X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fswrast%2Fs_texfilter.c;h=28bd57be8a10d11ce73ddd8ef1714103bfe4ecee;hb=caa98246a0e180a96f3fcdcd3bfcbef0b136bc11;hp=ad31e3778eb67f2c132f58c8a25e923ce6627c80;hpb=ede7d9fff504db3a4790b0e55d247f85ef22d045;p=mesa.git diff --git a/src/mesa/swrast/s_texfilter.c b/src/mesa/swrast/s_texfilter.c index ad31e3778eb..28bd57be8a1 100644 --- a/src/mesa/swrast/s_texfilter.c +++ b/src/mesa/swrast/s_texfilter.c @@ -1,6 +1,5 @@ /* * Mesa 3-D graphics library - * Version: 7.3 * * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. * @@ -17,16 +16,21 @@ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN - * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN - * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR + * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, + * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR + * OTHER DEALINGS IN THE SOFTWARE. */ +#include "c99_math.h" #include "main/glheader.h" #include "main/context.h" -#include "main/colormac.h" -#include "main/imports.h" + +#include "main/macros.h" +#include "main/samplerobj.h" +#include "main/teximage.h" +#include "main/texobj.h" #include "s_context.h" #include "s_texfilter.h" @@ -39,7 +43,7 @@ * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). */ -#define FRAC(f) ((f) - IFLOOR(f)) +#define FRAC(f) ((f) - util_ifloor(f)) @@ -57,7 +61,7 @@ * optimization! If we find that's not true on some systems, convert * to a macro. */ -static INLINE GLfloat +static inline GLfloat lerp_2d(GLfloat a, GLfloat b, GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) { @@ -71,7 +75,7 @@ lerp_2d(GLfloat a, GLfloat b, * Do 3D/trilinear interpolation of float values. * \sa lerp_2d */ -static INLINE GLfloat +static GLfloat lerp_3d(GLfloat a, GLfloat b, GLfloat c, GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) @@ -89,7 +93,7 @@ lerp_3d(GLfloat a, GLfloat b, GLfloat c, /** * Do linear interpolation of colors. */ -static INLINE void +static void lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) { result[0] = LERP(t, a[0], b[0]); @@ -102,7 +106,7 @@ lerp_rgba(GLfloat result[4], GLfloat t, const GLfloat a[4], const GLfloat b[4]) /** * Do bilinear interpolation of colors. */ -static INLINE void +static void lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, const GLfloat t00[4], const GLfloat t10[4], const GLfloat t01[4], const GLfloat t11[4]) @@ -117,7 +121,7 @@ lerp_rgba_2d(GLfloat result[4], GLfloat a, GLfloat b, /** * Do trilinear interpolation of colors. */ -static INLINE void +static void lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, const GLfloat t000[4], const GLfloat t100[4], const GLfloat t010[4], const GLfloat t110[4], @@ -153,22 +157,23 @@ lerp_rgba_3d(GLfloat result[4], GLfloat a, GLfloat b, GLfloat c, * i0, i1 = returns two nearest texel indexes * weight = returns blend factor between texels */ -static INLINE void +static void linear_texel_locations(GLenum wrapMode, const struct gl_texture_image *img, GLint size, GLfloat s, GLint *i0, GLint *i1, GLfloat *weight) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); GLfloat u; switch (wrapMode) { case GL_REPEAT: u = s * size - 0.5F; - if (img->_IsPowerOfTwo) { - *i0 = IFLOOR(u) & (size - 1); + if (swImg->_IsPowerOfTwo) { + *i0 = util_ifloor(u) & (size - 1); *i1 = (*i0 + 1) & (size - 1); } else { - *i0 = REMAINDER(IFLOOR(u), size); + *i0 = REMAINDER(util_ifloor(u), size); *i1 = REMAINDER(*i0 + 1, size); } break; @@ -180,7 +185,7 @@ linear_texel_locations(GLenum wrapMode, else u = s * size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; if (*i0 < 0) *i0 = 0; @@ -198,19 +203,19 @@ linear_texel_locations(GLenum wrapMode, else u = s * size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; } break; case GL_MIRRORED_REPEAT: { - const GLint flr = IFLOOR(s); + const GLint flr = util_ifloor(s); if (flr & 1) u = 1.0F - (s - (GLfloat) flr); else u = s - (GLfloat) flr; u = (u * size) - 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; if (*i0 < 0) *i0 = 0; @@ -219,23 +224,23 @@ linear_texel_locations(GLenum wrapMode, } break; case GL_MIRROR_CLAMP_EXT: - u = FABSF(s); + u = fabsf(s); if (u >= 1.0F) u = (GLfloat) size; else u *= size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; break; case GL_MIRROR_CLAMP_TO_EDGE_EXT: - u = FABSF(s); + u = fabsf(s); if (u >= 1.0F) u = (GLfloat) size; else u *= size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; if (*i0 < 0) *i0 = 0; @@ -246,7 +251,7 @@ linear_texel_locations(GLenum wrapMode, { const GLfloat min = -1.0F / (2.0F * size); const GLfloat max = 1.0F - min; - u = FABSF(s); + u = fabsf(s); if (u <= min) u = min * size; else if (u >= max) @@ -254,7 +259,7 @@ linear_texel_locations(GLenum wrapMode, else u *= size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; } break; @@ -266,12 +271,14 @@ linear_texel_locations(GLenum wrapMode, else u = s * size; u -= 0.5F; - *i0 = IFLOOR(u); + *i0 = util_ifloor(u); *i1 = *i0 + 1; break; default: _mesa_problem(NULL, "Bad wrap mode"); + *i0 = *i1 = 0; u = 0.0F; + break; } *weight = FRAC(u); } @@ -280,19 +287,20 @@ linear_texel_locations(GLenum wrapMode, /** * Used to compute texel location for nearest sampling. */ -static INLINE GLint +static GLint nearest_texel_location(GLenum wrapMode, const struct gl_texture_image *img, GLint size, GLfloat s) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); GLint i; switch (wrapMode) { case GL_REPEAT: /* s limited to [0,1) */ /* i limited to [0,size-1] */ - i = IFLOOR(s * size); - if (img->_IsPowerOfTwo) + i = util_ifloor(s * size); + if (swImg->_IsPowerOfTwo) i &= (size - 1); else i = REMAINDER(i, size); @@ -308,7 +316,7 @@ nearest_texel_location(GLenum wrapMode, else if (s > max) i = size - 1; else - i = IFLOOR(s * size); + i = util_ifloor(s * size); } return i; case GL_CLAMP_TO_BORDER: @@ -322,14 +330,14 @@ nearest_texel_location(GLenum wrapMode, else if (s >= max) i = size; else - i = IFLOOR(s * size); + i = util_ifloor(s * size); } return i; case GL_MIRRORED_REPEAT: { const GLfloat min = 1.0F / (2.0F * size); const GLfloat max = 1.0F - min; - const GLint flr = IFLOOR(s); + const GLint flr = util_ifloor(s); GLfloat u; if (flr & 1) u = 1.0F - (s - (GLfloat) flr); @@ -340,20 +348,20 @@ nearest_texel_location(GLenum wrapMode, else if (u > max) i = size - 1; else - i = IFLOOR(u * size); + i = util_ifloor(u * size); } return i; case GL_MIRROR_CLAMP_EXT: { /* s limited to [0,1] */ /* i limited to [0,size-1] */ - const GLfloat u = FABSF(s); + const GLfloat u = fabsf(s); if (u <= 0.0F) i = 0; else if (u >= 1.0F) i = size - 1; else - i = IFLOOR(u * size); + i = util_ifloor(u * size); } return i; case GL_MIRROR_CLAMP_TO_EDGE_EXT: @@ -362,13 +370,13 @@ nearest_texel_location(GLenum wrapMode, /* i limited to [0, size-1] */ const GLfloat min = 1.0F / (2.0F * size); const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); + const GLfloat u = fabsf(s); if (u < min) i = 0; else if (u > max) i = size - 1; else - i = IFLOOR(u * size); + i = util_ifloor(u * size); } return i; case GL_MIRROR_CLAMP_TO_BORDER_EXT: @@ -377,13 +385,13 @@ nearest_texel_location(GLenum wrapMode, /* i limited to [0, size-1] */ const GLfloat min = -1.0F / (2.0F * size); const GLfloat max = 1.0F - min; - const GLfloat u = FABSF(s); + const GLfloat u = fabsf(s); if (u < min) i = -1; else if (u > max) i = size; else - i = IFLOOR(u * size); + i = util_ifloor(u * size); } return i; case GL_CLAMP: @@ -394,7 +402,7 @@ nearest_texel_location(GLenum wrapMode, else if (s >= 1.0F) i = size - 1; else - i = IFLOOR(s * size); + i = util_ifloor(s * size); return i; default: _mesa_problem(NULL, "Bad wrap mode"); @@ -404,12 +412,12 @@ nearest_texel_location(GLenum wrapMode, /* Power of two image sizes only */ -static INLINE void +static void linear_repeat_texel_location(GLuint size, GLfloat s, GLint *i0, GLint *i1, GLfloat *weight) { GLfloat u = s * size - 0.5F; - *i0 = IFLOOR(u) & (size - 1); + *i0 = util_ifloor(u) & (size - 1); *i1 = (*i0 + 1) & (size - 1); *weight = FRAC(u); } @@ -418,16 +426,16 @@ linear_repeat_texel_location(GLuint size, GLfloat s, /** * Do clamp/wrap for a texture rectangle coord, GL_NEAREST filter mode. */ -static INLINE GLint +static GLint clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) { switch (wrapMode) { case GL_CLAMP: - return IFLOOR( CLAMP(coord, 0.0F, max - 1) ); + return util_ifloor( CLAMP(coord, 0.0F, max - 1) ); case GL_CLAMP_TO_EDGE: - return IFLOOR( CLAMP(coord, 0.5F, max - 0.5F) ); + return util_ifloor( CLAMP(coord, 0.5F, max - 0.5F) ); case GL_CLAMP_TO_BORDER: - return IFLOOR( CLAMP(coord, -0.5F, max + 0.5F) ); + return util_ifloor( CLAMP(coord, -0.5F, max + 0.5F) ); default: _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_nearest"); return 0; @@ -438,7 +446,7 @@ clamp_rect_coord_nearest(GLenum wrapMode, GLfloat coord, GLint max) /** * As above, but GL_LINEAR filtering. */ -static INLINE void +static void clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, GLint *i0out, GLint *i1out, GLfloat *weight) { @@ -448,13 +456,13 @@ clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, case GL_CLAMP: /* Not exactly what the spec says, but it matches NVIDIA output */ fcol = CLAMP(coord - 0.5F, 0.0F, max - 1); - i0 = IFLOOR(fcol); + i0 = util_ifloor(fcol); i1 = i0 + 1; break; case GL_CLAMP_TO_EDGE: fcol = CLAMP(coord, 0.5F, max - 0.5F); fcol -= 0.5F; - i0 = IFLOOR(fcol); + i0 = util_ifloor(fcol); i1 = i0 + 1; if (i1 > max - 1) i1 = max - 1; @@ -462,13 +470,14 @@ clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, case GL_CLAMP_TO_BORDER: fcol = CLAMP(coord, -0.5F, max + 0.5F); fcol -= 0.5F; - i0 = IFLOOR(fcol); + i0 = util_ifloor(fcol); i1 = i0 + 1; break; default: _mesa_problem(NULL, "bad wrapMode in clamp_rect_coord_linear"); i0 = i1 = 0; fcol = 0.0F; + break; } *i0out = i0; *i1out = i1; @@ -479,10 +488,10 @@ clamp_rect_coord_linear(GLenum wrapMode, GLfloat coord, GLint max, /** * Compute slice/image to use for 1D or 2D array texture. */ -static INLINE GLint +static GLint tex_array_slice(GLfloat coord, GLsizei size) { - GLint slice = IFLOOR(coord + 0.5f); + GLint slice = util_ifloor(coord + 0.5f); slice = CLAMP(slice, 0, size - 1); return slice; } @@ -492,8 +501,9 @@ tex_array_slice(GLfloat coord, GLsizei size) * Compute nearest integer texcoords for given texobj and coordinate. * NOTE: only used for depth texture sampling. */ -static INLINE void -nearest_texcoord(const struct gl_texture_object *texObj, +static void +nearest_texcoord(const struct gl_sampler_object *samp, + const struct gl_texture_object *texObj, GLuint level, const GLfloat texcoord[4], GLint *i, GLint *j, GLint *k) @@ -505,32 +515,33 @@ nearest_texcoord(const struct gl_texture_object *texObj, switch (texObj->Target) { case GL_TEXTURE_RECTANGLE_ARB: - *i = clamp_rect_coord_nearest(texObj->Sampler.WrapS, texcoord[0], width); - *j = clamp_rect_coord_nearest(texObj->Sampler.WrapT, texcoord[1], height); + *i = clamp_rect_coord_nearest(samp->WrapS, texcoord[0], width); + *j = clamp_rect_coord_nearest(samp->WrapT, texcoord[1], height); *k = 0; break; case GL_TEXTURE_1D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); *j = 0; *k = 0; break; case GL_TEXTURE_2D: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); + *i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(samp->WrapT, img, height, texcoord[1]); *k = 0; break; case GL_TEXTURE_1D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); + *i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); *j = tex_array_slice(texcoord[1], height); *k = 0; break; case GL_TEXTURE_2D_ARRAY_EXT: - *i = nearest_texel_location(texObj->Sampler.WrapS, img, width, texcoord[0]); - *j = nearest_texel_location(texObj->Sampler.WrapT, img, height, texcoord[1]); + *i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); + *j = nearest_texel_location(samp->WrapT, img, height, texcoord[1]); *k = tex_array_slice(texcoord[2], depth); break; default: *i = *j = *k = 0; + break; } } @@ -539,8 +550,9 @@ nearest_texcoord(const struct gl_texture_object *texObj, * Compute linear integer texcoords for given texobj and coordinate. * NOTE: only used for depth texture sampling. */ -static INLINE void -linear_texcoord(const struct gl_texture_object *texObj, +static void +linear_texcoord(const struct gl_sampler_object *samp, + const struct gl_texture_object *texObj, GLuint level, const GLfloat texcoord[4], GLint *i0, GLint *i1, GLint *j0, GLint *j1, GLint *slice, @@ -553,24 +565,24 @@ linear_texcoord(const struct gl_texture_object *texObj, switch (texObj->Target) { case GL_TEXTURE_RECTANGLE_ARB: - clamp_rect_coord_linear(texObj->Sampler.WrapS, texcoord[0], + clamp_rect_coord_linear(samp->WrapS, texcoord[0], width, i0, i1, wi); - clamp_rect_coord_linear(texObj->Sampler.WrapT, texcoord[1], + clamp_rect_coord_linear(samp->WrapT, texcoord[1], height, j0, j1, wj); *slice = 0; break; case GL_TEXTURE_1D: case GL_TEXTURE_2D: - linear_texel_locations(texObj->Sampler.WrapS, img, width, + linear_texel_locations(samp->WrapS, img, width, texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, + linear_texel_locations(samp->WrapT, img, height, texcoord[1], j0, j1, wj); *slice = 0; break; case GL_TEXTURE_1D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, + linear_texel_locations(samp->WrapS, img, width, texcoord[0], i0, i1, wi); *j0 = tex_array_slice(texcoord[1], height); *j1 = *j0; @@ -578,15 +590,16 @@ linear_texcoord(const struct gl_texture_object *texObj, break; case GL_TEXTURE_2D_ARRAY_EXT: - linear_texel_locations(texObj->Sampler.WrapS, img, width, + linear_texel_locations(samp->WrapS, img, width, texcoord[0], i0, i1, wi); - linear_texel_locations(texObj->Sampler.WrapT, img, height, + linear_texel_locations(samp->WrapT, img, height, texcoord[1], j0, j1, wj); *slice = tex_array_slice(texcoord[2], depth); break; default: *slice = 0; + break; } } @@ -596,7 +609,7 @@ linear_texcoord(const struct gl_texture_object *texObj, * For linear interpolation between mipmap levels N and N+1, this function * computes N. */ -static INLINE GLint +static GLint linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) { if (lambda < 0.0F) @@ -611,7 +624,7 @@ linear_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) /** * Compute the nearest mipmap level to take texels from. */ -static INLINE GLint +static GLint nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) { GLfloat l; @@ -647,8 +660,8 @@ nearest_mipmap_level(const struct gl_texture_object *tObj, GLfloat lambda) * will be minified, magnified, or split between the two. This function * determines the subranges in [0, n-1] that are to be minified or magnified. */ -static INLINE void -compute_min_mag_ranges(const struct gl_texture_object *tObj, +static void +compute_min_mag_ranges(const struct gl_sampler_object *samp, GLuint n, const GLfloat lambda[], GLuint *minStart, GLuint *minEnd, GLuint *magStart, GLuint *magEnd) @@ -656,12 +669,12 @@ compute_min_mag_ranges(const struct gl_texture_object *tObj, GLfloat minMagThresh; /* we shouldn't be here if minfilter == magfilter */ - ASSERT(tObj->Sampler.MinFilter != tObj->Sampler.MagFilter); + assert(samp->MinFilter != samp->MagFilter); /* This bit comes from the OpenGL spec: */ - if (tObj->Sampler.MagFilter == GL_LINEAR - && (tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_NEAREST || - tObj->Sampler.MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { + if (samp->MagFilter == GL_LINEAR + && (samp->MinFilter == GL_NEAREST_MIPMAP_NEAREST || + samp->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) { minMagThresh = 0.5F; } else { @@ -678,12 +691,12 @@ compute_min_mag_ranges(const struct gl_texture_object *tObj, printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); if (lambda[0] >= lambda[n-1]) { /* decreasing */ for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); + assert((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); } } else { /* increasing */ for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); + assert((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); } } } @@ -737,13 +750,13 @@ compute_min_mag_ranges(const struct gl_texture_object *tObj, for (i = 0; i < n; i++) { if (lambda[i] > minMagThresh) { /* minification */ - ASSERT(i >= *minStart); - ASSERT(i < *minEnd); + assert(i >= *minStart); + assert(i < *minEnd); } else { /* magnification */ - ASSERT(i >= *magStart); - ASSERT(i < *magEnd); + assert(i >= *magStart); + assert(i < *magEnd); } } } @@ -756,39 +769,76 @@ compute_min_mag_ranges(const struct gl_texture_object *tObj, * the base texture format. Ex: if the texture base format it GL_ALPHA, * we return (0,0,0,BorderAlpha). */ -static INLINE void -get_border_color(const struct gl_texture_object *tObj, +static void +get_border_color(const struct gl_sampler_object *samp, const struct gl_texture_image *img, GLfloat rgba[4]) { switch (img->_BaseFormat) { case GL_RGB: - rgba[0] = tObj->Sampler.BorderColor.f[0]; - rgba[1] = tObj->Sampler.BorderColor.f[1]; - rgba[2] = tObj->Sampler.BorderColor.f[2]; + rgba[0] = samp->BorderColor.f[0]; + rgba[1] = samp->BorderColor.f[1]; + rgba[2] = samp->BorderColor.f[2]; rgba[3] = 1.0F; break; case GL_ALPHA: rgba[0] = rgba[1] = rgba[2] = 0.0; - rgba[3] = tObj->Sampler.BorderColor.f[3]; + rgba[3] = samp->BorderColor.f[3]; break; case GL_LUMINANCE: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; + rgba[0] = rgba[1] = rgba[2] = samp->BorderColor.f[0]; rgba[3] = 1.0; break; case GL_LUMINANCE_ALPHA: - rgba[0] = rgba[1] = rgba[2] = tObj->Sampler.BorderColor.f[0]; - rgba[3] = tObj->Sampler.BorderColor.f[3]; + rgba[0] = rgba[1] = rgba[2] = samp->BorderColor.f[0]; + rgba[3] = samp->BorderColor.f[3]; break; case GL_INTENSITY: - rgba[0] = rgba[1] = rgba[2] = rgba[3] = tObj->Sampler.BorderColor.f[0]; + rgba[0] = rgba[1] = rgba[2] = rgba[3] = samp->BorderColor.f[0]; break; default: - COPY_4V(rgba, tObj->Sampler.BorderColor.f); + COPY_4V(rgba, samp->BorderColor.f); + break; } } +/** + * Put z into texel according to GL_DEPTH_MODE. + */ +static void +apply_depth_mode(GLenum depthMode, GLfloat z, GLfloat texel[4]) +{ + switch (depthMode) { + case GL_LUMINANCE: + ASSIGN_4V(texel, z, z, z, 1.0F); + break; + case GL_INTENSITY: + ASSIGN_4V(texel, z, z, z, z); + break; + case GL_ALPHA: + ASSIGN_4V(texel, 0.0F, 0.0F, 0.0F, z); + break; + case GL_RED: + ASSIGN_4V(texel, z, 0.0F, 0.0F, 1.0F); + break; + default: + _mesa_problem(NULL, "Bad depth texture mode"); + } +} + + +/** + * Is the given texture a depth (or depth/stencil) texture? + */ +static GLboolean +is_depth_texture(const struct gl_texture_object *tObj) +{ + GLenum format = _mesa_texture_base_format(tObj); + return format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT; +} + + /**********************************************************************/ /* 1-D Texture Sampling Functions */ /**********************************************************************/ @@ -796,23 +846,24 @@ get_border_color(const struct gl_texture_object *tObj, /** * Return the texture sample for coordinate (s) using GL_NEAREST filter. */ -static INLINE void +static void sample_1d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; /* without border, power of two */ GLint i; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); /* skip over the border, if any */ i += img->Border; if (i < 0 || i >= (GLint) img->Width) { /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); + get_border_color(samp, img, rgba); } else { - img->FetchTexelf(img, i, 0, 0, rgba); + swImg->FetchTexel(swImg, i, 0, 0, rgba); } } @@ -820,19 +871,20 @@ sample_1d_nearest(struct gl_context *ctx, /** * Return the texture sample for coordinate (s) using GL_LINEAR filter. */ -static INLINE void +static void sample_1d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; GLint i0, i1; GLbitfield useBorderColor = 0x0; GLfloat a; GLfloat t0[4], t1[4]; /* texels */ - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(samp->WrapS, img, width, texcoord[0], &i0, &i1, &a); if (img->Border) { i0 += img->Border; @@ -845,16 +897,16 @@ sample_1d_linear(struct gl_context *ctx, /* fetch texel colors */ if (useBorderColor & I0BIT) { - get_border_color(tObj, img, t0); + get_border_color(samp, img, t0); } else { - img->FetchTexelf(img, i0, 0, 0, t0); + swImg->FetchTexel(swImg, i0, 0, 0, t0); } if (useBorderColor & I1BIT) { - get_border_color(tObj, img, t1); + get_border_color(samp, img, t1); } else { - img->FetchTexelf(img, i1, 0, 0, t1); + swImg->FetchTexel(swImg, i1, 0, 0, t1); } lerp_rgba(rgba, a, t0, t1); @@ -863,53 +915,56 @@ sample_1d_linear(struct gl_context *ctx, static void sample_1d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_1d_nearest(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_1d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_1d_linear(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_1d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_1d_nearest(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; const GLfloat f = FRAC(lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_1d_nearest(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_nearest(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -918,23 +973,24 @@ sample_1d_nearest_mipmap_linear(struct gl_context *ctx, static void sample_1d_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_1d_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; const GLfloat f = FRAC(lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_1d_linear(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_linear(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -944,15 +1000,16 @@ sample_1d_linear_mipmap_linear(struct gl_context *ctx, /** Sample 1D texture, nearest filtering for both min/magnification */ static void sample_nearest_1d( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4] ) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + sample_1d_nearest(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -960,15 +1017,16 @@ sample_nearest_1d( struct gl_context *ctx, /** Sample 1D texture, linear filtering for both min/magnification */ static void sample_linear_1d( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4] ) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + sample_1d_linear(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -976,6 +1034,7 @@ sample_linear_1d( struct gl_context *ctx, /** Sample 1D texture, using lambda to choose between min/magnification */ static void sample_lambda_1d( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4] ) @@ -984,38 +1043,38 @@ sample_lambda_1d( struct gl_context *ctx, GLuint magStart, magEnd; /* texels with magnification */ GLuint i; - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: for (i = minStart; i < minEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = minStart; i < minEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_1d_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_1d_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_1d_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_1d_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; default: @@ -1026,15 +1085,15 @@ sample_lambda_1d( struct gl_context *ctx, if (magStart < magEnd) { /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: for (i = magStart; i < magEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = magStart; i < magEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; default: @@ -1053,20 +1112,21 @@ sample_lambda_1d( struct gl_context *ctx, /** * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. */ -static INLINE void +static void sample_2d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; /* without border, power of two */ const GLint height = img->Height2; /* without border, power of two */ GLint i, j; (void) ctx; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); + i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(samp->WrapT, img, height, texcoord[1]); /* skip over the border, if any */ i += img->Border; @@ -1074,10 +1134,10 @@ sample_2d_nearest(struct gl_context *ctx, if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); + get_border_color(samp, img, rgba); } else { - img->FetchTexelf(img, i, j, 0, rgba); + swImg->FetchTexel(swImg, i, j, 0, rgba); } } @@ -1086,13 +1146,14 @@ sample_2d_nearest(struct gl_context *ctx, * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. * New sampling code contributed by Lynn Quam . */ -static INLINE void +static void sample_2d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; const GLint height = img->Height2; GLint i0, j0, i1, j1; @@ -1100,8 +1161,8 @@ sample_2d_linear(struct gl_context *ctx, GLfloat a, b; GLfloat t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(samp->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(samp->WrapT, img, height, texcoord[1], &j0, &j1, &b); if (img->Border) { i0 += img->Border; @@ -1118,28 +1179,28 @@ sample_2d_linear(struct gl_context *ctx, /* fetch four texel colors */ if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); + get_border_color(samp, img, t00); } else { - img->FetchTexelf(img, i0, j0, 0, t00); + swImg->FetchTexel(swImg, i0, j0, 0, t00); } if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); + get_border_color(samp, img, t10); } else { - img->FetchTexelf(img, i1, j0, 0, t10); + swImg->FetchTexel(swImg, i1, j0, 0, t10); } if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); + get_border_color(samp, img, t01); } else { - img->FetchTexelf(img, i0, j1, 0, t01); + swImg->FetchTexel(swImg, i0, j1, 0, t01); } if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); + get_border_color(samp, img, t11); } else { - img->FetchTexelf(img, i1, j1, 0, t11); + swImg->FetchTexel(swImg, i1, j1, 0, t11); } lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); @@ -1150,13 +1211,14 @@ sample_2d_linear(struct gl_context *ctx, * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. * We don't have to worry about the texture border. */ -static INLINE void +static void sample_2d_linear_repeat(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; const GLint height = img->Height2; GLint i0, j0, i1, j1; @@ -1165,18 +1227,18 @@ sample_2d_linear_repeat(struct gl_context *ctx, (void) ctx; - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); - ASSERT(img->Border == 0); - ASSERT(img->_IsPowerOfTwo); + assert(samp->WrapS == GL_REPEAT); + assert(samp->WrapT == GL_REPEAT); + assert(img->Border == 0); + assert(swImg->_IsPowerOfTwo); linear_repeat_texel_location(width, texcoord[0], &i0, &i1, &wi); linear_repeat_texel_location(height, texcoord[1], &j0, &j1, &wj); - img->FetchTexelf(img, i0, j0, 0, t00); - img->FetchTexelf(img, i1, j0, 0, t10); - img->FetchTexelf(img, i0, j1, 0, t01); - img->FetchTexelf(img, i1, j1, 0, t11); + swImg->FetchTexel(swImg, i0, j0, 0, t00); + swImg->FetchTexel(swImg, i1, j0, 0, t10); + swImg->FetchTexel(swImg, i0, j1, 0, t01); + swImg->FetchTexel(swImg, i1, j1, 0, t11); lerp_rgba_2d(rgba, wi, wj, t00, t10, t01, t11); } @@ -1184,6 +1246,7 @@ sample_2d_linear_repeat(struct gl_context *ctx, static void sample_2d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -1191,45 +1254,47 @@ sample_2d_nearest_mipmap_nearest(struct gl_context *ctx, GLuint i; for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_2d_nearest(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_2d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_2d_linear(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_2d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_nearest(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_2d_nearest(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_nearest(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -1238,23 +1303,24 @@ sample_2d_nearest_mipmap_linear(struct gl_context *ctx, static void sample_2d_linear_mipmap_linear( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4] ) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_2d_linear(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_2d_linear(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -1263,26 +1329,27 @@ sample_2d_linear_mipmap_linear( struct gl_context *ctx, static void sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); - ASSERT(tObj->Sampler.WrapS == GL_REPEAT); - ASSERT(tObj->Sampler.WrapT == GL_REPEAT); + assert(lambda != NULL); + assert(samp->WrapS == GL_REPEAT); + assert(samp->WrapT == GL_REPEAT); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_linear_repeat(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], + sample_2d_linear_repeat(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], + sample_2d_linear_repeat(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } @@ -1293,15 +1360,16 @@ sample_2d_linear_mipmap_linear_repeat(struct gl_context *ctx, /** Sample 2D texture, nearest filtering for both min/magnification */ static void sample_nearest_2d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + sample_2d_nearest(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -1309,24 +1377,26 @@ sample_nearest_2d(struct gl_context *ctx, /** Sample 2D texture, linear filtering for both min/magnification */ static void sample_linear_2d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = swrast_texture_image_const(image); (void) lambda; - if (tObj->Sampler.WrapS == GL_REPEAT && - tObj->Sampler.WrapT == GL_REPEAT && - image->_IsPowerOfTwo && + if (samp->WrapS == GL_REPEAT && + samp->WrapT == GL_REPEAT && + swImg->_IsPowerOfTwo && image->Border == 0) { for (i = 0; i < n; i++) { - sample_2d_linear_repeat(ctx, tObj, image, texcoords[i], rgba[i]); + sample_2d_linear_repeat(ctx, samp, image, texcoords[i], rgba[i]); } } else { for (i = 0; i < n; i++) { - sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + sample_2d_linear(ctx, samp, image, texcoords[i], rgba[i]); } } } @@ -1336,17 +1406,19 @@ sample_linear_2d(struct gl_context *ctx, * Optimized 2-D texture sampling: * S and T wrap mode == GL_REPEAT * GL_NEAREST min/mag filter - * No border, + * No border, * RowStride == Width, * Format = GL_RGB */ static void opt_sample_rgb_2d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *img = _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLfloat width = (GLfloat) img->Width; const GLfloat height = (GLfloat) img->Height; const GLint colMask = img->Width - 1; @@ -1355,17 +1427,18 @@ opt_sample_rgb_2d(struct gl_context *ctx, GLuint k; (void) ctx; (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGB888); - ASSERT(img->_IsPowerOfTwo); + assert(samp->WrapS==GL_REPEAT); + assert(samp->WrapT==GL_REPEAT); + assert(img->Border==0); + assert(img->TexFormat == MESA_FORMAT_BGR_UNORM8); + assert(swImg->_IsPowerOfTwo); + (void) swImg; for (k=0; kData) + 3*pos; + GLubyte *texel = (GLubyte *) swImg->ImageSlices[0] + 3 * pos; rgba[k][RCOMP] = UBYTE_TO_FLOAT(texel[2]); rgba[k][GCOMP] = UBYTE_TO_FLOAT(texel[1]); rgba[k][BCOMP] = UBYTE_TO_FLOAT(texel[0]); @@ -1384,11 +1457,13 @@ opt_sample_rgb_2d(struct gl_context *ctx, */ static void opt_sample_rgba_2d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *img = _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLfloat width = (GLfloat) img->Width; const GLfloat height = (GLfloat) img->Height; const GLint colMask = img->Width - 1; @@ -1397,17 +1472,18 @@ opt_sample_rgba_2d(struct gl_context *ctx, GLuint i; (void) ctx; (void) lambda; - ASSERT(tObj->Sampler.WrapS==GL_REPEAT); - ASSERT(tObj->Sampler.WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->TexFormat == MESA_FORMAT_RGBA8888); - ASSERT(img->_IsPowerOfTwo); + assert(samp->WrapS==GL_REPEAT); + assert(samp->WrapT==GL_REPEAT); + assert(img->Border==0); + assert(img->TexFormat == MESA_FORMAT_A8B8G8R8_UNORM); + assert(swImg->_IsPowerOfTwo); + (void) swImg; for (i = 0; i < n; i++) { - const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; - const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; + const GLint col = util_ifloor(texcoords[i][0] * width) & colMask; + const GLint row = util_ifloor(texcoords[i][1] * height) & rowMask; const GLint pos = (row << shift) | col; - const GLuint texel = *((GLuint *) img->Data + pos); + const GLuint texel = *((GLuint *) swImg->ImageSlices[0] + pos); rgba[i][RCOMP] = UBYTE_TO_FLOAT( (texel >> 24) ); rgba[i][GCOMP] = UBYTE_TO_FLOAT( (texel >> 16) & 0xff ); rgba[i][BCOMP] = UBYTE_TO_FLOAT( (texel >> 8) & 0xff ); @@ -1419,71 +1495,75 @@ opt_sample_rgba_2d(struct gl_context *ctx, /** Sample 2D texture, using lambda to choose between min/magnification */ static void sample_lambda_2d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { - const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *tImg = _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = swrast_texture_image_const(tImg); GLuint minStart, minEnd; /* texels with minification */ GLuint magStart, magEnd; /* texels with magnification */ - const GLboolean repeatNoBorderPOT = (tObj->Sampler.WrapS == GL_REPEAT) - && (tObj->Sampler.WrapT == GL_REPEAT) - && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) - && tImg->_IsPowerOfTwo; + const GLboolean repeatNoBorderPOT = (samp->WrapS == GL_REPEAT) + && (samp->WrapT == GL_REPEAT) + && (tImg->Border == 0) + && (_mesa_format_row_stride(tImg->TexFormat, tImg->Width) == + swImg->RowStride) + && swImg->_IsPowerOfTwo; - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: if (repeatNoBorderPOT) { switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + minStart, + case MESA_FORMAT_BGR_UNORM8: + opt_sample_rgb_2d(ctx, samp, tObj, m, texcoords + minStart, NULL, rgba + minStart); break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + minStart, + case MESA_FORMAT_A8B8G8R8_UNORM: + opt_sample_rgba_2d(ctx, samp, tObj, m, texcoords + minStart, NULL, rgba + minStart); break; default: - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + sample_nearest_2d(ctx, samp, tObj, m, texcoords + minStart, NULL, rgba + minStart ); } } else { - sample_nearest_2d(ctx, tObj, m, texcoords + minStart, + sample_nearest_2d(ctx, samp, tObj, m, texcoords + minStart, NULL, rgba + minStart); } break; case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + minStart, + sample_linear_2d(ctx, samp, tObj, m, texcoords + minStart, NULL, rgba + minStart); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_nearest_mipmap_nearest(ctx, tObj, m, + sample_2d_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_2d_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_2d_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: if (repeatNoBorderPOT) - sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, + sample_2d_linear_mipmap_linear_repeat(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); else - sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_2d_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; default: @@ -1496,34 +1576,35 @@ sample_lambda_2d(struct gl_context *ctx, /* do the magnified texels */ const GLuint m = magEnd - magStart; - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: if (repeatNoBorderPOT) { switch (tImg->TexFormat) { - case MESA_FORMAT_RGB888: - opt_sample_rgb_2d(ctx, tObj, m, texcoords + magStart, + case MESA_FORMAT_BGR_UNORM8: + opt_sample_rgb_2d(ctx, samp, tObj, m, texcoords + magStart, NULL, rgba + magStart); break; - case MESA_FORMAT_RGBA8888: - opt_sample_rgba_2d(ctx, tObj, m, texcoords + magStart, + case MESA_FORMAT_A8B8G8R8_UNORM: + opt_sample_rgba_2d(ctx, samp, tObj, m, texcoords + magStart, NULL, rgba + magStart); break; default: - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + sample_nearest_2d(ctx, samp, tObj, m, texcoords + magStart, NULL, rgba + magStart ); } } else { - sample_nearest_2d(ctx, tObj, m, texcoords + magStart, + sample_nearest_2d(ctx, samp, tObj, m, texcoords + magStart, NULL, rgba + magStart); } break; case GL_LINEAR: - sample_linear_2d(ctx, tObj, m, texcoords + magStart, + sample_linear_2d(ctx, samp, tObj, m, texcoords + magStart, NULL, rgba + magStart); break; default: _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); + break; } } } @@ -1542,12 +1623,12 @@ create_filter_table(void) { GLuint i; if (!weightLut) { - weightLut = (GLfloat *) malloc(WEIGHT_LUT_SIZE * sizeof(GLfloat)); + weightLut = malloc(WEIGHT_LUT_SIZE * sizeof(GLfloat)); for (i = 0; i < WEIGHT_LUT_SIZE; ++i) { GLfloat alpha = 2; GLfloat r2 = (GLfloat) i / (GLfloat) (WEIGHT_LUT_SIZE - 1); - GLfloat weight = (GLfloat) exp(-alpha * r2); + GLfloat weight = expf(-alpha * r2); weightLut[i] = weight; } } @@ -1563,6 +1644,7 @@ create_filter_table(void) */ static void sample_2d_ewa(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, const GLfloat texcoord[4], const GLfloat dudx, const GLfloat dvdx, @@ -1570,38 +1652,40 @@ sample_2d_ewa(struct gl_context *ctx, GLfloat rgba[]) { GLint level = lod > 0 ? lod : 0; - GLfloat scaling = 1.0 / (1 << level); + GLfloat scaling = 1.0f / (1 << level); const struct gl_texture_image *img = tObj->Image[0][level]; const struct gl_texture_image *mostDetailedImage = - tObj->Image[0][tObj->BaseLevel]; - GLfloat tex_u=-0.5 + texcoord[0] * mostDetailedImage->WidthScale * scaling; - GLfloat tex_v=-0.5 + texcoord[1] * mostDetailedImage->HeightScale * scaling; + _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = + swrast_texture_image_const(mostDetailedImage); + GLfloat tex_u = -0.5f + texcoord[0] * swImg->WidthScale * scaling; + GLfloat tex_v = -0.5f + texcoord[1] * swImg->HeightScale * scaling; GLfloat ux = dudx * scaling; GLfloat vx = dvdx * scaling; GLfloat uy = dudy * scaling; GLfloat vy = dvdy * scaling; - /* compute ellipse coefficients to bound the region: + /* compute ellipse coefficients to bound the region: * A*x*x + B*x*y + C*y*y = F. */ GLfloat A = vx*vx+vy*vy+1; GLfloat B = -2*(ux*vx+uy*vy); GLfloat C = ux*ux+uy*uy+1; - GLfloat F = A*C-B*B/4.0; + GLfloat F = A*C-B*B/4.0f; /* check if it is an ellipse */ - /* ASSERT(F > 0.0); */ + /* assert(F > 0.0); */ /* Compute the ellipse's (u,v) bounding box in texture space */ - GLfloat d = -B*B+4.0*C*A; - GLfloat box_u = 2.0 / d * sqrt(d*C*F); /* box_u -> half of bbox with */ - GLfloat box_v = 2.0 / d * sqrt(A*d*F); /* box_v -> half of bbox height */ + GLfloat d = -B*B+4.0f*C*A; + GLfloat box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */ + GLfloat box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */ - GLint u0 = floor(tex_u - box_u); - GLint u1 = ceil (tex_u + box_u); - GLint v0 = floor(tex_v - box_v); - GLint v1 = ceil (tex_v + box_v); + GLint u0 = (GLint) floorf(tex_u - box_u); + GLint u1 = (GLint) ceilf (tex_u + box_u); + GLint v0 = (GLint) floorf(tex_v - box_v); + GLint v1 = (GLint) ceilf (tex_v + box_v); GLfloat num[4] = {0.0F, 0.0F, 0.0F, 0.0F}; GLfloat newCoord[2]; @@ -1613,7 +1697,7 @@ sample_2d_ewa(struct gl_context *ctx, /* Scale ellipse formula to directly index the Filter Lookup Table. * i.e. scale so that F = WEIGHT_LUT_SIZE-1 */ - double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F; + GLfloat formScale = (GLfloat) (WEIGHT_LUT_SIZE - 1) / F; A *= formScale; B *= formScale; C *= formScale; @@ -1636,13 +1720,13 @@ sample_2d_ewa(struct gl_context *ctx, /* as a LUT is used, q must never be negative; * should not happen, though */ - const GLint qClamped = q >= 0.0F ? q : 0; + const GLint qClamped = q >= 0.0F ? (GLint) q : 0; GLfloat weight = weightLut[qClamped]; newCoord[0] = u / ((GLfloat) img->Width2); newCoord[1] = v / ((GLfloat) img->Height2); - sample_2d_nearest(ctx, tObj, img, newCoord, rgba); + sample_2d_nearest(ctx, samp, img, newCoord, rgba); num[0] += weight * rgba[0]; num[1] += weight * rgba[1]; num[2] += weight * rgba[2]; @@ -1668,7 +1752,7 @@ sample_2d_ewa(struct gl_context *ctx, rgba[2]=0; rgba[3]=0;*/ /* not enough pixels in resampling, resort to direct interpolation */ - sample_2d_linear(ctx, tObj, img, texcoord, rgba); + sample_2d_linear(ctx, samp, img, texcoord, rgba); return; } @@ -1687,6 +1771,7 @@ sample_2d_ewa(struct gl_context *ctx, */ static void sample_2d_footprint(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, const GLfloat texcoord[4], const GLfloat dudx, const GLfloat dvdx, @@ -1715,21 +1800,21 @@ sample_2d_footprint(struct gl_context *ctx, /* Calculate the per anisotropic sample offsets in s,t space. */ if (Px2 > Py2) { - numSamples = ceil(SQRTF(Px2)); + numSamples = (GLint) ceilf(sqrtf(Px2)); ds = ux / ((GLfloat) img->Width2); dt = vx / ((GLfloat) img->Height2); } else { - numSamples = ceil(SQRTF(Py2)); + numSamples = (GLint) ceilf(sqrtf(Py2)); ds = uy / ((GLfloat) img->Width2); dt = vy / ((GLfloat) img->Height2); } for (s = 0; s= maxUnit) u = 0; /* not found, use 1st one; should never happen */ - + return u; } @@ -1777,14 +1862,16 @@ texture_unit_index(const struct gl_context *ctx, */ static void sample_lambda_2d_aniso(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda_iso[], GLfloat rgba[][4]) { - const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *tImg = _mesa_base_tex_image(tObj); + const struct swrast_texture_image *swImg = swrast_texture_image_const(tImg); const GLfloat maxEccentricity = - tObj->Sampler.MaxAnisotropy * tObj->Sampler.MaxAnisotropy; - + samp->MaxAnisotropy * samp->MaxAnisotropy; + /* re-calculate the lambda values so that they are usable with anisotropic * filtering */ @@ -1793,12 +1880,12 @@ sample_lambda_2d_aniso(struct gl_context *ctx, /* based on interpolate_texcoords(struct gl_context *ctx, SWspan *span) * in swrast/s_span.c */ - + /* find the texture unit index by looking up the current texture object * from the context list of available texture objects. */ const GLuint u = texture_unit_index(ctx, tObj); - const GLuint attr = FRAG_ATTRIB_TEX0 + u; + const GLuint attr = VARYING_SLOT_TEX0 + u; GLfloat texW, texH; const GLfloat dsdx = span->attrStepX[attr][0]; @@ -1814,28 +1901,28 @@ sample_lambda_2d_aniso(struct gl_context *ctx, /* from swrast/s_texcombine.c _swrast_texture_span */ const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[u]; const GLboolean adjustLOD = - (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F) - || (tObj->Sampler.MinLod != -1000.0 || tObj->Sampler.MaxLod != 1000.0); + (texUnit->LodBias + samp->LodBias != 0.0F) + || (samp->MinLod != -1000.0F || samp->MaxLod != 1000.0F); GLuint i; - + /* on first access create the lookup table containing the filter weights. */ if (!weightLut) { create_filter_table(); } - texW = tImg->WidthScale; - texH = tImg->HeightScale; + texW = swImg->WidthScale; + texH = swImg->HeightScale; for (i = 0; i < n; i++) { const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q); - + GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ); GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ); GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ); GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ); - - /* note: instead of working with Px and Py, we will use the + + /* note: instead of working with Px and Py, we will use the * squared length instead, to avoid sqrt. */ GLfloat Px2 = dudx * dudx + dvdx * dvdx; @@ -1849,7 +1936,7 @@ sample_lambda_2d_aniso(struct gl_context *ctx, s += dsdx; t += dtdx; q += dqdx; - + if (Px2 < Py2) { Pmax2 = Py2; Pmin2 = Px2; @@ -1858,7 +1945,7 @@ sample_lambda_2d_aniso(struct gl_context *ctx, Pmax2 = Px2; Pmin2 = Py2; } - + /* if the eccentricity of the ellipse is too big, scale up the shorter * of the two vectors to limit the maximum amount of work per pixel */ @@ -1870,43 +1957,43 @@ sample_lambda_2d_aniso(struct gl_context *ctx, Pmin2 *= s; */ Pmin2 = Pmax2 / maxEccentricity; } - + /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid * this since 0.5*log(x) = log(sqrt(x)) */ - lod = 0.5 * LOG2(Pmin2); - + lod = 0.5f * log2f(Pmin2); + if (adjustLOD) { /* from swrast/s_texcombine.c _swrast_texture_span */ - if (texUnit->LodBias + tObj->Sampler.LodBias != 0.0F) { + if (texUnit->LodBias + samp->LodBias != 0.0F) { /* apply LOD bias, but don't clamp yet */ const GLfloat bias = - CLAMP(texUnit->LodBias + tObj->Sampler.LodBias, + CLAMP(texUnit->LodBias + samp->LodBias, -ctx->Const.MaxTextureLodBias, ctx->Const.MaxTextureLodBias); lod += bias; - if (tObj->Sampler.MinLod != -1000.0 || - tObj->Sampler.MaxLod != 1000.0) { + if (samp->MinLod != -1000.0F || + samp->MaxLod != 1000.0F) { /* apply LOD clamping to lambda */ - lod = CLAMP(lod, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); + lod = CLAMP(lod, samp->MinLod, samp->MaxLod); } } } - + /* If the ellipse covers the whole image, we can * simply return the average of the whole image. */ if (lod >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoords[i], rgba[i]); } else { /* don't bother interpolating between multiple LODs; it doesn't * seem to be worth the extra running time. */ - sample_2d_ewa(ctx, tObj, texcoords[i], - dudx, dvdx, dudy, dvdy, floor(lod), rgba[i]); + sample_2d_ewa(ctx, samp, tObj, texcoords[i], + dudx, dvdx, dudy, dvdy, (GLint) floorf(lod), rgba[i]); /* unused: */ (void) sample_2d_footprint; @@ -1927,31 +2014,32 @@ sample_lambda_2d_aniso(struct gl_context *ctx, /** * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. */ -static INLINE void +static void sample_3d_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; /* without border, power of two */ const GLint height = img->Height2; /* without border, power of two */ const GLint depth = img->Depth2; /* without border, power of two */ GLint i, j, k; (void) ctx; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); - k = nearest_texel_location(tObj->Sampler.WrapR, img, depth, texcoord[2]); + i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(samp->WrapT, img, height, texcoord[1]); + k = nearest_texel_location(samp->WrapR, img, depth, texcoord[2]); if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height || k < 0 || k >= (GLint) img->Depth) { /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); + get_border_color(samp, img, rgba); } else { - img->FetchTexelf(img, i, j, k, rgba); + swImg->FetchTexel(swImg, i, j, k, rgba); } } @@ -1961,11 +2049,12 @@ sample_3d_nearest(struct gl_context *ctx, */ static void sample_3d_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; const GLint height = img->Height2; const GLint depth = img->Depth2; @@ -1975,9 +2064,9 @@ sample_3d_linear(struct gl_context *ctx, GLfloat t000[4], t010[4], t001[4], t011[4]; GLfloat t100[4], t110[4], t101[4], t111[4]; - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); - linear_texel_locations(tObj->Sampler.WrapR, img, depth, texcoord[2], &k0, &k1, &c); + linear_texel_locations(samp->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(samp->WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(samp->WrapR, img, depth, texcoord[2], &k0, &k1, &c); if (img->Border) { i0 += img->Border; @@ -1999,53 +2088,53 @@ sample_3d_linear(struct gl_context *ctx, /* Fetch texels */ if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t000); + get_border_color(samp, img, t000); } else { - img->FetchTexelf(img, i0, j0, k0, t000); + swImg->FetchTexel(swImg, i0, j0, k0, t000); } if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { - get_border_color(tObj, img, t100); + get_border_color(samp, img, t100); } else { - img->FetchTexelf(img, i1, j0, k0, t100); + swImg->FetchTexel(swImg, i1, j0, k0, t100); } if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t010); + get_border_color(samp, img, t010); } else { - img->FetchTexelf(img, i0, j1, k0, t010); + swImg->FetchTexel(swImg, i0, j1, k0, t010); } if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { - get_border_color(tObj, img, t110); + get_border_color(samp, img, t110); } else { - img->FetchTexelf(img, i1, j1, k0, t110); + swImg->FetchTexel(swImg, i1, j1, k0, t110); } if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t001); + get_border_color(samp, img, t001); } else { - img->FetchTexelf(img, i0, j0, k1, t001); + swImg->FetchTexel(swImg, i0, j0, k1, t001); } if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { - get_border_color(tObj, img, t101); + get_border_color(samp, img, t101); } else { - img->FetchTexelf(img, i1, j0, k1, t101); + swImg->FetchTexel(swImg, i1, j0, k1, t101); } if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t011); + get_border_color(samp, img, t011); } else { - img->FetchTexelf(img, i0, j1, k1, t011); + swImg->FetchTexel(swImg, i0, j1, k1, t011); } if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { - get_border_color(tObj, img, t111); + get_border_color(samp, img, t111); } else { - img->FetchTexelf(img, i1, j1, k1, t111); + swImg->FetchTexel(swImg, i1, j1, k1, t111); } /* trilinear interpolation of samples */ @@ -2055,6 +2144,7 @@ sample_3d_linear(struct gl_context *ctx, static void sample_3d_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4] ) @@ -2062,45 +2152,47 @@ sample_3d_nearest_mipmap_nearest(struct gl_context *ctx, GLuint i; for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_3d_nearest(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_3d_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + sample_3d_linear(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } static void sample_3d_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_3d_nearest(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_3d_nearest(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_nearest(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -2109,23 +2201,24 @@ sample_3d_nearest_mipmap_linear(struct gl_context *ctx, static void sample_3d_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_3d_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_3d_linear(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_3d_linear(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -2135,15 +2228,16 @@ sample_3d_linear_mipmap_linear(struct gl_context *ctx, /** Sample 3D texture, nearest filtering for both min/magnification */ static void sample_nearest_3d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + sample_3d_nearest(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -2151,15 +2245,16 @@ sample_nearest_3d(struct gl_context *ctx, /** Sample 3D texture, linear filtering for both min/magnification */ static void sample_linear_3d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]); + sample_3d_linear(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -2167,6 +2262,7 @@ sample_linear_3d(struct gl_context *ctx, /** Sample 3D texture, using lambda to choose between min/magnification */ static void sample_lambda_3d(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2175,38 +2271,38 @@ sample_lambda_3d(struct gl_context *ctx, GLuint magStart, magEnd; /* texels with magnification */ GLuint i; - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: for (i = minStart; i < minEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_3d_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = minStart; i < minEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_3d_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_3d_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_3d_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_3d_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: - sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_3d_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; default: @@ -2217,15 +2313,15 @@ sample_lambda_3d(struct gl_context *ctx, if (magStart < magEnd) { /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: for (i = magStart; i < magEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_3d_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = magStart; i < magEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_3d_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; default: @@ -2263,7 +2359,7 @@ choose_cube_face(const struct gl_texture_object *texObj, const GLfloat rx = texcoord[0]; const GLfloat ry = texcoord[1]; const GLfloat rz = texcoord[2]; - const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); + const GLfloat arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz); GLuint face; GLfloat sc, tc, ma; @@ -2310,7 +2406,7 @@ choose_cube_face(const struct gl_texture_object *texObj, } } - { + { const float ima = 1.0F / ma; newCoord[0] = ( sc * ima + 1.0F ) * 0.5F; newCoord[1] = ( tc * ima + 1.0F ) * 0.5F; @@ -2322,6 +2418,7 @@ choose_cube_face(const struct gl_texture_object *texObj, static void sample_nearest_cube(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2332,14 +2429,20 @@ sample_nearest_cube(struct gl_context *ctx, const struct gl_texture_image **images; GLfloat newCoord[4]; images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], + sample_2d_nearest(ctx, samp, images[tObj->BaseLevel], newCoord, rgba[i]); } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } + } } static void sample_linear_cube(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2350,20 +2453,26 @@ sample_linear_cube(struct gl_context *ctx, const struct gl_texture_image **images; GLfloat newCoord[4]; images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], + sample_2d_linear(ctx, samp, images[tObj->BaseLevel], newCoord, rgba[i]); } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } + } } static void sample_cube_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { const struct gl_texture_image **images; GLfloat newCoord[4]; @@ -2380,38 +2489,50 @@ sample_cube_nearest_mipmap_nearest(struct gl_context *ctx, level = nearest_mipmap_level(tObj, lambda[i]); level = MAX2(level - 1, 0); - sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); + sample_2d_nearest(ctx, samp, images[level], newCoord, rgba[i]); + } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } } } static void sample_cube_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { const struct gl_texture_image **images; GLfloat newCoord[4]; GLint level = nearest_mipmap_level(tObj, lambda[i]); level = MAX2(level - 1, 0); /* see comment above */ images = choose_cube_face(tObj, texcoord[i], newCoord); - sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); + sample_2d_linear(ctx, samp, images[level], newCoord, rgba[i]); + } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } } } static void sample_cube_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { const struct gl_texture_image **images; GLfloat newCoord[4]; @@ -2419,28 +2540,34 @@ sample_cube_nearest_mipmap_linear(struct gl_context *ctx, level = MAX2(level - 1, 0); /* see comment above */ images = choose_cube_face(tObj, texcoord[i], newCoord); if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], + sample_2d_nearest(ctx, samp, images[tObj->_MaxLevel], newCoord, rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); - sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); + sample_2d_nearest(ctx, samp, images[level ], newCoord, t0); + sample_2d_nearest(ctx, samp, images[level+1], newCoord, t1); lerp_rgba(rgba[i], f, t0, t1); } } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } + } } static void sample_cube_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { const struct gl_texture_image **images; GLfloat newCoord[4]; @@ -2448,23 +2575,29 @@ sample_cube_linear_mipmap_linear(struct gl_context *ctx, level = MAX2(level - 1, 0); /* see comment above */ images = choose_cube_face(tObj, texcoord[i], newCoord); if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], + sample_2d_linear(ctx, samp, images[tObj->_MaxLevel], newCoord, rgba[i]); } else { GLfloat t0[4], t1[4]; const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); - sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); + sample_2d_linear(ctx, samp, images[level ], newCoord, t0); + sample_2d_linear(ctx, samp, images[level+1], newCoord, t1); lerp_rgba(rgba[i], f, t0, t1); } } + if (is_depth_texture(tObj)) { + for (i = 0; i < n; i++) { + apply_depth_mode(tObj->DepthMode, rgba[i][0], rgba[i]); + } + } } /** Sample cube texture, using lambda to choose between min/magnification */ static void sample_lambda_cube(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2472,61 +2605,63 @@ sample_lambda_cube(struct gl_context *ctx, GLuint minStart, minEnd; /* texels with minification */ GLuint magStart, magEnd; /* texels with magnification */ - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ const GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + minStart, + sample_nearest_cube(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + minStart, + sample_linear_cube(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_cube_nearest_mipmap_nearest(ctx, tObj, m, + sample_cube_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_cube_linear_mipmap_nearest(ctx, tObj, m, + sample_cube_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_cube_nearest_mipmap_linear(ctx, tObj, m, + sample_cube_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: - sample_cube_linear_mipmap_linear(ctx, tObj, m, + sample_cube_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; default: _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); + break; } } if (magStart < magEnd) { /* do the magnified texels */ const GLuint m = magEnd - magStart; - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: - sample_nearest_cube(ctx, tObj, m, texcoords + magStart, + sample_nearest_cube(ctx, samp, tObj, m, texcoords + magStart, lambda + magStart, rgba + magStart); break; case GL_LINEAR: - sample_linear_cube(ctx, tObj, m, texcoords + magStart, + sample_linear_cube(ctx, samp, tObj, m, texcoords + magStart, lambda + magStart, rgba + magStart); break; default: _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); + break; } } } @@ -2539,11 +2674,13 @@ sample_lambda_cube(struct gl_context *ctx, static void sample_nearest_rect(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { const struct gl_texture_image *img = tObj->Image[0][0]; + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width; const GLint height = img->Height; GLuint i; @@ -2551,32 +2688,34 @@ sample_nearest_rect(struct gl_context *ctx, (void) ctx; (void) lambda; - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); + assert(samp->WrapS == GL_CLAMP || + samp->WrapS == GL_CLAMP_TO_EDGE || + samp->WrapS == GL_CLAMP_TO_BORDER); + assert(samp->WrapT == GL_CLAMP || + samp->WrapT == GL_CLAMP_TO_EDGE || + samp->WrapT == GL_CLAMP_TO_BORDER); for (i = 0; i < n; i++) { GLint row, col; - col = clamp_rect_coord_nearest(tObj->Sampler.WrapS, texcoords[i][0], width); - row = clamp_rect_coord_nearest(tObj->Sampler.WrapT, texcoords[i][1], height); + col = clamp_rect_coord_nearest(samp->WrapS, texcoords[i][0], width); + row = clamp_rect_coord_nearest(samp->WrapT, texcoords[i][1], height); if (col < 0 || col >= width || row < 0 || row >= height) - get_border_color(tObj, img, rgba[i]); + get_border_color(samp, img, rgba[i]); else - img->FetchTexelf(img, col, row, 0, rgba[i]); + swImg->FetchTexel(swImg, col, row, 0, rgba[i]); } } static void sample_linear_rect(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { const struct gl_texture_image *img = tObj->Image[0][0]; + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width; const GLint height = img->Height; GLuint i; @@ -2584,12 +2723,12 @@ sample_linear_rect(struct gl_context *ctx, (void) ctx; (void) lambda; - ASSERT(tObj->Sampler.WrapS == GL_CLAMP || - tObj->Sampler.WrapS == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->Sampler.WrapT == GL_CLAMP || - tObj->Sampler.WrapT == GL_CLAMP_TO_EDGE || - tObj->Sampler.WrapT == GL_CLAMP_TO_BORDER); + assert(samp->WrapS == GL_CLAMP || + samp->WrapS == GL_CLAMP_TO_EDGE || + samp->WrapS == GL_CLAMP_TO_BORDER); + assert(samp->WrapT == GL_CLAMP || + samp->WrapT == GL_CLAMP_TO_EDGE || + samp->WrapT == GL_CLAMP_TO_BORDER); for (i = 0; i < n; i++) { GLint i0, j0, i1, j1; @@ -2597,9 +2736,9 @@ sample_linear_rect(struct gl_context *ctx, GLfloat a, b; GLbitfield useBorderColor = 0x0; - clamp_rect_coord_linear(tObj->Sampler.WrapS, texcoords[i][0], width, + clamp_rect_coord_linear(samp->WrapS, texcoords[i][0], width, &i0, &i1, &a); - clamp_rect_coord_linear(tObj->Sampler.WrapT, texcoords[i][1], height, + clamp_rect_coord_linear(samp->WrapT, texcoords[i][1], height, &j0, &j1, &b); /* compute integer rows/columns */ @@ -2610,24 +2749,24 @@ sample_linear_rect(struct gl_context *ctx, /* get four texel samples */ if (useBorderColor & (I0BIT | J0BIT)) - get_border_color(tObj, img, t00); + get_border_color(samp, img, t00); else - img->FetchTexelf(img, i0, j0, 0, t00); + swImg->FetchTexel(swImg, i0, j0, 0, t00); if (useBorderColor & (I1BIT | J0BIT)) - get_border_color(tObj, img, t10); + get_border_color(samp, img, t10); else - img->FetchTexelf(img, i1, j0, 0, t10); + swImg->FetchTexel(swImg, i1, j0, 0, t10); if (useBorderColor & (I0BIT | J1BIT)) - get_border_color(tObj, img, t01); + get_border_color(samp, img, t01); else - img->FetchTexelf(img, i0, j1, 0, t01); + swImg->FetchTexel(swImg, i0, j1, 0, t01); if (useBorderColor & (I1BIT | J1BIT)) - get_border_color(tObj, img, t11); + get_border_color(samp, img, t11); else - img->FetchTexelf(img, i1, j1, 0, t11); + swImg->FetchTexel(swImg, i1, j1, 0, t11); lerp_rgba_2d(rgba[i], a, b, t00, t10, t01, t11); } @@ -2637,6 +2776,7 @@ sample_linear_rect(struct gl_context *ctx, /** Sample Rect texture, using lambda to choose between min/magnification */ static void sample_lambda_rect(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2646,26 +2786,26 @@ sample_lambda_rect(struct gl_context *ctx, /* We only need lambda to decide between minification and magnification. * There is no mipmapping with rectangular textures. */ - compute_min_mag_ranges(tObj, n, lambda, + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { - if (tObj->Sampler.MinFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, minEnd - minStart, + if (samp->MinFilter == GL_NEAREST) { + sample_nearest_rect(ctx, samp, tObj, minEnd - minStart, texcoords + minStart, NULL, rgba + minStart); } else { - sample_linear_rect(ctx, tObj, minEnd - minStart, + sample_linear_rect(ctx, samp, tObj, minEnd - minStart, texcoords + minStart, NULL, rgba + minStart); } } if (magStart < magEnd) { - if (tObj->Sampler.MagFilter == GL_NEAREST) { - sample_nearest_rect(ctx, tObj, magEnd - magStart, + if (samp->MagFilter == GL_NEAREST) { + sample_nearest_rect(ctx, samp, tObj, magEnd - magStart, texcoords + magStart, NULL, rgba + magStart); } else { - sample_linear_rect(ctx, tObj, magEnd - magStart, + sample_linear_rect(ctx, samp, tObj, magEnd - magStart, texcoords + magStart, NULL, rgba + magStart); } } @@ -2681,11 +2821,12 @@ sample_lambda_rect(struct gl_context *ctx, */ static void sample_2d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; /* without border, power of two */ const GLint height = img->Height2; /* without border, power of two */ const GLint depth = img->Depth; @@ -2693,18 +2834,18 @@ sample_2d_array_nearest(struct gl_context *ctx, GLint array; (void) ctx; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); - j = nearest_texel_location(tObj->Sampler.WrapT, img, height, texcoord[1]); + i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); + j = nearest_texel_location(samp->WrapT, img, height, texcoord[1]); array = tex_array_slice(texcoord[2], depth); if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height || array < 0 || array >= (GLint) img->Depth) { /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); + get_border_color(samp, img, rgba); } else { - img->FetchTexelf(img, i, j, array, rgba); + swImg->FetchTexel(swImg, i, j, array, rgba); } } @@ -2714,11 +2855,12 @@ sample_2d_array_nearest(struct gl_context *ctx, */ static void sample_2d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; const GLint height = img->Height2; const GLint depth = img->Depth; @@ -2728,12 +2870,12 @@ sample_2d_array_linear(struct gl_context *ctx, GLfloat a, b; GLfloat t00[4], t01[4], t10[4], t11[4]; - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); - linear_texel_locations(tObj->Sampler.WrapT, img, height, texcoord[1], &j0, &j1, &b); + linear_texel_locations(samp->WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(samp->WrapT, img, height, texcoord[1], &j0, &j1, &b); array = tex_array_slice(texcoord[2], depth); if (array < 0 || array >= depth) { - COPY_4V(rgba, tObj->Sampler.BorderColor.f); + COPY_4V(rgba, samp->BorderColor.f); } else { if (img->Border) { @@ -2752,30 +2894,30 @@ sample_2d_array_linear(struct gl_context *ctx, /* Fetch texels */ if (useBorderColor & (I0BIT | J0BIT)) { - get_border_color(tObj, img, t00); + get_border_color(samp, img, t00); } else { - img->FetchTexelf(img, i0, j0, array, t00); + swImg->FetchTexel(swImg, i0, j0, array, t00); } if (useBorderColor & (I1BIT | J0BIT)) { - get_border_color(tObj, img, t10); + get_border_color(samp, img, t10); } else { - img->FetchTexelf(img, i1, j0, array, t10); + swImg->FetchTexel(swImg, i1, j0, array, t10); } if (useBorderColor & (I0BIT | J1BIT)) { - get_border_color(tObj, img, t01); + get_border_color(samp, img, t01); } else { - img->FetchTexelf(img, i0, j1, array, t01); + swImg->FetchTexel(swImg, i0, j1, array, t01); } if (useBorderColor & (I1BIT | J1BIT)) { - get_border_color(tObj, img, t11); + get_border_color(samp, img, t11); } else { - img->FetchTexelf(img, i1, j1, array, t11); + swImg->FetchTexel(swImg, i1, j1, array, t11); } - + /* trilinear interpolation of samples */ lerp_rgba_2d(rgba, a, b, t00, t10, t01, t11); } @@ -2784,6 +2926,7 @@ sample_2d_array_linear(struct gl_context *ctx, static void sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2791,7 +2934,7 @@ sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, GLuint i; for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + sample_2d_array_nearest(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } @@ -2799,15 +2942,16 @@ sample_2d_array_nearest_mipmap_nearest(struct gl_context *ctx, static void sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level], + sample_2d_array_linear(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } @@ -2815,24 +2959,25 @@ sample_2d_array_linear_mipmap_nearest(struct gl_context *ctx, static void sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_array_nearest(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level ], + sample_2d_array_nearest(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][level+1], + sample_2d_array_nearest(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } @@ -2842,24 +2987,25 @@ sample_2d_array_nearest_mipmap_linear(struct gl_context *ctx, static void sample_2d_array_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_2d_array_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level ], + sample_2d_array_linear(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_array_linear(ctx, tObj, tObj->Image[0][level+1], + sample_2d_array_linear(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } @@ -2870,15 +3016,16 @@ sample_2d_array_linear_mipmap_linear(struct gl_context *ctx, /** Sample 2D Array texture, nearest filtering for both min/magnification */ static void sample_nearest_2d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_2d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + sample_2d_array_nearest(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -2887,15 +3034,16 @@ sample_nearest_2d_array(struct gl_context *ctx, /** Sample 2D Array texture, linear filtering for both min/magnification */ static void sample_linear_2d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_2d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + sample_2d_array_linear(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -2903,6 +3051,7 @@ sample_linear_2d_array(struct gl_context *ctx, /** Sample 2D Array texture, using lambda to choose between min/magnification */ static void sample_lambda_2d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -2911,46 +3060,46 @@ sample_lambda_2d_array(struct gl_context *ctx, GLuint magStart, magEnd; /* texels with magnification */ GLuint i; - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: for (i = minStart; i < minEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_2d_array_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = minStart; i < minEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_2d_array_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_array_nearest_mipmap_nearest(ctx, tObj, m, + sample_2d_array_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_array_linear_mipmap_nearest(ctx, tObj, m, + sample_2d_array_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_array_nearest_mipmap_linear(ctx, tObj, m, + sample_2d_array_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: - sample_2d_array_linear_mipmap_linear(ctx, tObj, m, + sample_2d_array_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, - lambda + minStart, + lambda + minStart, rgba + minStart); break; default: @@ -2961,15 +3110,15 @@ sample_lambda_2d_array(struct gl_context *ctx, if (magStart < magEnd) { /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: for (i = magStart; i < magEnd; i++) - sample_2d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_2d_array_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = magStart; i < magEnd; i++) - sample_2d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_2d_array_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; default: @@ -2991,27 +3140,28 @@ sample_lambda_2d_array(struct gl_context *ctx, */ static void sample_1d_array_nearest(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; /* without border, power of two */ const GLint height = img->Height; GLint i; GLint array; (void) ctx; - i = nearest_texel_location(tObj->Sampler.WrapS, img, width, texcoord[0]); + i = nearest_texel_location(samp->WrapS, img, width, texcoord[0]); array = tex_array_slice(texcoord[1], height); if (i < 0 || i >= (GLint) img->Width || array < 0 || array >= (GLint) img->Height) { /* Need this test for GL_CLAMP_TO_BORDER mode */ - get_border_color(tObj, img, rgba); + get_border_color(samp, img, rgba); } else { - img->FetchTexelf(img, i, array, 0, rgba); + swImg->FetchTexel(swImg, i, array, 0, rgba); } } @@ -3021,11 +3171,12 @@ sample_1d_array_nearest(struct gl_context *ctx, */ static void sample_1d_array_linear(struct gl_context *ctx, - const struct gl_texture_object *tObj, + const struct gl_sampler_object *samp, const struct gl_texture_image *img, const GLfloat texcoord[4], GLfloat rgba[4]) { + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width2; const GLint height = img->Height; GLint i0, i1; @@ -3034,7 +3185,7 @@ sample_1d_array_linear(struct gl_context *ctx, GLfloat a; GLfloat t0[4], t1[4]; - linear_texel_locations(tObj->Sampler.WrapS, img, width, texcoord[0], &i0, &i1, &a); + linear_texel_locations(samp->WrapS, img, width, texcoord[0], &i0, &i1, &a); array = tex_array_slice(texcoord[1], height); if (img->Border) { @@ -3051,16 +3202,16 @@ sample_1d_array_linear(struct gl_context *ctx, /* Fetch texels */ if (useBorderColor & (I0BIT | K0BIT)) { - get_border_color(tObj, img, t0); + get_border_color(samp, img, t0); } else { - img->FetchTexelf(img, i0, array, 0, t0); + swImg->FetchTexel(swImg, i0, array, 0, t0); } if (useBorderColor & (I1BIT | K0BIT)) { - get_border_color(tObj, img, t1); + get_border_color(samp, img, t1); } else { - img->FetchTexelf(img, i1, array, 0, t1); + swImg->FetchTexel(swImg, i1, array, 0, t1); } /* bilinear interpolation of samples */ @@ -3070,6 +3221,7 @@ sample_1d_array_linear(struct gl_context *ctx, static void sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -3077,7 +3229,7 @@ sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, GLuint i; for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], + sample_1d_array_nearest(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } @@ -3085,15 +3237,16 @@ sample_1d_array_nearest_mipmap_nearest(struct gl_context *ctx, static void sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = nearest_mipmap_level(tObj, lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level], + sample_1d_array_linear(ctx, samp, tObj->Image[0][level], texcoord[i], rgba[i]); } } @@ -3101,23 +3254,24 @@ sample_1d_array_linear_mipmap_nearest(struct gl_context *ctx, static void sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_1d_array_nearest(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_1d_array_nearest(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_nearest(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -3126,23 +3280,24 @@ sample_1d_array_nearest_mipmap_linear(struct gl_context *ctx, static void sample_1d_array_linear_mipmap_linear(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoord[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - ASSERT(lambda != NULL); + assert(lambda != NULL); for (i = 0; i < n; i++) { GLint level = linear_mipmap_level(tObj, lambda[i]); if (level >= tObj->_MaxLevel) { - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], + sample_1d_array_linear(ctx, samp, tObj->Image[0][tObj->_MaxLevel], texcoord[i], rgba[i]); } else { GLfloat t0[4], t1[4]; /* texels */ const GLfloat f = FRAC(lambda[i]); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_array_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); + sample_1d_array_linear(ctx, samp, tObj->Image[0][level ], texcoord[i], t0); + sample_1d_array_linear(ctx, samp, tObj->Image[0][level+1], texcoord[i], t1); lerp_rgba(rgba[i], f, t0, t1); } } @@ -3152,15 +3307,16 @@ sample_1d_array_linear_mipmap_linear(struct gl_context *ctx, /** Sample 1D Array texture, nearest filtering for both min/magnification */ static void sample_nearest_1d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_1d_array_nearest(ctx, tObj, image, texcoords[i], rgba[i]); + sample_1d_array_nearest(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -3168,15 +3324,16 @@ sample_nearest_1d_array(struct gl_context *ctx, /** Sample 1D Array texture, linear filtering for both min/magnification */ static void sample_linear_1d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) { GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; + const struct gl_texture_image *image = _mesa_base_tex_image(tObj); (void) lambda; for (i = 0; i < n; i++) { - sample_1d_array_linear(ctx, tObj, image, texcoords[i], rgba[i]); + sample_1d_array_linear(ctx, samp, image, texcoords[i], rgba[i]); } } @@ -3184,6 +3341,7 @@ sample_linear_1d_array(struct gl_context *ctx, /** Sample 1D Array texture, using lambda to choose between min/magnification */ static void sample_lambda_1d_array(struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -3192,42 +3350,42 @@ sample_lambda_1d_array(struct gl_context *ctx, GLuint magStart, magEnd; /* texels with magnification */ GLuint i; - ASSERT(lambda != NULL); - compute_min_mag_ranges(tObj, n, lambda, + assert(lambda != NULL); + compute_min_mag_ranges(samp, n, lambda, &minStart, &minEnd, &magStart, &magEnd); if (minStart < minEnd) { /* do the minified texels */ GLuint m = minEnd - minStart; - switch (tObj->Sampler.MinFilter) { + switch (samp->MinFilter) { case GL_NEAREST: for (i = minStart; i < minEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_array_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = minStart; i < minEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_array_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_array_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + sample_1d_array_nearest_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_array_linear_mipmap_nearest(ctx, tObj, m, + sample_1d_array_linear_mipmap_nearest(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_array_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + sample_1d_array_nearest_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, lambda + minStart, rgba + minStart); break; case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_array_linear_mipmap_linear(ctx, tObj, m, + sample_1d_array_linear_mipmap_linear(ctx, samp, tObj, m, texcoords + minStart, - lambda + minStart, + lambda + minStart, rgba + minStart); break; default: @@ -3238,15 +3396,15 @@ sample_lambda_1d_array(struct gl_context *ctx, if (magStart < magEnd) { /* do the magnified texels */ - switch (tObj->Sampler.MagFilter) { + switch (samp->MagFilter) { case GL_NEAREST: for (i = magStart; i < magEnd; i++) - sample_1d_array_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_array_nearest(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; case GL_LINEAR: for (i = magStart; i < magEnd; i++) - sample_1d_array_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], + sample_1d_array_linear(ctx, samp, _mesa_base_tex_image(tObj), texcoords[i], rgba[i]); break; default: @@ -3258,34 +3416,33 @@ sample_lambda_1d_array(struct gl_context *ctx, /** - * Compare texcoord against depth sample. Return 1.0 or the ambient value. + * Compare texcoord against depth sample. Return 1.0 or 0.0 value. */ -static INLINE GLfloat -shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, - GLfloat ambient) +static GLfloat +shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample) { switch (function) { case GL_LEQUAL: - return (coord <= depthSample) ? 1.0F : ambient; + return (coord <= depthSample) ? 1.0F : 0.0F; case GL_GEQUAL: - return (coord >= depthSample) ? 1.0F : ambient; + return (coord >= depthSample) ? 1.0F : 0.0F; case GL_LESS: - return (coord < depthSample) ? 1.0F : ambient; + return (coord < depthSample) ? 1.0F : 0.0F; case GL_GREATER: - return (coord > depthSample) ? 1.0F : ambient; + return (coord > depthSample) ? 1.0F : 0.0F; case GL_EQUAL: - return (coord == depthSample) ? 1.0F : ambient; + return (coord == depthSample) ? 1.0F : 0.0F; case GL_NOTEQUAL: - return (coord != depthSample) ? 1.0F : ambient; + return (coord != depthSample) ? 1.0F : 0.0F; case GL_ALWAYS: return 1.0F; case GL_NEVER: - return ambient; + return 0.0F; case GL_NONE: return depthSample; default: _mesa_problem(NULL, "Bad compare func in shadow_compare"); - return ambient; + return 0.0F; } } @@ -3293,13 +3450,13 @@ shadow_compare(GLenum function, GLfloat coord, GLfloat depthSample, /** * Compare texcoord against four depth samples. */ -static INLINE GLfloat +static GLfloat shadow_compare4(GLenum function, GLfloat coord, GLfloat depth00, GLfloat depth01, GLfloat depth10, GLfloat depth11, - GLfloat ambient, GLfloat wi, GLfloat wj) + GLfloat wi, GLfloat wj) { - const GLfloat d = (1.0F - (GLfloat) ambient) * 0.25F; + const GLfloat d = 0.25F; GLfloat luminance = 1.0F; switch (function) { @@ -3342,13 +3499,13 @@ shadow_compare4(GLenum function, GLfloat coord, case GL_ALWAYS: return 1.0F; case GL_NEVER: - return ambient; + return 0.0F; case GL_NONE: /* ordinary bilinear filtering */ return lerp_2d(wi, wj, depth00, depth10, depth01, depth11); default: _mesa_problem(NULL, "Bad compare func in sample_compare4"); - return ambient; + return 0.0F; } } @@ -3357,17 +3514,18 @@ shadow_compare4(GLenum function, GLfloat coord, * Choose the mipmap level to use when sampling from a depth texture. */ static int -choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda) +choose_depth_texture_level(const struct gl_sampler_object *samp, + const struct gl_texture_object *tObj, GLfloat lambda) { GLint level; - if (tObj->Sampler.MinFilter == GL_NEAREST || tObj->Sampler.MinFilter == GL_LINEAR) { + if (samp->MinFilter == GL_NEAREST || samp->MinFilter == GL_LINEAR) { /* no mipmapping - use base level */ level = tObj->BaseLevel; } else { /* choose mipmap level */ - lambda = CLAMP(lambda, tObj->Sampler.MinLod, tObj->Sampler.MaxLod); + lambda = CLAMP(lambda, samp->MinLod, samp->MaxLod); level = (GLint) lambda; level = CLAMP(level, tObj->BaseLevel, tObj->_MaxLevel); } @@ -3382,78 +3540,63 @@ choose_depth_texture_level(const struct gl_texture_object *tObj, GLfloat lambda) */ static void sample_depth_texture( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat texel[][4] ) { - const GLint level = choose_depth_texture_level(tObj, lambda[0]); + const GLint level = choose_depth_texture_level(samp, tObj, lambda[0]); const struct gl_texture_image *img = tObj->Image[0][level]; + const struct swrast_texture_image *swImg = swrast_texture_image_const(img); const GLint width = img->Width; const GLint height = img->Height; const GLint depth = img->Depth; const GLuint compare_coord = (tObj->Target == GL_TEXTURE_2D_ARRAY_EXT) ? 3 : 2; - GLfloat ambient; GLenum function; GLfloat result; - ASSERT(img->_BaseFormat == GL_DEPTH_COMPONENT || + assert(img->_BaseFormat == GL_DEPTH_COMPONENT || img->_BaseFormat == GL_DEPTH_STENCIL_EXT); - ASSERT(tObj->Target == GL_TEXTURE_1D || + assert(tObj->Target == GL_TEXTURE_1D || tObj->Target == GL_TEXTURE_2D || tObj->Target == GL_TEXTURE_RECTANGLE_NV || tObj->Target == GL_TEXTURE_1D_ARRAY_EXT || - tObj->Target == GL_TEXTURE_2D_ARRAY_EXT); + tObj->Target == GL_TEXTURE_2D_ARRAY_EXT || + tObj->Target == GL_TEXTURE_CUBE_MAP); - ambient = tObj->Sampler.CompareFailValue; + /* XXXX if samp->MinFilter != samp->MagFilter, we're ignoring lambda */ - /* XXXX if tObj->Sampler.MinFilter != tObj->Sampler.MagFilter, we're ignoring lambda */ + function = (samp->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? + samp->CompareFunc : GL_NONE; - function = (tObj->Sampler.CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) ? - tObj->Sampler.CompareFunc : GL_NONE; - - if (tObj->Sampler.MagFilter == GL_NEAREST) { + if (samp->MagFilter == GL_NEAREST) { GLuint i; for (i = 0; i < n; i++) { GLfloat depthSample, depthRef; GLint col, row, slice; - nearest_texcoord(tObj, level, texcoords[i], &col, &row, &slice); + nearest_texcoord(samp, tObj, level, texcoords[i], &col, &row, &slice); - if (col >= 0 && row >= 0 && col < width && row < height && + if (col >= 0 && row >= 0 && col < width && row < height && slice >= 0 && slice < depth) { - img->FetchTexelf(img, col, row, slice, &depthSample); + swImg->FetchTexel(swImg, col, row, slice, &depthSample); } else { - depthSample = tObj->Sampler.BorderColor.f[0]; + depthSample = samp->BorderColor.f[0]; } depthRef = CLAMP(texcoords[i][compare_coord], 0.0F, 1.0F); - result = shadow_compare(function, depthRef, depthSample, ambient); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - case GL_RED: - ASSIGN_4V(texel[i], result, 0.0F, 0.0F, 1.0F); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } + result = shadow_compare(function, depthRef, depthSample); + + apply_depth_mode(tObj->DepthMode, result, texel[i]); } } else { GLuint i; - ASSERT(tObj->Sampler.MagFilter == GL_LINEAR); + assert(samp->MagFilter == GL_LINEAR); for (i = 0; i < n; i++) { GLfloat depth00, depth01, depth10, depth11, depthRef; GLint i0, i1, j0, j1; @@ -3461,7 +3604,7 @@ sample_depth_texture( struct gl_context *ctx, GLfloat wi, wj; GLuint useBorderTexel; - linear_texcoord(tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice, + linear_texcoord(samp, tObj, level, texcoords[i], &i0, &i1, &j0, &j1, &slice, &wi, &wj); useBorderTexel = 0; @@ -3481,38 +3624,38 @@ sample_depth_texture( struct gl_context *ctx, } if (slice < 0 || slice >= (GLint) depth) { - depth00 = tObj->Sampler.BorderColor.f[0]; - depth01 = tObj->Sampler.BorderColor.f[0]; - depth10 = tObj->Sampler.BorderColor.f[0]; - depth11 = tObj->Sampler.BorderColor.f[0]; + depth00 = samp->BorderColor.f[0]; + depth01 = samp->BorderColor.f[0]; + depth10 = samp->BorderColor.f[0]; + depth11 = samp->BorderColor.f[0]; } else { /* get four depth samples from the texture */ if (useBorderTexel & (I0BIT | J0BIT)) { - depth00 = tObj->Sampler.BorderColor.f[0]; + depth00 = samp->BorderColor.f[0]; } else { - img->FetchTexelf(img, i0, j0, slice, &depth00); + swImg->FetchTexel(swImg, i0, j0, slice, &depth00); } if (useBorderTexel & (I1BIT | J0BIT)) { - depth10 = tObj->Sampler.BorderColor.f[0]; + depth10 = samp->BorderColor.f[0]; } else { - img->FetchTexelf(img, i1, j0, slice, &depth10); + swImg->FetchTexel(swImg, i1, j0, slice, &depth10); } if (tObj->Target != GL_TEXTURE_1D_ARRAY_EXT) { if (useBorderTexel & (I0BIT | J1BIT)) { - depth01 = tObj->Sampler.BorderColor.f[0]; + depth01 = samp->BorderColor.f[0]; } else { - img->FetchTexelf(img, i0, j1, slice, &depth01); + swImg->FetchTexel(swImg, i0, j1, slice, &depth01); } if (useBorderTexel & (I1BIT | J1BIT)) { - depth11 = tObj->Sampler.BorderColor.f[0]; + depth11 = samp->BorderColor.f[0]; } else { - img->FetchTexelf(img, i1, j1, slice, &depth11); + swImg->FetchTexel(swImg, i1, j1, slice, &depth11); } } else { @@ -3525,22 +3668,9 @@ sample_depth_texture( struct gl_context *ctx, result = shadow_compare4(function, depthRef, depth00, depth01, depth10, depth11, - ambient, wi, wj); - - switch (tObj->Sampler.DepthMode) { - case GL_LUMINANCE: - ASSIGN_4V(texel[i], result, result, result, 1.0F); - break; - case GL_INTENSITY: - ASSIGN_4V(texel[i], result, result, result, result); - break; - case GL_ALPHA: - ASSIGN_4V(texel[i], 0.0F, 0.0F, 0.0F, result); - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } + wi, wj); + apply_depth_mode(tObj->DepthMode, result, texel[i]); } /* for */ } /* if filter */ } @@ -3554,6 +3684,7 @@ sample_depth_texture( struct gl_context *ctx, */ static void null_sample_func( struct gl_context *ctx, + const struct gl_sampler_object *samp, const struct gl_texture_object *tObj, GLuint n, const GLfloat texcoords[][4], const GLfloat lambda[], GLfloat rgba[][4]) @@ -3563,6 +3694,7 @@ null_sample_func( struct gl_context *ctx, (void) tObj; (void) texcoords; (void) lambda; + (void) samp; for (i = 0; i < n; i++) { rgba[i][RCOMP] = 0; rgba[i][GCOMP] = 0; @@ -3577,130 +3709,136 @@ null_sample_func( struct gl_context *ctx, */ texture_sample_func _swrast_choose_texture_sample_func( struct gl_context *ctx, - const struct gl_texture_object *t ) + const struct gl_texture_object *t, + const struct gl_sampler_object *sampler) { - if (!t || !t->_Complete) { - return &null_sample_func; + if (!t || !_mesa_is_texture_complete(t, sampler, + ctx->Const.ForceIntegerTexNearest)) { + return null_sample_func; } else { const GLboolean needLambda = - (GLboolean) (t->Sampler.MinFilter != t->Sampler.MagFilter); - const GLenum format = t->Image[0][t->BaseLevel]->_BaseFormat; + (GLboolean) (sampler->MinFilter != sampler->MagFilter); switch (t->Target) { case GL_TEXTURE_1D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; + if (is_depth_texture(t)) { + return sample_depth_texture; } else if (needLambda) { - return &sample_lambda_1d; + return sample_lambda_1d; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_1d; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_1d; } case GL_TEXTURE_2D: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; + if (is_depth_texture(t)) { + return sample_depth_texture; } else if (needLambda) { /* Anisotropic filtering extension. Activated only if mipmaps are used */ - if (t->Sampler.MaxAnisotropy > 1.0 && - t->Sampler.MinFilter == GL_LINEAR_MIPMAP_LINEAR) { - return &sample_lambda_2d_aniso; + if (sampler->MaxAnisotropy > 1.0F && + sampler->MinFilter == GL_LINEAR_MIPMAP_LINEAR) { + return sample_lambda_2d_aniso; } - return &sample_lambda_2d; + return sample_lambda_2d; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_2d; } else { /* check for a few optimized cases */ - const struct gl_texture_image *img = t->Image[0][t->BaseLevel]; - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGB888) { - return &opt_sample_rgb_2d; - } - else if (t->Sampler.WrapS == GL_REPEAT && - t->Sampler.WrapT == GL_REPEAT && - img->_IsPowerOfTwo && - img->Border == 0 && - img->TexFormat == MESA_FORMAT_RGBA8888) { - return &opt_sample_rgba_2d; - } - else { - return &sample_nearest_2d; + const struct gl_texture_image *img = _mesa_base_tex_image(t); + const struct swrast_texture_image *swImg = + swrast_texture_image_const(img); + texture_sample_func func; + + assert(sampler->MinFilter == GL_NEAREST); + func = &sample_nearest_2d; + if (sampler->WrapS == GL_REPEAT && + sampler->WrapT == GL_REPEAT && + swImg->_IsPowerOfTwo && + img->Border == 0) { + if (img->TexFormat == MESA_FORMAT_BGR_UNORM8) + func = &opt_sample_rgb_2d; + else if (img->TexFormat == MESA_FORMAT_A8B8G8R8_UNORM) + func = &opt_sample_rgba_2d; } + + return func; } case GL_TEXTURE_3D: if (needLambda) { - return &sample_lambda_3d; + return sample_lambda_3d; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_3d; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_3d; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_3d; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_3d; } case GL_TEXTURE_CUBE_MAP: if (needLambda) { - return &sample_lambda_cube; + return sample_lambda_cube; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_cube; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_cube; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_cube; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_cube; } case GL_TEXTURE_RECTANGLE_NV: - if (format == GL_DEPTH_COMPONENT || format == GL_DEPTH_STENCIL_EXT) { - return &sample_depth_texture; + if (is_depth_texture(t)) { + return sample_depth_texture; } else if (needLambda) { - return &sample_lambda_rect; + return sample_lambda_rect; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_rect; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_rect; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_rect; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_rect; } case GL_TEXTURE_1D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_1d_array; + if (is_depth_texture(t)) { + return sample_depth_texture; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_1d_array; + else if (needLambda) { + return sample_lambda_1d_array; + } + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_1d_array; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_1d_array; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_1d_array; } case GL_TEXTURE_2D_ARRAY_EXT: - if (needLambda) { - return &sample_lambda_2d_array; + if (is_depth_texture(t)) { + return sample_depth_texture; + } + else if (needLambda) { + return sample_lambda_2d_array; } - else if (t->Sampler.MinFilter == GL_LINEAR) { - return &sample_linear_2d_array; + else if (sampler->MinFilter == GL_LINEAR) { + return sample_linear_2d_array; } else { - ASSERT(t->Sampler.MinFilter == GL_NEAREST); - return &sample_nearest_2d_array; + assert(sampler->MinFilter == GL_NEAREST); + return sample_nearest_2d_array; } default: _mesa_problem(ctx, "invalid target in _swrast_choose_texture_sample_func"); - return &null_sample_func; + return null_sample_func; } } }