X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fswrast%2Fs_aatritemp.h;h=230dab81633da908709247f077b89b663a3a2b2e;hb=0f235c960c8a564ff8817835716e8f377b2f5f16;hp=febc46f85d3e8cf98b173d63d2dfef55e52ce2cb;hpb=08836341788a9f9d638d9dc8328510ccd18ddeb5;p=mesa.git diff --git a/src/mesa/swrast/s_aatritemp.h b/src/mesa/swrast/s_aatritemp.h index febc46f85d3..230dab81633 100644 --- a/src/mesa/swrast/s_aatritemp.h +++ b/src/mesa/swrast/s_aatritemp.h @@ -1,27 +1,25 @@ -/* $Id: s_aatritemp.h,v 1.6 2001/03/03 20:33:30 brianp Exp $ */ - /* * Mesa 3-D graphics library - * Version: 3.5 - * - * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. - * + * + * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. + * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: - * + * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. - * + * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. */ @@ -35,64 +33,43 @@ * The following macros may be defined to indicate what auxillary information * must be copmuted across the triangle: * DO_Z - if defined, compute Z values - * DO_RGBA - if defined, compute RGBA values - * DO_INDEX - if defined, compute color index values - * DO_SPEC - if defined, compute specular RGB values - * DO_TEX - if defined, compute unit 0 STRQ texcoords - * DO_MULTITEX - if defined, compute all unit's STRQ texcoords + * DO_ATTRIBS - if defined, compute texcoords, varying, etc. */ -/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/ +/*void triangle( struct gl_context *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/ { - const GLfloat *p0 = v0->win; - const GLfloat *p1 = v1->win; - const GLfloat *p2 = v2->win; + const SWcontext *swrast = SWRAST_CONTEXT(ctx); + const GLfloat *p0 = v0->attrib[VARYING_SLOT_POS]; + const GLfloat *p1 = v1->attrib[VARYING_SLOT_POS]; + const GLfloat *p2 = v2->attrib[VARYING_SLOT_POS]; const SWvertex *vMin, *vMid, *vMax; GLint iyMin, iyMax; GLfloat yMin, yMax; GLboolean ltor; - GLfloat majDx, majDy; + GLfloat majDx, majDy; /* major (i.e. long) edge dx and dy */ + + SWspan span; + #ifdef DO_Z - GLfloat zPlane[4]; /* Z (depth) */ - GLdepth z[MAX_WIDTH]; - GLfloat fogPlane[4]; - GLfixed fog[MAX_WIDTH]; -#endif -#ifdef DO_RGBA - GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; /* color */ - GLchan rgba[MAX_WIDTH][4]; + GLfloat zPlane[4]; #endif -#ifdef DO_INDEX - GLfloat iPlane[4]; /* color index */ - GLuint index[MAX_WIDTH]; + GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4]; +#if defined(DO_ATTRIBS) + GLfloat attrPlane[VARYING_SLOT_MAX][4][4]; + GLfloat wPlane[4]; /* win[3] */ #endif -#ifdef DO_SPEC - GLfloat srPlane[4], sgPlane[4], sbPlane[4]; /* spec color */ - GLchan spec[MAX_WIDTH][4]; -#endif -#ifdef DO_TEX - GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4]; - GLfloat texWidth, texHeight; - GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH]; - GLfloat lambda[MAX_WIDTH]; -#elif defined(DO_MULTITEX) - GLfloat sPlane[MAX_TEXTURE_UNITS][4]; - GLfloat tPlane[MAX_TEXTURE_UNITS][4]; - GLfloat uPlane[MAX_TEXTURE_UNITS][4]; - GLfloat vPlane[MAX_TEXTURE_UNITS][4]; - GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS]; - GLfloat s[MAX_TEXTURE_UNITS][MAX_WIDTH]; - GLfloat t[MAX_TEXTURE_UNITS][MAX_WIDTH]; - GLfloat u[MAX_TEXTURE_UNITS][MAX_WIDTH]; - GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH]; -#endif - GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign; + GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign; + + (void) swrast; + + INIT_SPAN(span, GL_POLYGON); + span.arrayMask = SPAN_COVERAGE; /* determine bottom to top order of vertices */ { - GLfloat y0 = v0->win[1]; - GLfloat y1 = v1->win[1]; - GLfloat y2 = v2->win[1]; + GLfloat y0 = v0->attrib[VARYING_SLOT_POS][1]; + GLfloat y1 = v1->attrib[VARYING_SLOT_POS][1]; + GLfloat y2 = v2->attrib[VARYING_SLOT_POS][1]; if (y0 <= y1) { if (y1 <= y2) { vMin = v0; vMid = v1; vMax = v2; /* y0<=y1<=y2 */ @@ -117,38 +94,36 @@ } } - majDx = vMax->win[0] - vMin->win[0]; - majDy = vMax->win[1] - vMin->win[1]; + majDx = vMax->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0]; + majDy = vMax->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1]; + /* front/back-face determination and cullling */ { - const GLfloat botDx = vMid->win[0] - vMin->win[0]; - const GLfloat botDy = vMid->win[1] - vMin->win[1]; + const GLfloat botDx = vMid->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0]; + const GLfloat botDy = vMid->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1]; const GLfloat area = majDx * botDy - botDx * majDy; - ltor = (GLboolean) (area < 0.0F); /* Do backface culling */ - if (area * bf < 0 || area * area < .0025) + if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area)) return; - } + ltor = (GLboolean) (area < 0.0F); -#ifndef DO_OCCLUSION_TEST - ctx->OcclusionResult = GL_TRUE; -#endif + span.facing = area * swrast->_BackfaceSign > 0.0F; + } - /* plane setup */ + /* Plane equation setup: + * We evaluate plane equations at window (x,y) coordinates in order + * to compute color, Z, fog, texcoords, etc. This isn't terribly + * efficient but it's easy and reliable. + */ #ifdef DO_Z compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane); - compute_plane(p0, p1, p2, - v0->fog, - v1->fog, - v2->fog, - fogPlane); + span.arrayMask |= SPAN_Z; #endif -#ifdef DO_RGBA if (ctx->Light.ShadeModel == GL_SMOOTH) { - compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane); - compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane); - compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane); - compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane); + compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane); + compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane); + compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane); + compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane); } else { constant_plane(v2->color[RCOMP], rPlane); @@ -156,108 +131,72 @@ constant_plane(v2->color[BCOMP], bPlane); constant_plane(v2->color[ACOMP], aPlane); } -#endif -#ifdef DO_INDEX - if (ctx->Light.ShadeModel == GL_SMOOTH) { - compute_plane(p0, p1, p2, v0->index, - v1->index, v2->index, iPlane); - } - else { - constant_plane(v2->index, iPlane); - } -#endif -#ifdef DO_SPEC - if (ctx->Light.ShadeModel == GL_SMOOTH) { - compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane); - compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane); - compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane); - } - else { - /* KW: added this */ - constant_plane(v2->specular[RCOMP], srPlane); - constant_plane(v2->specular[GCOMP], sgPlane); - constant_plane(v2->specular[BCOMP], sbPlane); - } -#endif -#ifdef DO_TEX - { - const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current; - const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel]; - const GLfloat invW0 = v0->win[3]; - const GLfloat invW1 = v1->win[3]; - const GLfloat invW2 = v2->win[3]; - const GLfloat s0 = v0->texcoord[0][0] * invW0; - const GLfloat s1 = v1->texcoord[0][0] * invW1; - const GLfloat s2 = v2->texcoord[0][0] * invW2; - const GLfloat t0 = v0->texcoord[0][1] * invW0; - const GLfloat t1 = v1->texcoord[0][1] * invW1; - const GLfloat t2 = v2->texcoord[0][1] * invW2; - const GLfloat r0 = v0->texcoord[0][2] * invW0; - const GLfloat r1 = v1->texcoord[0][2] * invW1; - const GLfloat r2 = v2->texcoord[0][2] * invW2; - const GLfloat q0 = v0->texcoord[0][3] * invW0; - const GLfloat q1 = v1->texcoord[0][3] * invW1; - const GLfloat q2 = v2->texcoord[0][3] * invW2; - compute_plane(p0, p1, p2, s0, s1, s2, sPlane); - compute_plane(p0, p1, p2, t0, t1, t2, tPlane); - compute_plane(p0, p1, p2, r0, r1, r2, uPlane); - compute_plane(p0, p1, p2, q0, q1, q2, vPlane); - texWidth = (GLfloat) texImage->Width; - texHeight = (GLfloat) texImage->Height; - } -#elif defined(DO_MULTITEX) + span.arrayMask |= SPAN_RGBA; +#if defined(DO_ATTRIBS) { - GLuint u; - for (u = 0; u < ctx->Const.MaxTextureUnits; u++) { - if (ctx->Texture.Unit[u]._ReallyEnabled) { - const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current; - const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel]; - const GLfloat invW0 = v0->win[3]; - const GLfloat invW1 = v1->win[3]; - const GLfloat invW2 = v2->win[3]; - const GLfloat s0 = v0->texcoord[u][0] * invW0; - const GLfloat s1 = v1->texcoord[u][0] * invW1; - const GLfloat s2 = v2->texcoord[u][0] * invW2; - const GLfloat t0 = v0->texcoord[u][1] * invW0; - const GLfloat t1 = v1->texcoord[u][1] * invW1; - const GLfloat t2 = v2->texcoord[u][1] * invW2; - const GLfloat r0 = v0->texcoord[u][2] * invW0; - const GLfloat r1 = v1->texcoord[u][2] * invW1; - const GLfloat r2 = v2->texcoord[u][2] * invW2; - const GLfloat q0 = v0->texcoord[u][3] * invW0; - const GLfloat q1 = v1->texcoord[u][3] * invW1; - const GLfloat q2 = v2->texcoord[u][3] * invW2; - compute_plane(p0, p1, p2, s0, s1, s2, sPlane[u]); - compute_plane(p0, p1, p2, t0, t1, t2, tPlane[u]); - compute_plane(p0, p1, p2, r0, r1, r2, uPlane[u]); - compute_plane(p0, p1, p2, q0, q1, q2, vPlane[u]); - texWidth[u] = (GLfloat) texImage->Width; - texHeight[u] = (GLfloat) texImage->Height; + const GLfloat invW0 = v0->attrib[VARYING_SLOT_POS][3]; + const GLfloat invW1 = v1->attrib[VARYING_SLOT_POS][3]; + const GLfloat invW2 = v2->attrib[VARYING_SLOT_POS][3]; + compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane); + span.attrStepX[VARYING_SLOT_POS][3] = plane_dx(wPlane); + span.attrStepY[VARYING_SLOT_POS][3] = plane_dy(wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + if (swrast->_InterpMode[attr] == GL_FLAT) { + for (c = 0; c < 4; c++) { + constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]); + } } - } + else { + for (c = 0; c < 4; c++) { + const GLfloat a0 = v0->attrib[attr][c] * invW0; + const GLfloat a1 = v1->attrib[attr][c] * invW1; + const GLfloat a2 = v2->attrib[attr][c] * invW2; + compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]); + } + } + for (c = 0; c < 4; c++) { + span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]); + span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]); + } + ATTRIB_LOOP_END } #endif - yMin = vMin->win[1]; - yMax = vMax->win[1]; - iyMin = (int) yMin; - iyMax = (int) yMax + 1; + /* Begin bottom-to-top scan over the triangle. + * The long edge will either be on the left or right side of the + * triangle. We always scan from the long edge toward the shorter + * edges, stopping when we find that coverage = 0. If the long edge + * is on the left we scan left-to-right. Else, we scan right-to-left. + */ + yMin = vMin->attrib[VARYING_SLOT_POS][1]; + yMax = vMax->attrib[VARYING_SLOT_POS][1]; + iyMin = (GLint) yMin; + iyMax = (GLint) yMax + 1; if (ltor) { /* scan left to right */ - const float *pMin = vMin->win; - const float *pMid = vMid->win; - const float *pMax = vMax->win; - const float dxdy = majDx / majDy; - const float xAdj = dxdy < 0.0F ? -dxdy : 0.0F; - float x = vMin->win[0] - (yMin - iyMin) * dxdy; - int iy; - for (iy = iyMin; iy < iyMax; iy++, x += dxdy) { + const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS]; + const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS]; + const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS]; + const GLfloat dxdy = majDx / majDy; + const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F; + GLint iy; +#ifdef _OPENMP +#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span) +#endif + for (iy = iyMin; iy < iyMax; iy++) { + GLfloat x = pMin[0] - (yMin - iy) * dxdy; GLint ix, startX = (GLint) (x - xAdj); - GLuint count, n; + GLuint count; GLfloat coverage = 0.0F; + +#ifdef _OPENMP + /* each thread needs to use a different (global) SpanArrays variable */ + span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num(); +#endif /* skip over fragments with zero coverage */ - while (startX < MAX_WIDTH) { + while (startX < SWRAST_MAX_WIDTH) { coverage = compute_coveragef(pMin, pMid, pMax, startX, iy); if (coverage > 0.0F) break; @@ -266,251 +205,139 @@ /* enter interior of triangle */ ix = startX; + +#if defined(DO_ATTRIBS) + /* compute attributes at left-most fragment */ + span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]); + } + ATTRIB_LOOP_END +#endif + count = 0; while (coverage > 0.0F) { + /* (cx,cy) = center of fragment */ + const GLfloat cx = ix + 0.5F, cy = iy + 0.5F; + SWspanarrays *array = span.array; + array->coverage[count] = coverage; #ifdef DO_Z - z[count] = (GLdepth) solve_plane(ix, iy, zPlane); - fog[count] = FloatToFixed(solve_plane(ix, iy, fogPlane)); -#endif -#ifdef DO_RGBA - rgba[count][RCOMP] = solve_plane_chan(ix, iy, rPlane); - rgba[count][GCOMP] = solve_plane_chan(ix, iy, gPlane); - rgba[count][BCOMP] = solve_plane_chan(ix, iy, bPlane); - rgba[count][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage); -#endif -#ifdef DO_INDEX - { - GLint frac = compute_coveragei(pMin, pMid, pMax, ix, iy); - GLint indx = (GLint) solve_plane(ix, iy, iPlane); - index[count] = (indx & ~0xf) | frac; - } -#endif -#ifdef DO_SPEC - spec[count][RCOMP] = solve_plane_chan(ix, iy, srPlane); - spec[count][GCOMP] = solve_plane_chan(ix, iy, sgPlane); - spec[count][BCOMP] = solve_plane_chan(ix, iy, sbPlane); -#endif -#ifdef DO_TEX - { - GLfloat invQ = solve_plane_recip(ix, iy, vPlane); - s[count] = solve_plane(ix, iy, sPlane) * invQ; - t[count] = solve_plane(ix, iy, tPlane) * invQ; - u[count] = solve_plane(ix, iy, uPlane) * invQ; - lambda[count] = compute_lambda(sPlane, tPlane, invQ, - texWidth, texHeight); - } -#elif defined(DO_MULTITEX) - { - GLuint unit; - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]); - s[unit][count] = solve_plane(ix, iy, sPlane[unit]) * invQ; - t[unit][count] = solve_plane(ix, iy, tPlane[unit]) * invQ; - u[unit][count] = solve_plane(ix, iy, uPlane[unit]) * invQ; - lambda[unit][count] = compute_lambda(sPlane[unit], - tPlane[unit], invQ, texWidth[unit], texHeight[unit]); - } - } - } + array->z[count] = (GLuint) solve_plane(cx, cy, zPlane); #endif + array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane); + array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane); + array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane); + array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane); ix++; count++; coverage = compute_coveragef(pMin, pMid, pMax, ix, iy); } - - n = (GLuint) ix - (GLuint) startX; -#ifdef DO_MULTITEX -# ifdef DO_SPEC - _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog, - (const GLfloat (*)[MAX_WIDTH]) s, - (const GLfloat (*)[MAX_WIDTH]) t, - (const GLfloat (*)[MAX_WIDTH]) u, - (GLfloat (*)[MAX_WIDTH]) lambda, - rgba, (const GLchan (*)[4]) spec, - GL_POLYGON); -# else - _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog, - (const GLfloat (*)[MAX_WIDTH]) s, - (const GLfloat (*)[MAX_WIDTH]) t, - (const GLfloat (*)[MAX_WIDTH]) u, - lambda, rgba, NULL, GL_POLYGON); -# endif -#elif defined(DO_TEX) -# ifdef DO_SPEC - _mesa_write_texture_span(ctx, n, startX, iy, z, fog, - s, t, u, lambda, rgba, - (const GLchan (*)[4]) spec, GL_POLYGON); -# else - _mesa_write_texture_span(ctx, n, startX, iy, z, fog, - s, t, u, lambda, - rgba, NULL, GL_POLYGON); -# endif -#elif defined(DO_RGBA) - _mesa_write_rgba_span(ctx, n, startX, iy, z, fog, rgba, GL_POLYGON); -#elif defined(DO_INDEX) - _mesa_write_index_span(ctx, n, startX, iy, z, fog, index, GL_POLYGON); -#endif + + if (ix > startX) { + span.x = startX; + span.y = iy; + span.end = (GLuint) ix - (GLuint) startX; + _swrast_write_rgba_span(ctx, &span); + } } } else { /* scan right to left */ - const GLfloat *pMin = vMin->win; - const GLfloat *pMid = vMid->win; - const GLfloat *pMax = vMax->win; + const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS]; + const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS]; + const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS]; const GLfloat dxdy = majDx / majDy; const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F; - GLfloat x = vMin->win[0] - (yMin - iyMin) * dxdy; GLint iy; - for (iy = iyMin; iy < iyMax; iy++, x += dxdy) { +#ifdef _OPENMP +#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span) +#endif + for (iy = iyMin; iy < iyMax; iy++) { + GLfloat x = pMin[0] - (yMin - iy) * dxdy; GLint ix, left, startX = (GLint) (x + xAdj); GLuint count, n; GLfloat coverage = 0.0F; + +#ifdef _OPENMP + /* each thread needs to use a different (global) SpanArrays variable */ + span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num(); +#endif + /* make sure we're not past the window edge */ + if (startX >= ctx->DrawBuffer->_Xmax) { + startX = ctx->DrawBuffer->_Xmax - 1; + } + /* skip fragments with zero coverage */ - while (startX >= 0) { + while (startX > 0) { coverage = compute_coveragef(pMin, pMax, pMid, startX, iy); if (coverage > 0.0F) break; startX--; } - + /* enter interior of triangle */ ix = startX; count = 0; while (coverage > 0.0F) { + /* (cx,cy) = center of fragment */ + const GLfloat cx = ix + 0.5F, cy = iy + 0.5F; + SWspanarrays *array = span.array; + assert(ix >= 0); + array->coverage[ix] = coverage; #ifdef DO_Z - z[ix] = (GLdepth) solve_plane(ix, iy, zPlane); - fog[ix] = FloatToFixed(solve_plane(ix, iy, fogPlane)); -#endif -#ifdef DO_RGBA - rgba[ix][RCOMP] = solve_plane_chan(ix, iy, rPlane); - rgba[ix][GCOMP] = solve_plane_chan(ix, iy, gPlane); - rgba[ix][BCOMP] = solve_plane_chan(ix, iy, bPlane); - rgba[ix][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage); -#endif -#ifdef DO_INDEX - { - GLint frac = compute_coveragei(pMin, pMax, pMid, ix, iy); - GLint indx = (GLint) solve_plane(ix, iy, iPlane); - index[ix] = (indx & ~0xf) | frac; - } -#endif -#ifdef DO_SPEC - spec[ix][RCOMP] = solve_plane_chan(ix, iy, srPlane); - spec[ix][GCOMP] = solve_plane_chan(ix, iy, sgPlane); - spec[ix][BCOMP] = solve_plane_chan(ix, iy, sbPlane); -#endif -#ifdef DO_TEX - { - GLfloat invQ = solve_plane_recip(ix, iy, vPlane); - s[ix] = solve_plane(ix, iy, sPlane) * invQ; - t[ix] = solve_plane(ix, iy, tPlane) * invQ; - u[ix] = solve_plane(ix, iy, uPlane) * invQ; - lambda[ix] = compute_lambda(sPlane, tPlane, invQ, - texWidth, texHeight); - } -#elif defined(DO_MULTITEX) - { - GLuint unit; - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]); - s[unit][ix] = solve_plane(ix, iy, sPlane[unit]) * invQ; - t[unit][ix] = solve_plane(ix, iy, tPlane[unit]) * invQ; - u[unit][ix] = solve_plane(ix, iy, uPlane[unit]) * invQ; - lambda[unit][ix] = compute_lambda(sPlane[unit], - tPlane[unit], invQ, texWidth[unit], texHeight[unit]); - } - } - } + array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane); #endif + array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane); + array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane); + array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane); + array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane); ix--; count++; coverage = compute_coveragef(pMin, pMax, pMid, ix, iy); } + +#if defined(DO_ATTRIBS) + /* compute attributes at left-most fragment */ + span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 1.5F, iy + 0.5F, wPlane); + ATTRIB_LOOP_BEGIN + GLuint c; + for (c = 0; c < 4; c++) { + span.attrStart[attr][c] = solve_plane(ix + 1.5F, iy + 0.5F, attrPlane[attr][c]); + } + ATTRIB_LOOP_END +#endif + + if (startX > ix) { + n = (GLuint) startX - (GLuint) ix; - n = (GLuint) startX - (GLuint) ix; - left = ix + 1; -#ifdef DO_MULTITEX - { - GLuint unit; - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - GLint j; - for (j = 0; j < n; j++) { - s[unit][j] = s[unit][j + left]; - t[unit][j] = t[unit][j + left]; - u[unit][j] = u[unit][j + left]; - lambda[unit][j] = lambda[unit][j + left]; - } + left = ix + 1; + + /* shift all values to the left */ + /* XXX this is temporary */ + { + SWspanarrays *array = span.array; + GLint j; + for (j = 0; j < (GLint) n; j++) { + array->coverage[j] = array->coverage[j + left]; + COPY_CHAN4(array->rgba[j], array->rgba[j + left]); +#ifdef DO_Z + array->z[j] = array->z[j + left]; +#endif } } + + span.x = left; + span.y = iy; + span.end = n; + _swrast_write_rgba_span(ctx, &span); } -# ifdef DO_SPEC - _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left, - (const GLfloat (*)[MAX_WIDTH]) s, - (const GLfloat (*)[MAX_WIDTH]) t, - (const GLfloat (*)[MAX_WIDTH]) u, - lambda, rgba + left, - (const GLchan (*)[4]) (spec + left), - GL_POLYGON); -# else - _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left, - (const GLfloat (*)[MAX_WIDTH]) s, - (const GLfloat (*)[MAX_WIDTH]) t, - (const GLfloat (*)[MAX_WIDTH]) u, - lambda, - rgba + left, NULL, GL_POLYGON); -# endif -#elif defined(DO_TEX) -# ifdef DO_SPEC - _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left, - s + left, t + left, u + left, - lambda + left, rgba + left, - (const GLchan (*)[4]) (spec + left), - GL_POLYGON); -# else - _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left, - s + left, t + left, - u + left, lambda + left, - rgba + left, NULL, GL_POLYGON); -# endif -#elif defined(DO_RGBA) - _mesa_write_rgba_span(ctx, n, left, iy, z + left, fog + left, - rgba + left, GL_POLYGON); -#elif defined(DO_INDEX) - _mesa_write_index_span(ctx, n, left, iy, z + left, fog + left, - index + left, GL_POLYGON); -#endif } } } -#ifdef DO_Z #undef DO_Z -#endif - -#ifdef DO_RGBA -#undef DO_RGBA -#endif - -#ifdef DO_INDEX -#undef DO_INDEX -#endif - -#ifdef DO_SPEC -#undef DO_SPEC -#endif - -#ifdef DO_TEX -#undef DO_TEX -#endif - -#ifdef DO_MULTITEX -#undef DO_MULTITEX -#endif - -#ifdef DO_OCCLUSION_TEST +#undef DO_ATTRIBS #undef DO_OCCLUSION_TEST -#endif