X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fswrast%2Fs_aatriangle.c;h=2e8767a33d9f039e04d3754667c5b0642e31b8e2;hb=c5943d6c1cc4eedbea088bc1f611abc153e90524;hp=219798d8c9eeecc90e83c6b4de3d6fee607f7ce8;hpb=b6bcae5698df88f7730d40004ce7ce0462e97a20;p=mesa.git diff --git a/src/mesa/swrast/s_aatriangle.c b/src/mesa/swrast/s_aatriangle.c index 219798d8c9e..2e8767a33d9 100644 --- a/src/mesa/swrast/s_aatriangle.c +++ b/src/mesa/swrast/s_aatriangle.c @@ -1,21 +1,19 @@ -/* $Id: s_aatriangle.c,v 1.6 2001/01/23 23:39:37 brianp Exp $ */ - /* * Mesa 3-D graphics library - * Version: 3.5 - * - * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. - * + * Version: 6.5.3 + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: - * + * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. - * + * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL @@ -30,7 +28,12 @@ */ -#include "mmath.h" +#include "main/glheader.h" +#include "main/context.h" +#include "main/colormac.h" +#include "main/macros.h" +#include "main/imports.h" +#include "main/state.h" #include "s_aatriangle.h" #include "s_context.h" #include "s_span.h" @@ -39,6 +42,7 @@ /* * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2 * vertices and the given Z values. + * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0. */ static INLINE void compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[], @@ -52,9 +56,15 @@ compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[], const GLfloat qy = v2[1] - v0[1]; const GLfloat qz = z2 - z0; + /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */ const GLfloat a = py * qz - pz * qy; const GLfloat b = pz * qx - px * qz; const GLfloat c = px * qy - py * qx; + /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending + on the distance of plane from origin and arbitrary "w" parallel + to the plane. */ + /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)", + which is equal to "-d" below. */ const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0); plane[0] = a; @@ -92,8 +102,8 @@ do { \ static INLINE GLfloat solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) { - GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; - return z; + ASSERT(plane[2] != 0.0F); + return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; } @@ -107,24 +117,43 @@ solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) static INLINE GLfloat solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) { - GLfloat z = -plane[2] / (plane[3] + plane[0] * x + plane[1] * y); - return z; + const GLfloat denom = plane[3] + plane[0] * x + plane[1] * y; + if (denom == 0.0F) + return 0.0F; + else + return -plane[2] / denom; } - /* * Solve plane and return clamped GLchan value. */ static INLINE GLchan solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4]) { - GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F; - if (z < 0.0F) + const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; +#if CHAN_TYPE == GL_FLOAT + return CLAMP(z, 0.0F, CHAN_MAXF); +#else + if (z < 0) return 0; - else if (z > CHAN_MAXF) - return CHAN_MAXF; - return (GLchan) (GLint) z; + else if (z > CHAN_MAX) + return CHAN_MAX; + return (GLchan) IROUND_POS(z); +#endif +} + + +static INLINE GLfloat +plane_dx(const GLfloat plane[4]) +{ + return -plane[0] / plane[2]; +} + +static INLINE GLfloat +plane_dy(const GLfloat plane[4]) +{ + return -plane[1] / plane[2]; } @@ -138,26 +167,43 @@ static GLfloat compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], const GLfloat v2[3], GLint winx, GLint winy) { + /* Given a position [0,3]x[0,3] return the sub-pixel sample position. + * Contributed by Ray Tice. + * + * Jitter sample positions - + * - average should be .5 in x & y for each column + * - each of the 16 rows and columns should be used once + * - the rectangle formed by the first four points + * should contain the other points + * - the distrubition should be fairly even in any given direction + * + * The pattern drawn below isn't optimal, but it's better than a regular + * grid. In the drawing, the center of each subpixel is surrounded by + * four dots. The "x" marks the jittered position relative to the + * subpixel center. + */ +#define POS(a, b) (0.5+a*4+b)/16 static const GLfloat samples[16][2] = { /* start with the four corners */ - { 0.00, 0.00 }, - { 0.75, 0.00 }, - { 0.00, 0.75 }, - { 0.75, 0.75 }, + { POS(0, 2), POS(0, 0) }, + { POS(3, 3), POS(0, 2) }, + { POS(0, 0), POS(3, 1) }, + { POS(3, 1), POS(3, 3) }, /* continue with interior samples */ - { 0.25, 0.00 }, - { 0.50, 0.00 }, - { 0.00, 0.25 }, - { 0.25, 0.25 }, - { 0.50, 0.25 }, - { 0.75, 0.25 }, - { 0.00, 0.50 }, - { 0.25, 0.50 }, - { 0.50, 0.50 }, - { 0.75, 0.50 }, - { 0.25, 0.75 }, - { 0.50, 0.75 } + { POS(1, 1), POS(0, 1) }, + { POS(2, 0), POS(0, 3) }, + { POS(0, 3), POS(1, 3) }, + { POS(1, 2), POS(1, 0) }, + { POS(2, 3), POS(1, 2) }, + { POS(3, 2), POS(1, 1) }, + { POS(0, 1), POS(2, 2) }, + { POS(1, 0), POS(2, 1) }, + { POS(2, 1), POS(2, 3) }, + { POS(3, 0), POS(2, 0) }, + { POS(1, 3), POS(3, 0) }, + { POS(2, 2), POS(3, 2) } }; + const GLfloat x = (GLfloat) winx; const GLfloat y = (GLfloat) winy; const GLfloat dx0 = v1[0] - v0[0]; @@ -169,40 +215,45 @@ compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], GLint stop = 4, i; GLfloat insideCount = 16.0F; -#ifdef DEBUG - { - const GLfloat area = dx0 * dy1 - dx1 * dy0; - assert(area >= 0.0); - } -#endif + ASSERT(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */ for (i = 0; i < stop; i++) { const GLfloat sx = x + samples[i][0]; const GLfloat sy = y + samples[i][1]; - const GLfloat fx0 = sx - v0[0]; - const GLfloat fy0 = sy - v0[1]; - const GLfloat fx1 = sx - v1[0]; - const GLfloat fy1 = sy - v1[1]; - const GLfloat fx2 = sx - v2[0]; - const GLfloat fy2 = sy - v2[1]; /* cross product determines if sample is inside or outside each edge */ - GLfloat cross0 = (dx0 * fy0 - dy0 * fx0); - GLfloat cross1 = (dx1 * fy1 - dy1 * fx1); - GLfloat cross2 = (dx2 * fy2 - dy2 * fx2); + GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0])); /* Check if the sample is exactly on an edge. If so, let cross be a * positive or negative value depending on the direction of the edge. */ - if (cross0 == 0.0F) - cross0 = dx0 + dy0; - if (cross1 == 0.0F) - cross1 = dx1 + dy1; - if (cross2 == 0.0F) - cross2 = dx2 + dy2; - if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) { - /* point is outside triangle */ + if (cross == 0.0F) + cross = dx0 + dy0; + if (cross < 0.0F) { + /* sample point is outside first edge */ insideCount -= 1.0F; stop = 16; } + else { + /* sample point is inside first edge */ + cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0])); + if (cross == 0.0F) + cross = dx1 + dy1; + if (cross < 0.0F) { + /* sample point is outside second edge */ + insideCount -= 1.0F; + stop = 16; + } + else { + /* sample point is inside first and second edges */ + cross = (dx2 * (sy - v2[1]) - dy2 * (sx - v2[0])); + if (cross == 0.0F) + cross = dx2 + dy2; + if (cross < 0.0F) { + /* sample point is outside third edge */ + insideCount -= 1.0F; + stop = 16; + } + } + } } if (stop == 4) return 1.0F; @@ -212,225 +263,50 @@ compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], -/* - * Compute how much (area) of the given pixel is inside the triangle. - * Vertices MUST be specified in counter-clockwise order. - * Return: coverage in [0, 15]. - */ -static GLint -compute_coveragei(const GLfloat v0[3], const GLfloat v1[3], - const GLfloat v2[3], GLint winx, GLint winy) -{ - /* NOTE: 15 samples instead of 16. - * A better sample distribution could be used. - */ - static const GLfloat samples[15][2] = { - /* start with the four corners */ - { 0.00, 0.00 }, - { 0.75, 0.00 }, - { 0.00, 0.75 }, - { 0.75, 0.75 }, - /* continue with interior samples */ - { 0.25, 0.00 }, - { 0.50, 0.00 }, - { 0.00, 0.25 }, - { 0.25, 0.25 }, - { 0.50, 0.25 }, - { 0.75, 0.25 }, - { 0.00, 0.50 }, - { 0.25, 0.50 }, - /*{ 0.50, 0.50 },*/ - { 0.75, 0.50 }, - { 0.25, 0.75 }, - { 0.50, 0.75 } - }; - const GLfloat x = (GLfloat) winx; - const GLfloat y = (GLfloat) winy; - const GLfloat dx0 = v1[0] - v0[0]; - const GLfloat dy0 = v1[1] - v0[1]; - const GLfloat dx1 = v2[0] - v1[0]; - const GLfloat dy1 = v2[1] - v1[1]; - const GLfloat dx2 = v0[0] - v2[0]; - const GLfloat dy2 = v0[1] - v2[1]; - GLint stop = 4, i; - GLint insideCount = 15; - -#ifdef DEBUG - { - const GLfloat area = dx0 * dy1 - dx1 * dy0; - assert(area >= 0.0); - } -#endif - - for (i = 0; i < stop; i++) { - const GLfloat sx = x + samples[i][0]; - const GLfloat sy = y + samples[i][1]; - const GLfloat fx0 = sx - v0[0]; - const GLfloat fy0 = sy - v0[1]; - const GLfloat fx1 = sx - v1[0]; - const GLfloat fy1 = sy - v1[1]; - const GLfloat fx2 = sx - v2[0]; - const GLfloat fy2 = sy - v2[1]; - /* cross product determines if sample is inside or outside each edge */ - GLfloat cross0 = (dx0 * fy0 - dy0 * fx0); - GLfloat cross1 = (dx1 * fy1 - dy1 * fx1); - GLfloat cross2 = (dx2 * fy2 - dy2 * fx2); - /* Check if the sample is exactly on an edge. If so, let cross be a - * positive or negative value depending on the direction of the edge. - */ - if (cross0 == 0.0F) - cross0 = dx0 + dy0; - if (cross1 == 0.0F) - cross1 = dx1 + dy1; - if (cross2 == 0.0F) - cross2 = dx2 + dy2; - if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) { - /* point is outside triangle */ - insideCount--; - stop = 15; - } - } - if (stop == 4) - return 15; - else - return insideCount; -} - - - static void -rgba_aa_tri(GLcontext *ctx, +rgba_aa_tri(struct gl_context *ctx, const SWvertex *v0, const SWvertex *v1, const SWvertex *v2) { #define DO_Z -#define DO_RGBA #include "s_aatritemp.h" } static void -index_aa_tri(GLcontext *ctx, - const SWvertex *v0, - const SWvertex *v1, - const SWvertex *v2) +general_aa_tri(struct gl_context *ctx, + const SWvertex *v0, + const SWvertex *v1, + const SWvertex *v2) { #define DO_Z -#define DO_INDEX +#define DO_ATTRIBS #include "s_aatritemp.h" } -/* - * Compute mipmap level of detail. - */ -static INLINE GLfloat -compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], - GLfloat invQ, GLfloat width, GLfloat height) -{ - GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; - GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; - GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; - GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; - GLfloat r1 = dudx * dudx + dudy * dudy; - GLfloat r2 = dvdx * dvdx + dvdy * dvdy; - GLfloat rho2 = r1 + r2; - /* return log base 2 of rho */ - return log(rho2) * 1.442695 * 0.5; /* 1.442695 = 1/log(2) */ -} - - -static void -tex_aa_tri(GLcontext *ctx, - const SWvertex *v0, - const SWvertex *v1, - const SWvertex *v2) -{ -#define DO_Z -#define DO_RGBA -#define DO_TEX -#include "s_aatritemp.h" -} - - -static void -spec_tex_aa_tri(GLcontext *ctx, - const SWvertex *v0, - const SWvertex *v1, - const SWvertex *v2) -{ -#define DO_Z -#define DO_RGBA -#define DO_TEX -#define DO_SPEC -#include "s_aatritemp.h" -} - - -static void -multitex_aa_tri(GLcontext *ctx, - const SWvertex *v0, - const SWvertex *v1, - const SWvertex *v2) -{ -#define DO_Z -#define DO_RGBA -#define DO_MULTITEX -#include "s_aatritemp.h" -} - -static void -spec_multitex_aa_tri(GLcontext *ctx, - const SWvertex *v0, - const SWvertex *v1, - const SWvertex *v2) -{ -#define DO_Z -#define DO_RGBA -#define DO_MULTITEX -#define DO_SPEC -#include "s_aatritemp.h" -} - /* - * Examine GL state and set ctx->Driver.TriangleFunc to an + * Examine GL state and set swrast->Triangle to an * appropriate antialiased triangle rasterizer function. */ void -_mesa_set_aa_triangle_function(GLcontext *ctx) +_swrast_set_aa_triangle_function(struct gl_context *ctx) { SWcontext *swrast = SWRAST_CONTEXT(ctx); + ASSERT(ctx->Polygon.SmoothFlag); - if (ctx->Texture._ReallyEnabled) { - if (ctx->Light.Enabled && - (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR || - ctx->Fog.ColorSumEnabled)) { - if (swrast->_MultiTextureEnabled) { - SWRAST_CONTEXT(ctx)->Triangle = spec_multitex_aa_tri; - } - else { - SWRAST_CONTEXT(ctx)->Triangle = spec_tex_aa_tri; - } - } - else { - if (swrast->_MultiTextureEnabled) { - SWRAST_CONTEXT(ctx)->Triangle = multitex_aa_tri; - } - else { - SWRAST_CONTEXT(ctx)->Triangle = tex_aa_tri; - } - } + if (ctx->Texture._EnabledCoordUnits != 0 + || ctx->FragmentProgram._Current + || swrast->_FogEnabled + || _mesa_need_secondary_color(ctx)) { + SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri; } else { - if (ctx->Visual.rgbMode) { - SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri; - } - else { - SWRAST_CONTEXT(ctx)->Triangle = index_aa_tri; - } + SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri; } + ASSERT(SWRAST_CONTEXT(ctx)->Triangle); }