --- a/src/mesa/main/imports.h +++ b/src/mesa/main/imports.h @@ -1,6 +1,5 @@ /* * Mesa 3-D graphics library - * Version: 7.5 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * @@ -17,9 +16,10 @@ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. */ @@ -38,7 +38,7 @@ #include "compiler.h" #include "glheader.h" - +#include "errors.h" #ifdef __cplusplus extern "C" { @@ -81,7 +81,7 @@ extern "C" { * these casts generate warnings. * The following union typedef is used to solve that. */ -typedef union { GLfloat f; GLint i; } fi_type; +typedef union { GLfloat f; GLint i; GLuint u; } fi_type; @@ -96,26 +96,6 @@ typedef union { GLfloat f; GLint i; } fi_type; #define DEG2RAD (M_PI/180.0) -/*** - *** SQRTF: single-precision square root - ***/ -#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */ -# define SQRTF(X) _mesa_sqrtf(X) -#else -# define SQRTF(X) (float) sqrt((float) (X)) -#endif - - -/*** - *** INV_SQRTF: single-precision inverse square root - ***/ -#if 0 -#define INV_SQRTF(X) _mesa_inv_sqrt(X) -#else -#define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */ -#endif - - /** * \name Work-arounds for platforms that lack C99 math functions */ @@ -127,14 +107,20 @@ typedef union { GLfloat f; GLint i; } fi_type; #define asinf(f) ((float) asin(f)) #define atan2f(x,y) ((float) atan2(x,y)) #define atanf(f) ((float) atan(f)) -#define cielf(f) ((float) ciel(f)) +#define ceilf(f) ((float) ceil(f)) #define cosf(f) ((float) cos(f)) #define coshf(f) ((float) cosh(f)) #define expf(f) ((float) exp(f)) #define exp2f(f) ((float) exp2(f)) #define floorf(f) ((float) floor(f)) #define logf(f) ((float) log(f)) + +#ifdef ANDROID +#define log2f(f) (logf(f) * (float) (1.0 / M_LN2)) +#else #define log2f(f) ((float) log2(f)) +#endif + #define powf(x,y) ((float) pow(x,y)) #define sinf(f) ((float) sin(f)) #define sinhf(f) ((float) sinh(f)) @@ -147,62 +133,79 @@ typedef union { GLfloat f; GLint i; } fi_type; #endif #if defined(_MSC_VER) -static INLINE float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); } -static INLINE float exp2f(float x) { return powf(2.0f, x); } -static INLINE float log2f(float x) { return logf(x) * 1.442695041f; } -static INLINE float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); } -static INLINE float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); } -static INLINE float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; } -static INLINE int isblank(int ch) { return ch == ' ' || ch == '\t'; } +static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); } +static inline float exp2f(float x) { return powf(2.0f, x); } +static inline float log2f(float x) { return logf(x) * 1.442695041f; } +static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); } +static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); } +static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; } +static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; } #define strtoll(p, e, b) _strtoi64(p, e, b) +#define strcasecmp(s1, s2) _stricmp(s1, s2) #endif /*@}*/ + +/* + * signbit() is a macro on Linux. Not available on Windows. + */ +#ifndef signbit +#define signbit(x) ((x) < 0.0f) +#endif + + +/** single-precision inverse square root */ +static inline float +INV_SQRTF(float x) +{ + /* XXX we could try Quake's fast inverse square root function here */ + return 1.0F / sqrtf(x); +} + + /*** *** LOG2: Log base 2 of float ***/ +static inline GLfloat LOG2(GLfloat x) +{ #ifdef USE_IEEE #if 0 -/* This is pretty fast, but not accurate enough (only 2 fractional bits). - * Based on code from http://www.stereopsis.com/log2.html - */ -static INLINE GLfloat LOG2(GLfloat x) -{ + /* This is pretty fast, but not accurate enough (only 2 fractional bits). + * Based on code from http://www.stereopsis.com/log2.html + */ const GLfloat y = x * x * x * x; const GLuint ix = *((GLuint *) &y); const GLuint exp = (ix >> 23) & 0xFF; const GLint log2 = ((GLint) exp) - 127; return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ -} #endif -/* Pretty fast, and accurate. - * Based on code from http://www.flipcode.com/totd/ - */ -static INLINE GLfloat LOG2(GLfloat val) -{ + /* Pretty fast, and accurate. + * Based on code from http://www.flipcode.com/totd/ + */ fi_type num; GLint log_2; - num.f = val; + num.f = x; log_2 = ((num.i >> 23) & 255) - 128; num.i &= ~(255 << 23); num.i += 127 << 23; num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; return num.f + log_2; -} #else -/* - * NOTE: log_base_2(x) = log(x) / log(2) - * NOTE: 1.442695 = 1/log(2). - */ -#define LOG2(x) ((GLfloat) (log(x) * 1.442695F)) + /* + * NOTE: log_base_2(x) = log(x) / log(2) + * NOTE: 1.442695 = 1/log(2). + */ + return (GLfloat) (log(x) * 1.442695F); #endif +} + /*** *** IS_INF_OR_NAN: test if float is infinite or NaN ***/ #ifdef USE_IEEE -static INLINE int IS_INF_OR_NAN( float x ) +static inline int IS_INF_OR_NAN( float x ) { fi_type tmp; tmp.f = x; @@ -212,8 +215,6 @@ static INLINE int IS_INF_OR_NAN( float x ) #define IS_INF_OR_NAN(x) (!isfinite(x)) #elif defined(finite) #define IS_INF_OR_NAN(x) (!finite(x)) -#elif defined(__VMS) -#define IS_INF_OR_NAN(x) (!finite(x)) #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L #define IS_INF_OR_NAN(x) (!isfinite(x)) #else @@ -221,35 +222,6 @@ static INLINE int IS_INF_OR_NAN( float x ) #endif -/*** - *** IS_NEGATIVE: test if float is negative - ***/ -#if defined(USE_IEEE) -static INLINE int GET_FLOAT_BITS( float x ) -{ - fi_type fi; - fi.f = x; - return fi.i; -} -#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0) -#else -#define IS_NEGATIVE(x) (x < 0.0F) -#endif - - -/*** - *** DIFFERENT_SIGNS: test if two floats have opposite signs - ***/ -#if defined(USE_IEEE) -#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31)) -#else -/* Could just use (x*y<0) except for the flatshading requirements. - * Maybe there's a better way? - */ -#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F) -#endif - - /*** *** CEILF: ceiling of float *** FLOORF: floor of float @@ -279,67 +251,68 @@ static INLINE int GET_FLOAT_BITS( float x ) #endif -/*** - *** IROUND: return (as an integer) float rounded to nearest integer - ***/ -#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) -static INLINE int iround(float f) +/** + * Convert float to int by rounding to nearest integer, away from zero. + */ +static inline int IROUND(float f) +{ + return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); +} + + +/** + * Convert float to int64 by rounding to nearest integer. + */ +static inline GLint64 IROUND64(float f) +{ + return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); +} + + +/** + * Convert positive float to int by rounding to nearest integer. + */ +static inline int IROUND_POS(float f) +{ + assert(f >= 0.0F); + return (int) (f + 0.5F); +} + + +/** + * Convert float to int using a fast method. The rounding mode may vary. + * XXX We could use an x86-64/SSE2 version here. + */ +static inline int F_TO_I(float f) { +#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) int r; __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); return r; -} -#define IROUND(x) iround(x) #elif defined(USE_X86_ASM) && defined(_MSC_VER) -static INLINE int iround(float f) -{ int r; _asm { fld f fistp r } return r; -} -#define IROUND(x) iround(x) -#elif defined(__WATCOMC__) && defined(__386__) -long iround(float f); -#pragma aux iround = \ - "push eax" \ - "fistp dword ptr [esp]" \ - "pop eax" \ - parm [8087] \ - value [eax] \ - modify exact [eax]; -#define IROUND(x) iround(x) -#else -#define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F))) -#endif - -#define IROUND64(f) ((GLint64) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F))) - -/*** - *** IROUND_POS: return (as an integer) positive float rounded to nearest int - ***/ -#ifdef DEBUG -#define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f)) #else -#define IROUND_POS(f) (IROUND(f)) + return IROUND(f); #endif +} -/*** - *** IFLOOR: return (as an integer) floor of float - ***/ -#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) -/* - * IEEE floor for computers that round to nearest or even. - * 'f' must be between -4194304 and 4194303. - * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", - * but uses some IEEE specific tricks for better speed. - * Contributed by Josh Vanderhoof - */ -static INLINE int ifloor(float f) +/** Return (as an integer) floor of float */ +static inline int IFLOOR(float f) { +#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) + /* + * IEEE floor for computers that round to nearest or even. + * 'f' must be between -4194304 and 4194303. + * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", + * but uses some IEEE specific tricks for better speed. + * Contributed by Josh Vanderhoof + */ int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; @@ -348,45 +321,33 @@ static INLINE int ifloor(float f) __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi) >> 1; -} -#define IFLOOR(x) ifloor(x) #elif defined(USE_IEEE) -static INLINE int ifloor(float f) -{ int ai, bi; double af, bf; fi_type u; - af = (3 << 22) + 0.5 + (double)f; bf = (3 << 22) + 0.5 - (double)f; u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi) >> 1; -} -#define IFLOOR(x) ifloor(x) #else -static INLINE int ifloor(float f) -{ int i = IROUND(f); return (i > f) ? i - 1 : i; -} -#define IFLOOR(x) ifloor(x) #endif +} -/*** - *** ICEIL: return (as an integer) ceiling of float - ***/ -#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) -/* - * IEEE ceil for computers that round to nearest or even. - * 'f' must be between -4194304 and 4194303. - * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", - * but uses some IEEE specific tricks for better speed. - * Contributed by Josh Vanderhoof - */ -static INLINE int iceil(float f) +/** Return (as an integer) ceiling of float */ +static inline int ICEIL(float f) { +#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) + /* + * IEEE ceil for computers that round to nearest or even. + * 'f' must be between -4194304 and 4194303. + * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", + * but uses some IEEE specific tricks for better speed. + * Contributed by Josh Vanderhoof + */ int ai, bi; double af, bf; af = (3 << 22) + 0.5 + (double)f; @@ -395,11 +356,7 @@ static INLINE int iceil(float f) __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); return (ai - bi + 1) >> 1; -} -#define ICEIL(x) iceil(x) #elif defined(USE_IEEE) -static INLINE int iceil(float f) -{ int ai, bi; double af, bf; fi_type u; @@ -408,22 +365,17 @@ static INLINE int iceil(float f) u.f = (float) af; ai = u.i; u.f = (float) bf; bi = u.i; return (ai - bi + 1) >> 1; -} -#define ICEIL(x) iceil(x) #else -static INLINE int iceil(float f) -{ int i = IROUND(f); return (i < f) ? i + 1 : i; -} -#define ICEIL(x) iceil(x) #endif +} /** * Is x a power of two? */ -static INLINE int +static inline int _mesa_is_pow_two(int x) { return !(x & (x - 1)); @@ -443,11 +395,11 @@ _mesa_is_pow_two(int x) * results would be different depending on optimization * level used for build. */ -static INLINE int32_t +static inline int32_t _mesa_next_pow_two_32(uint32_t x) { #if defined(__GNUC__) && \ - ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4) + ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ uint32_t y = (x != 1); return (1 + y) << ((__builtin_clz(x - y) ^ 31) ); #else @@ -462,11 +414,11 @@ _mesa_next_pow_two_32(uint32_t x) #endif } -static INLINE int64_t +static inline int64_t _mesa_next_pow_two_64(uint64_t x) { #if defined(__GNUC__) && \ - ((__GNUC__ == 3 && __GNUC_MINOR__ >= 4) || __GNUC__ >= 4) + ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ uint64_t y = (x != 1); if (sizeof(x) == sizeof(long)) return (1 + y) << ((__builtin_clzl(x - y) ^ 63)); @@ -486,10 +438,31 @@ _mesa_next_pow_two_64(uint64_t x) } +/* + * Returns the floor form of binary logarithm for a 32-bit integer. + */ +static inline GLuint +_mesa_logbase2(GLuint n) +{ +#if defined(__GNUC__) && \ + ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ + return (31 - __builtin_clz(n | 1)); +#else + GLuint pos = 0; + if (n >= 1<<16) { n >>= 16; pos += 16; } + if (n >= 1<< 8) { n >>= 8; pos += 8; } + if (n >= 1<< 4) { n >>= 4; pos += 4; } + if (n >= 1<< 2) { n >>= 2; pos += 2; } + if (n >= 1<< 1) { pos += 1; } + return pos; +#endif +} + + /** * Return 1 if this is a little endian machine, 0 if big endian. */ -static INLINE GLboolean +static inline GLboolean _mesa_little_endian(void) { const GLuint ui = 1; /* intentionally not static */ @@ -524,29 +497,54 @@ _mesa_exec_free( void *addr ); extern void * _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize ); -extern void -_mesa_memset16( unsigned short *dst, unsigned short val, size_t n ); -extern double -_mesa_sqrtd(double x); +#ifndef FFS_DEFINED +#define FFS_DEFINED 1 +#ifdef __GNUC__ +#define ffs __builtin_ffs +#define ffsll __builtin_ffsll +#else +extern int ffs(int i); +extern int ffsll(long long int i); +#endif /*__ GNUC__ */ +#endif /* FFS_DEFINED */ -extern float -_mesa_sqrtf(float x); -extern float -_mesa_inv_sqrtf(float x); +#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ +#define _mesa_bitcount(i) __builtin_popcount(i) +#define _mesa_bitcount_64(i) __builtin_popcountll(i) +#else +extern unsigned int +_mesa_bitcount(unsigned int n); +extern unsigned int +_mesa_bitcount_64(uint64_t n); +#endif -extern void -_mesa_init_sqrt_table(void); +/** + * Find the last (most significant) bit set in a word. + * + * Essentially ffs() in the reverse direction. + */ +static inline unsigned int +_mesa_fls(unsigned int n) +{ +#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) + return n == 0 ? 0 : 32 - __builtin_clz(n); +#else + unsigned int v = 1; -extern int -_mesa_ffs(int32_t i); + if (n == 0) + return 0; -extern int -_mesa_ffsll(int64_t i); + while (n >>= 1) + v++; -extern unsigned int -_mesa_bitcount(unsigned int n); + return v; +#endif +} + +extern int +_mesa_round_to_even(float val); extern GLhalfARB _mesa_float_to_half(float f); @@ -574,19 +572,8 @@ _mesa_str_checksum(const char *str); extern int _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4); -struct gl_context; - -extern void -_mesa_warning( struct gl_context *gc, const char *fmtString, ... ) PRINTFLIKE(2, 3); - -extern void -_mesa_problem( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3); - -extern void -_mesa_error( struct gl_context *ctx, GLenum error, const char *fmtString, ... ) PRINTFLIKE(3, 4); - -extern void -_mesa_debug( const struct gl_context *ctx, const char *fmtString, ... ) PRINTFLIKE(2, 3); +extern int +_mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg); #if defined(_MSC_VER) && !defined(snprintf)