X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fmain%2Fquerymatrix.c;h=b80bae6a6d26c2931f19d90e76527c26a3d82aaa;hb=43d66c8c2d4d3d4dee1309856b6ce6c5393682e5;hp=63d1d8e26c01937a2dff768a16c98e4ec9e677c5;hpb=5a1b40acf50955d727b15dc70703a19115bb3552;p=mesa.git diff --git a/src/mesa/main/querymatrix.c b/src/mesa/main/querymatrix.c index 63d1d8e26c0..b80bae6a6d2 100644 --- a/src/mesa/main/querymatrix.c +++ b/src/mesa/main/querymatrix.c @@ -1,6 +1,6 @@ /************************************************************************** * - * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas. + * Copyright 2008 VMware, Inc. * All Rights Reserved. * **************************************************************************/ @@ -13,10 +13,11 @@ #include -#include +#include "c99_math.h" #include "glheader.h" #include "querymatrix.h" #include "main/get.h" +#include "util/macros.h" /** @@ -37,171 +38,120 @@ #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16)) #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0)) -#if defined(_MSC_VER) -/* Oddly, the fpclassify() function doesn't exist in such a form - * on MSVC. This is an implementation using slightly different - * lower-level Windows functions. - */ -#include - -enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL} -fpclassify(double x) -{ - switch(_fpclass(x)) { - case _FPCLASS_SNAN: /* signaling NaN */ - case _FPCLASS_QNAN: /* quiet NaN */ - return FP_NAN; - case _FPCLASS_NINF: /* negative infinity */ - case _FPCLASS_PINF: /* positive infinity */ - return FP_INFINITE; - case _FPCLASS_NN: /* negative normal */ - case _FPCLASS_PN: /* positive normal */ - return FP_NORMAL; - case _FPCLASS_ND: /* negative denormalized */ - case _FPCLASS_PD: /* positive denormalized */ - return FP_SUBNORMAL; - case _FPCLASS_NZ: /* negative zero */ - case _FPCLASS_PZ: /* positive zero */ - return FP_ZERO; - default: - /* Should never get here; but if we do, this will guarantee - * that the pattern is not treated like a number. - */ - return FP_NAN; - } -} - -#elif defined(__APPLE__) || defined(__CYGWIN__) || defined(__FreeBSD__) || \ - defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__) || \ - (defined(__sun) && defined(__C99FEATURES__)) || defined(__MINGW32__) || \ - (defined(__sun) && defined(__GNUC__)) || defined(ANDROID) || defined(__HAIKU__) - -/* fpclassify is available. */ - -#elif !defined(_XOPEN_SOURCE) || _XOPEN_SOURCE < 600 - -enum {FP_NAN, FP_INFINITE, FP_ZERO, FP_SUBNORMAL, FP_NORMAL} -fpclassify(double x) -{ - /* XXX do something better someday */ - return FP_NORMAL; -} - -#endif -GLbitfield GLAPIENTRY _es_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) +GLbitfield GLAPIENTRY +_mesa_QueryMatrixxOES(GLfixed mantissa[16], GLint exponent[16]) { - GLfloat matrix[16]; - GLint tmp; - GLenum currentMode = GL_FALSE; - GLenum desiredMatrix = GL_FALSE; - /* The bitfield returns 1 for each component that is invalid (i.e. - * NaN or Inf). In case of error, everything is invalid. - */ - GLbitfield rv; - register unsigned int i; - unsigned int bit; - - /* This data structure defines the mapping between the current matrix - * mode and the desired matrix identifier. - */ - static struct { - GLenum currentMode; - GLenum desiredMatrix; - } modes[] = { - {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, - {GL_PROJECTION, GL_PROJECTION_MATRIX}, - {GL_TEXTURE, GL_TEXTURE_MATRIX}, - }; - - /* Call Mesa to get the current matrix in floating-point form. First, - * we have to figure out what the current matrix mode is. - */ - _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); - currentMode = (GLenum) tmp; - - /* The mode is either GL_FALSE, if for some reason we failed to query - * the mode, or a given mode from the above table. Search for the - * returned mode to get the desired matrix; if we don't find it, - * we can return immediately, as _mesa_GetInteger() will have - * logged the necessary error already. - */ - for (i = 0; i < sizeof(modes)/sizeof(modes[0]); i++) { - if (modes[i].currentMode == currentMode) { - desiredMatrix = modes[i].desiredMatrix; - break; - } - } - if (desiredMatrix == GL_FALSE) { - /* Early error means all values are invalid. */ - return 0xffff; - } - - /* Now pull the matrix itself. */ - _mesa_GetFloatv(desiredMatrix, matrix); - - rv = 0; - for (i = 0, bit = 1; i < 16; i++, bit<<=1) { - float normalizedFraction; - int exp; - - switch (fpclassify(matrix[i])) { - /* A "subnormal" or denormalized number is too small to be - * represented in normal format; but despite that it's a - * valid floating point number. FP_ZERO and FP_NORMAL - * are both valid as well. We should be fine treating - * these three cases as legitimate floating-point numbers. - */ - case FP_SUBNORMAL: - case FP_NORMAL: - case FP_ZERO: - normalizedFraction = (GLfloat)frexp(matrix[i], &exp); - mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); - exponent[i] = (GLint) exp; - break; - - /* If the entry is not-a-number or an infinity, then the - * matrix component is invalid. The invalid flag for - * the component is already set; might as well set the - * other return values to known values. We'll set - * distinct values so that a savvy end user could determine - * whether the matrix component was a NaN or an infinity, - * but this is more useful for debugging than anything else - * since the standard doesn't specify any such magic - * values to return. - */ - case FP_NAN: - mantissa[i] = INT_TO_FIXED(0); - exponent[i] = (GLint) 0; - rv |= bit; - break; - - case FP_INFINITE: - /* Return +/- 1 based on whether it's a positive or - * negative infinity. - */ - if (matrix[i] > 0) { - mantissa[i] = INT_TO_FIXED(1); - } - else { - mantissa[i] = -INT_TO_FIXED(1); - } - exponent[i] = (GLint) 0; - rv |= bit; - break; - - /* We should never get here; but here's a catching case - * in case fpclassify() is returnings something unexpected. - */ - default: - mantissa[i] = INT_TO_FIXED(2); - exponent[i] = (GLint) 0; - rv |= bit; - break; - } - - } /* for each component */ - - /* All done */ - return rv; + GLfloat matrix[16]; + GLint tmp; + GLenum currentMode = GL_FALSE; + GLenum desiredMatrix = GL_FALSE; + /* The bitfield returns 1 for each component that is invalid (i.e. + * NaN or Inf). In case of error, everything is invalid. + */ + GLbitfield rv; + unsigned i, bit; + + /* This data structure defines the mapping between the current matrix + * mode and the desired matrix identifier. + */ + static const struct { + GLenum currentMode; + GLenum desiredMatrix; + } modes[] = { + {GL_MODELVIEW, GL_MODELVIEW_MATRIX}, + {GL_PROJECTION, GL_PROJECTION_MATRIX}, + {GL_TEXTURE, GL_TEXTURE_MATRIX}, + }; + + /* Call Mesa to get the current matrix in floating-point form. First, + * we have to figure out what the current matrix mode is. + */ + _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp); + currentMode = (GLenum) tmp; + + /* The mode is either GL_FALSE, if for some reason we failed to query + * the mode, or a given mode from the above table. Search for the + * returned mode to get the desired matrix; if we don't find it, + * we can return immediately, as _mesa_GetInteger() will have + * logged the necessary error already. + */ + for (i = 0; i < ARRAY_SIZE(modes); i++) { + if (modes[i].currentMode == currentMode) { + desiredMatrix = modes[i].desiredMatrix; + break; + } + } + if (desiredMatrix == GL_FALSE) { + /* Early error means all values are invalid. */ + return 0xffff; + } + + /* Now pull the matrix itself. */ + _mesa_GetFloatv(desiredMatrix, matrix); + + rv = 0; + for (i = 0, bit = 1; i < 16; i++, bit<<=1) { + float normalizedFraction; + int exp; + + switch (fpclassify(matrix[i])) { + case FP_SUBNORMAL: + case FP_NORMAL: + case FP_ZERO: + /* A "subnormal" or denormalized number is too small to be + * represented in normal format; but despite that it's a + * valid floating point number. FP_ZERO and FP_NORMAL + * are both valid as well. We should be fine treating + * these three cases as legitimate floating-point numbers. + */ + normalizedFraction = (GLfloat)frexp(matrix[i], &exp); + mantissa[i] = FLOAT_TO_FIXED(normalizedFraction); + exponent[i] = (GLint) exp; + break; + + case FP_NAN: + /* If the entry is not-a-number or an infinity, then the + * matrix component is invalid. The invalid flag for + * the component is already set; might as well set the + * other return values to known values. We'll set + * distinct values so that a savvy end user could determine + * whether the matrix component was a NaN or an infinity, + * but this is more useful for debugging than anything else + * since the standard doesn't specify any such magic + * values to return. + */ + mantissa[i] = INT_TO_FIXED(0); + exponent[i] = (GLint) 0; + rv |= bit; + break; + + case FP_INFINITE: + /* Return +/- 1 based on whether it's a positive or + * negative infinity. + */ + if (matrix[i] > 0) { + mantissa[i] = INT_TO_FIXED(1); + } + else { + mantissa[i] = -INT_TO_FIXED(1); + } + exponent[i] = (GLint) 0; + rv |= bit; + break; + + default: + /* We should never get here; but here's a catching case + * in case fpclassify() is returnings something unexpected. + */ + mantissa[i] = INT_TO_FIXED(2); + exponent[i] = (GLint) 0; + rv |= bit; + break; + } + + } /* for each component */ + + /* All done */ + return rv; }