X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fmain%2Fmacros.h;h=ed207d44a64cb5bb000b67aa952113e90a85af13;hb=c5bab061dadea5627e8535a651ac5318bde9dad1;hp=d90905f997e120869d493dc513af95c726155763;hpb=bef4b42938c92fbd6540e81ea4829b0f1d0a6a8b;p=mesa.git diff --git a/src/mesa/main/macros.h b/src/mesa/main/macros.h index d90905f997e..ed207d44a64 100644 --- a/src/mesa/main/macros.h +++ b/src/mesa/main/macros.h @@ -5,7 +5,6 @@ /* * Mesa 3-D graphics library - * Version: 6.5.2 * * Copyright (C) 1999-2006 Brian Paul All Rights Reserved. * @@ -22,15 +21,19 @@ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. */ #ifndef MACROS_H #define MACROS_H +#include "util/macros.h" +#include "util/u_math.h" +#include "util/rounding.h" #include "imports.h" @@ -54,6 +57,10 @@ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 ) +/** Convert GLbyte to GLfloat while preserving zero */ +#define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B)) + + /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */ #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F)) @@ -73,6 +80,9 @@ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */ #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 ) +/** Convert GLshort to GLfloat while preserving zero */ +#define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S)) + /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */ #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F)) @@ -122,48 +132,90 @@ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15))) #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16))) #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \ - us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) + us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) ) #define CLAMPED_FLOAT_TO_USHORT(us, f) \ - us = ( (GLushort) IROUND( (f) * 65535.0F) ) + us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) ) #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \ - s = ( (GLshort) IROUND( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) + s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) ) /*** *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255] *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255] ***/ -#if defined(USE_IEEE) && !defined(DEBUG) -#define IEEE_0996 0x3f7f0000 /* 0.996 or so */ +#ifndef DEBUG /* This function/macro is sensitive to precision. Test very carefully * if you change it! */ -#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \ +#define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ do { \ fi_type __tmp; \ - __tmp.f = (F); \ + __tmp.f = (FLT); \ if (__tmp.i < 0) \ UB = (GLubyte) 0; \ - else if (__tmp.i >= IEEE_0996) \ + else if (__tmp.i >= IEEE_ONE) \ UB = (GLubyte) 255; \ else { \ __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } \ } while (0) -#define CLAMPED_FLOAT_TO_UBYTE(UB, F) \ +#define CLAMPED_FLOAT_TO_UBYTE(UB, FLT) \ do { \ fi_type __tmp; \ - __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \ + __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F; \ UB = (GLubyte) __tmp.i; \ } while (0) #else #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \ - ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F)) + ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F)) #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \ - ub = ((GLubyte) IROUND((f) * 255.0F)) + ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F)) #endif +static fi_type UINT_AS_UNION(GLuint u) +{ + fi_type tmp; + tmp.u = u; + return tmp; +} + +static inline fi_type INT_AS_UNION(GLint i) +{ + fi_type tmp; + tmp.i = i; + return tmp; +} + +static inline fi_type FLOAT_AS_UNION(GLfloat f) +{ + fi_type tmp; + tmp.f = f; + return tmp; +} + +/** + * Convert a floating point value to an unsigned fixed point value. + * + * \param frac_bits The number of bits used to store the fractional part. + */ +static inline uint32_t +U_FIXED(float value, uint32_t frac_bits) +{ + value *= (1 << frac_bits); + return value < 0.0f ? 0 : (uint32_t) value; +} + +/** + * Convert a floating point value to an signed fixed point value. + * + * \param frac_bits The number of bits used to store the fractional part. + */ +static inline int32_t +S_FIXED(float value, uint32_t frac_bits) +{ + return (int32_t) (value * (1 << frac_bits)); +} /*@}*/ @@ -193,11 +245,16 @@ extern GLfloat _mesa_ubyte_to_float_color_tab[256]; (a)[3] == (b)[3]) /** Test for equality (unsigned bytes) */ +static inline GLboolean +TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4]) +{ #if defined(__i386__) -#define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC)) + return *((const GLuint *) a) == *((const GLuint *) b); #else -#define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC) + return TEST_EQ_4V(a, b); #endif +} + /** Copy a 4-element vector */ #define COPY_4V( DST, SRC ) \ @@ -208,40 +265,17 @@ do { \ (DST)[3] = (SRC)[3]; \ } while (0) -/** Copy a 4-element vector with cast */ -#define COPY_4V_CAST( DST, SRC, CAST ) \ -do { \ - (DST)[0] = (CAST)(SRC)[0]; \ - (DST)[1] = (CAST)(SRC)[1]; \ - (DST)[2] = (CAST)(SRC)[2]; \ - (DST)[3] = (CAST)(SRC)[3]; \ -} while (0) - /** Copy a 4-element unsigned byte vector */ +static inline void +COPY_4UBV(GLubyte dst[4], const GLubyte src[4]) +{ #if defined(__i386__) -#define COPY_4UBV(DST, SRC) \ -do { \ - *((GLuint*)(DST)) = *((GLuint*)(SRC)); \ -} while (0) + *((GLuint *) dst) = *((GLuint *) src); #else -/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ -#define COPY_4UBV(DST, SRC) \ -do { \ - (DST)[0] = (SRC)[0]; \ - (DST)[1] = (SRC)[1]; \ - (DST)[2] = (SRC)[2]; \ - (DST)[3] = (SRC)[3]; \ -} while (0) + /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */ + COPY_4V(dst, src); #endif - -/** - * Copy a 4-element float vector - * memcpy seems to be most efficient - */ -#define COPY_4FV( DST, SRC ) \ -do { \ - memcpy(DST, SRC, sizeof(GLfloat) * 4); \ -} while (0) +} /** Copy \p SZ elements into a 4-element vector */ #define COPY_SZ_4V(DST, SZ, SRC) \ @@ -334,15 +368,6 @@ do { \ (DST)[3] *= S; \ } while (0) -/** Assignment */ -#define ASSIGN_4V( V, V0, V1, V2, V3 ) \ -do { \ - V[0] = V0; \ - V[1] = V1; \ - V[2] = V2; \ - V[3] = V3; \ -} while(0) - /*@}*/ @@ -576,35 +601,60 @@ do { \ /*@}*/ - -/** \name Linear interpolation macros */ -/*@{*/ - -/** - * Linear interpolation - * - * \note \p OUT argument is evaluated twice! - * \note Be wary of using *coord++ as an argument to any of these macros! +/** Copy \p sz elements into a homegeneous (4-element) vector, giving + * default values to the remaining components. + * The default values are chosen based on \p type. */ -#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT))) - -#define INTERP_F( t, dstf, outf, inf ) \ - dstf = LINTERP( t, outf, inf ) - -#define INTERP_4F( t, dst, out, in ) \ -do { \ - dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ - dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ - dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ - dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \ -} while (0) +static inline void +COPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4], + GLenum type) +{ + switch (type) { + case GL_FLOAT: + ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), + FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); + break; + case GL_INT: + ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0), + INT_AS_UNION(0), INT_AS_UNION(1)); + break; + case GL_UNSIGNED_INT: + ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0), + UINT_AS_UNION(0), UINT_AS_UNION(1)); + break; + default: + ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0), + FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */ + assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro"); + } + COPY_SZ_4V(dst, sz, src); +} + +/** \name Linear interpolation functions */ +/*@{*/ -#define INTERP_3F( t, dst, out, in ) \ -do { \ - dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \ - dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \ - dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \ -} while (0) +static inline GLfloat +LINTERP(GLfloat t, GLfloat out, GLfloat in) +{ + return out + t * (in - out); +} + +static inline void +INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3]) +{ + dst[0] = LINTERP( t, out[0], in[0] ); + dst[1] = LINTERP( t, out[1], in[1] ); + dst[2] = LINTERP( t, out[2], in[2] ); +} + +static inline void +INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4]) +{ + dst[0] = LINTERP( t, out[0], in[0] ); + dst[1] = LINTERP( t, out[1], in[1] ); + dst[2] = LINTERP( t, out[2], in[2] ); + dst[3] = LINTERP( t, out[3], in[3] ); +} /*@}*/ @@ -623,43 +673,142 @@ do { \ #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C)) #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C)) -/** Dot product of two 2-element vectors */ -#define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] ) +static inline unsigned +minify(unsigned value, unsigned levels) +{ + return MAX2(1, value >> levels); +} -/** Dot product of two 3-element vectors */ -#define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] ) +/** + * Align a value up to an alignment value + * + * If \c value is not already aligned to the requested alignment value, it + * will be rounded up. + * + * \param value Value to be rounded + * \param alignment Alignment value to be used. This must be a power of two. + * + * \sa ROUND_DOWN_TO() + */ +static inline uintptr_t +ALIGN(uintptr_t value, int32_t alignment) +{ + assert((alignment > 0) && _mesa_is_pow_two(alignment)); + return (((value) + (alignment) - 1) & ~((alignment) - 1)); +} -/** Dot product of two 4-element vectors */ -#define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \ - (a)[2]*(b)[2] + (a)[3]*(b)[3] ) +/** + * Like ALIGN(), but works with a non-power-of-two alignment. + */ +static inline uintptr_t +ALIGN_NPOT(uintptr_t value, int32_t alignment) +{ + assert(alignment > 0); + return (value + alignment - 1) / alignment * alignment; +} + +/** + * Align a value down to an alignment value + * + * If \c value is not already aligned to the requested alignment value, it + * will be rounded down. + * + * \param value Value to be rounded + * \param alignment Alignment value to be used. This must be a power of two. + * + * \sa ALIGN() + */ +static inline uintptr_t +ROUND_DOWN_TO(uintptr_t value, int32_t alignment) +{ + assert((alignment > 0) && _mesa_is_pow_two(alignment)); + return ((value) & ~(alignment - 1)); +} /** Cross product of two 3-element vectors */ -#define CROSS3(n, u, v) \ -do { \ - (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \ - (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \ - (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \ -} while (0) +static inline void +CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3]) +{ + n[0] = u[1] * v[2] - u[2] * v[1]; + n[1] = u[2] * v[0] - u[0] * v[2]; + n[2] = u[0] * v[1] - u[1] * v[0]; +} -/* Normalize a 3-element vector to unit length. */ -#define NORMALIZE_3FV( V ) \ -do { \ - GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \ - if (len) { \ - len = INV_SQRTF(len); \ - (V)[0] = (GLfloat) ((V)[0] * len); \ - (V)[1] = (GLfloat) ((V)[1] * len); \ - (V)[2] = (GLfloat) ((V)[2] * len); \ - } \ -} while(0) +/** Dot product of two 2-element vectors */ +static inline GLfloat +DOT2(const GLfloat a[2], const GLfloat b[2]) +{ + return a[0] * b[0] + a[1] * b[1]; +} + +static inline GLfloat +DOT3(const GLfloat a[3], const GLfloat b[3]) +{ + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; +} + +static inline GLfloat +DOT4(const GLfloat a[4], const GLfloat b[4]) +{ + return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; +} + + +static inline GLfloat +LEN_SQUARED_3FV(const GLfloat v[3]) +{ + return DOT3(v, v); +} + +static inline GLfloat +LEN_SQUARED_2FV(const GLfloat v[2]) +{ + return DOT2(v, v); +} + + +static inline GLfloat +LEN_3FV(const GLfloat v[3]) +{ + return sqrtf(LEN_SQUARED_3FV(v)); +} + +static inline GLfloat +LEN_2FV(const GLfloat v[2]) +{ + return sqrtf(LEN_SQUARED_2FV(v)); +} -#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])) -#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1])) -#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]) -#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]) +/* Normalize a 3-element vector to unit length. */ +static inline void +NORMALIZE_3FV(GLfloat v[3]) +{ + GLfloat len = (GLfloat) LEN_SQUARED_3FV(v); + if (len) { + len = 1.0f / sqrtf(len); + v[0] *= len; + v[1] *= len; + v[2] *= len; + } +} + + +/** Test two floats have opposite signs */ +static inline GLboolean +DIFFERENT_SIGNS(GLfloat x, GLfloat y) +{ +#ifdef _MSC_VER +#pragma warning( push ) +#pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */ +#endif + return signbit(x) != signbit(y); +#ifdef _MSC_VER +#pragma warning( pop ) +#endif +} /** casts to silence warnings with some compilers */ @@ -669,4 +818,7 @@ do { \ #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE) +/* Stringify */ +#define STRINGIFY(x) #x + #endif