X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fswrast%2Fs_texture.c;h=36b429cfab9535b7fe784722a68f9890deeee540;hb=26b8dfc8cadf0f1a8604fc77b226cc7de005f9ca;hp=c75d826d2c124033126daf3aae08c0de53858291;hpb=9e385282fc51b5852bfcfa981d672173488cd5c5;p=mesa.git diff --git a/src/mesa/swrast/s_texture.c b/src/mesa/swrast/s_texture.c index c75d826d2c1..36b429cfab9 100644 --- a/src/mesa/swrast/s_texture.c +++ b/src/mesa/swrast/s_texture.c @@ -1,8 +1,7 @@ /* * Mesa 3-D graphics library - * Version: 6.4 * - * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. + * Copyright (C) 2011 VMware, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), @@ -17,3947 +16,187 @@ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL - * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN + * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ - -#include "glheader.h" -#include "context.h" -#include "colormac.h" -#include "macros.h" -#include "imports.h" -#include "pixel.h" -#include "texformat.h" -#include "teximage.h" - -#include "s_context.h" -#include "s_texture.h" - - -/** - * Constants for integer linear interpolation. - */ -#define ILERP_SCALE 65536.0F -#define ILERP_SHIFT 16 - - /** - * Linear interpolation macros + * Functions for mapping/unmapping texture images. */ -#define LERP(T, A, B) ( (A) + (T) * ((B) - (A)) ) -#define ILERP(IT, A, B) ( (A) + (((IT) * ((B) - (A))) >> ILERP_SHIFT) ) -/** - * Do 2D/biliner interpolation of float values. - * v00, v10, v01 and v11 are typically four texture samples in a square/box. - * a and b are the horizontal and vertical interpolants. - * It's important that this function is inlined when compiled with - * optimization! If we find that's not true on some systems, convert - * to a macro. - */ -static INLINE GLfloat -lerp_2d(GLfloat a, GLfloat b, - GLfloat v00, GLfloat v10, GLfloat v01, GLfloat v11) -{ - const GLfloat temp0 = LERP(a, v00, v10); - const GLfloat temp1 = LERP(a, v01, v11); - return LERP(b, temp0, temp1); -} +#include "main/context.h" +#include "main/fbobject.h" +#include "main/teximage.h" +#include "swrast/swrast.h" +#include "swrast/s_context.h" /** - * Do 2D/biliner interpolation of integer values. - * \sa lerp_2d + * Allocate a new swrast_texture_image (a subclass of gl_texture_image). + * Called via ctx->Driver.NewTextureImage(). */ -static INLINE GLint -ilerp_2d(GLint ia, GLint ib, - GLint v00, GLint v10, GLint v01, GLint v11) +struct gl_texture_image * +_swrast_new_texture_image( struct gl_context *ctx ) { - /* fixed point interpolants in [0, ILERP_SCALE] */ - const GLint temp0 = ILERP(ia, v00, v10); - const GLint temp1 = ILERP(ia, v01, v11); - return ILERP(ib, temp0, temp1); + (void) ctx; + return (struct gl_texture_image *) CALLOC_STRUCT(swrast_texture_image); } /** - * Do 3D/trilinear interpolation of float values. - * \sa lerp_2d + * Free a swrast_texture_image (a subclass of gl_texture_image). + * Called via ctx->Driver.DeleteTextureImage(). */ -static INLINE GLfloat -lerp_3d(GLfloat a, GLfloat b, GLfloat c, - GLfloat v000, GLfloat v100, GLfloat v010, GLfloat v110, - GLfloat v001, GLfloat v101, GLfloat v011, GLfloat v111) +void +_swrast_delete_texture_image(struct gl_context *ctx, + struct gl_texture_image *texImage) { - const GLfloat temp00 = LERP(a, v000, v100); - const GLfloat temp10 = LERP(a, v010, v110); - const GLfloat temp01 = LERP(a, v001, v101); - const GLfloat temp11 = LERP(a, v011, v111); - const GLfloat temp0 = LERP(b, temp00, temp10); - const GLfloat temp1 = LERP(b, temp01, temp11); - return LERP(c, temp0, temp1); + /* Nothing special for the subclass yet */ + _mesa_delete_texture_image(ctx, texImage); } /** - * Do 3D/trilinear interpolation of integer values. - * \sa lerp_2d + * Called via ctx->Driver.AllocTextureImageBuffer() */ -static INLINE GLint -ilerp_3d(GLint ia, GLint ib, GLint ic, - GLint v000, GLint v100, GLint v010, GLint v110, - GLint v001, GLint v101, GLint v011, GLint v111) +GLboolean +_swrast_alloc_texture_image_buffer(struct gl_context *ctx, + struct gl_texture_image *texImage, + gl_format format, GLsizei width, + GLsizei height, GLsizei depth) { - /* fixed point interpolants in [0, ILERP_SCALE] */ - const GLint temp00 = ILERP(ia, v000, v100); - const GLint temp10 = ILERP(ia, v010, v110); - const GLint temp01 = ILERP(ia, v001, v101); - const GLint temp11 = ILERP(ia, v011, v111); - const GLint temp0 = ILERP(ib, temp00, temp10); - const GLint temp1 = ILERP(ib, temp01, temp11); - return ILERP(ic, temp0, temp1); -} + struct swrast_texture_image *swImg = swrast_texture_image(texImage); + GLuint bytes = _mesa_format_image_size(format, width, height, depth); + /* This _should_ be true (revisit if these ever fail) */ + assert(texImage->Width == width); + assert(texImage->Height == height); + assert(texImage->Depth == depth); + assert(!texImage->Data); + texImage->Data = _mesa_align_malloc(bytes, 512); -/** - * Compute the remainder of a divided by b, but be careful with - * negative values so that GL_REPEAT mode works right. - */ -static INLINE GLint -repeat_remainder(GLint a, GLint b) -{ - if (a >= 0) - return a % b; + if ((width == 1 || _mesa_is_pow_two(texImage->Width2)) && + (height == 1 || _mesa_is_pow_two(texImage->Height2)) && + (depth == 1 || _mesa_is_pow_two(texImage->Depth2))) + swImg->_IsPowerOfTwo = GL_TRUE; else - return (a + 1) % b + b - 1; -} - - -/** - * Used to compute texel locations for linear sampling. - * Input: - * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER - * S = texcoord in [0,1] - * SIZE = width (or height or depth) of texture - * Output: - * U = texcoord in [0, width] - * I0, I1 = two nearest texel indexes - */ -#define COMPUTE_LINEAR_TEXEL_LOCATIONS(wrapMode, S, U, SIZE, I0, I1) \ -{ \ - if (wrapMode == GL_REPEAT) { \ - U = S * SIZE - 0.5F; \ - if (tObj->_IsPowerOfTwo) { \ - I0 = IFLOOR(U) & (SIZE - 1); \ - I1 = (I0 + 1) & (SIZE - 1); \ - } \ - else { \ - I0 = repeat_remainder(IFLOOR(U), SIZE); \ - I1 = repeat_remainder(I0 + 1, SIZE); \ - } \ - } \ - else if (wrapMode == GL_CLAMP_TO_EDGE) { \ - if (S <= 0.0F) \ - U = 0.0F; \ - else if (S >= 1.0F) \ - U = (GLfloat) SIZE; \ - else \ - U = S * SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - if (I0 < 0) \ - I0 = 0; \ - if (I1 >= (GLint) SIZE) \ - I1 = SIZE - 1; \ - } \ - else if (wrapMode == GL_CLAMP_TO_BORDER) { \ - const GLfloat min = -1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - if (S <= min) \ - U = min * SIZE; \ - else if (S >= max) \ - U = max * SIZE; \ - else \ - U = S * SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - } \ - else if (wrapMode == GL_MIRRORED_REPEAT) { \ - const GLint flr = IFLOOR(S); \ - if (flr & 1) \ - U = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \ - else \ - U = S - (GLfloat) flr; /* flr is even */ \ - U = (U * SIZE) - 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - if (I0 < 0) \ - I0 = 0; \ - if (I1 >= (GLint) SIZE) \ - I1 = SIZE - 1; \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_EXT) { \ - U = (GLfloat) fabs(S); \ - if (U >= 1.0F) \ - U = (GLfloat) SIZE; \ - else \ - U *= SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_EXT) { \ - U = (GLfloat) fabs(S); \ - if (U >= 1.0F) \ - U = (GLfloat) SIZE; \ - else \ - U *= SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - if (I0 < 0) \ - I0 = 0; \ - if (I1 >= (GLint) SIZE) \ - I1 = SIZE - 1; \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_TO_BORDER_EXT) { \ - const GLfloat min = -1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - U = (GLfloat) fabs(S); \ - if (U <= min) \ - U = min * SIZE; \ - else if (U >= max) \ - U = max * SIZE; \ - else \ - U *= SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - } \ - else { \ - ASSERT(wrapMode == GL_CLAMP); \ - if (S <= 0.0F) \ - U = 0.0F; \ - else if (S >= 1.0F) \ - U = (GLfloat) SIZE; \ - else \ - U = S * SIZE; \ - U -= 0.5F; \ - I0 = IFLOOR(U); \ - I1 = I0 + 1; \ - } \ -} - - -/** - * Used to compute texel location for nearest sampling. - */ -#define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I) \ -{ \ - if (wrapMode == GL_REPEAT) { \ - /* s limited to [0,1) */ \ - /* i limited to [0,size-1] */ \ - I = IFLOOR(S * SIZE); \ - if (tObj->_IsPowerOfTwo) \ - I &= (SIZE - 1); \ - else \ - I = repeat_remainder(I, SIZE); \ - } \ - else if (wrapMode == GL_CLAMP_TO_EDGE) { \ - /* s limited to [min,max] */ \ - /* i limited to [0, size-1] */ \ - const GLfloat min = 1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - if (S < min) \ - I = 0; \ - else if (S > max) \ - I = SIZE - 1; \ - else \ - I = IFLOOR(S * SIZE); \ - } \ - else if (wrapMode == GL_CLAMP_TO_BORDER) { \ - /* s limited to [min,max] */ \ - /* i limited to [-1, size] */ \ - const GLfloat min = -1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - if (S <= min) \ - I = -1; \ - else if (S >= max) \ - I = SIZE; \ - else \ - I = IFLOOR(S * SIZE); \ - } \ - else if (wrapMode == GL_MIRRORED_REPEAT) { \ - const GLfloat min = 1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - const GLint flr = IFLOOR(S); \ - GLfloat u; \ - if (flr & 1) \ - u = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \ - else \ - u = S - (GLfloat) flr; /* flr is even */ \ - if (u < min) \ - I = 0; \ - else if (u > max) \ - I = SIZE - 1; \ - else \ - I = IFLOOR(u * SIZE); \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_EXT) { \ - /* s limited to [0,1] */ \ - /* i limited to [0,size-1] */ \ - const GLfloat u = (GLfloat) fabs(S); \ - if (u <= 0.0F) \ - I = 0; \ - else if (u >= 1.0F) \ - I = SIZE - 1; \ - else \ - I = IFLOOR(u * SIZE); \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_EXT) { \ - /* s limited to [min,max] */ \ - /* i limited to [0, size-1] */ \ - const GLfloat min = 1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - const GLfloat u = (GLfloat) fabs(S); \ - if (u < min) \ - I = 0; \ - else if (u > max) \ - I = SIZE - 1; \ - else \ - I = IFLOOR(u * SIZE); \ - } \ - else if (wrapMode == GL_MIRROR_CLAMP_TO_BORDER_EXT) { \ - /* s limited to [min,max] */ \ - /* i limited to [0, size-1] */ \ - const GLfloat min = -1.0F / (2.0F * SIZE); \ - const GLfloat max = 1.0F - min; \ - const GLfloat u = (GLfloat) fabs(S); \ - if (u < min) \ - I = -1; \ - else if (u > max) \ - I = SIZE; \ - else \ - I = IFLOOR(u * SIZE); \ - } \ - else { \ - ASSERT(wrapMode == GL_CLAMP); \ - /* s limited to [0,1] */ \ - /* i limited to [0,size-1] */ \ - if (S <= 0.0F) \ - I = 0; \ - else if (S >= 1.0F) \ - I = SIZE - 1; \ - else \ - I = IFLOOR(S * SIZE); \ - } \ -} - - -/* Power of two image sizes only */ -#define COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(S, U, SIZE, I0, I1) \ -{ \ - U = S * SIZE - 0.5F; \ - I0 = IFLOOR(U) & (SIZE - 1); \ - I1 = (I0 + 1) & (SIZE - 1); \ -} - - -/* - * Compute linear mipmap levels for given lambda. - */ -#define COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level) \ -{ \ - if (lambda < 0.0F) \ - level = tObj->BaseLevel; \ - else if (lambda > tObj->_MaxLambda) \ - level = (GLint) (tObj->BaseLevel + tObj->_MaxLambda); \ - else \ - level = (GLint) (tObj->BaseLevel + lambda); \ -} - - -/* - * Compute nearest mipmap level for given lambda. - */ -#define COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level) \ -{ \ - GLfloat l; \ - if (lambda <= 0.5F) \ - l = 0.0F; \ - else if (lambda > tObj->_MaxLambda + 0.4999F) \ - l = tObj->_MaxLambda + 0.4999F; \ - else \ - l = lambda; \ - level = (GLint) (tObj->BaseLevel + l + 0.5F); \ - if (level > tObj->_MaxLevel) \ - level = tObj->_MaxLevel; \ -} - - - -/* - * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes - * see 1-pixel bands of improperly weighted linear-sampled texels. The - * tests/texwrap.c demo is a good test. - * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. - * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). - */ -#define FRAC(f) ((f) - IFLOOR(f)) - - - -/* - * Bitflags for texture border color sampling. - */ -#define I0BIT 1 -#define I1BIT 2 -#define J0BIT 4 -#define J1BIT 8 -#define K0BIT 16 -#define K1BIT 32 - - - -/* - * The lambda[] array values are always monotonic. Either the whole span - * will be minified, magnified, or split between the two. This function - * determines the subranges in [0, n-1] that are to be minified or magnified. - */ -static INLINE void -compute_min_mag_ranges( GLfloat minMagThresh, GLuint n, const GLfloat lambda[], - GLuint *minStart, GLuint *minEnd, - GLuint *magStart, GLuint *magEnd ) -{ - ASSERT(lambda != NULL); -#if 0 - /* Verify that lambda[] is monotonous. - * We can't really use this because the inaccuracy in the LOG2 function - * causes this test to fail, yet the resulting texturing is correct. - */ - if (n > 1) { - GLuint i; - printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); - if (lambda[0] >= lambda[n-1]) { /* decreasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); - } - } - else { /* increasing */ - for (i = 0; i < n - 1; i++) { - ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); - } - } - } -#endif /* DEBUG */ - - /* since lambda is monotonous-array use this check first */ - if (lambda[0] <= minMagThresh && lambda[n-1] <= minMagThresh) { - /* magnification for whole span */ - *magStart = 0; - *magEnd = n; - *minStart = *minEnd = 0; - } - else if (lambda[0] > minMagThresh && lambda[n-1] > minMagThresh) { - /* minification for whole span */ - *minStart = 0; - *minEnd = n; - *magStart = *magEnd = 0; - } - else { - /* a mix of minification and magnification */ - GLuint i; - if (lambda[0] > minMagThresh) { - /* start with minification */ - for (i = 1; i < n; i++) { - if (lambda[i] <= minMagThresh) - break; - } - *minStart = 0; - *minEnd = i; - *magStart = i; - *magEnd = n; - } - else { - /* start with magnification */ - for (i = 1; i < n; i++) { - if (lambda[i] > minMagThresh) - break; - } - *magStart = 0; - *magEnd = i; - *minStart = i; - *minEnd = n; - } - } + swImg->_IsPowerOfTwo = GL_FALSE; -#if 0 - /* Verify the min/mag Start/End values - * We don't use this either (see above) - */ - { - GLint i; - for (i = 0; i < n; i++) { - if (lambda[i] > minMagThresh) { - /* minification */ - ASSERT(i >= *minStart); - ASSERT(i < *minEnd); - } - else { - /* magnification */ - ASSERT(i >= *magStart); - ASSERT(i < *magEnd); - } - } - } -#endif -} - - -/**********************************************************************/ -/* 1-D Texture Sampling Functions */ -/**********************************************************************/ - -/* - * Return the texture sample for coordinate (s) using GL_NEAREST filter. - */ -static void -sample_1d_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLchan rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - GLint i; - (void) ctx; - - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); - - /* skip over the border, if any */ - i += img->Border; - - if (i < 0 || i >= (GLint) img->Width) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - COPY_CHAN4(rgba, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i, 0, 0, rgba); - } -} - - - -/* - * Return the texture sample for coordinate (s) using GL_LINEAR filter. - */ -static void -sample_1d_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], GLchan rgba[4]) -{ - const GLint width = img->Width2; - GLint i0, i1; - GLfloat u; - GLuint useBorderColor; - (void) ctx; - - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); - - useBorderColor = 0; - if (img->Border) { - i0 += img->Border; - i1 += img->Border; + /* Compute Width/Height/DepthScale for mipmap lod computation */ + if (texImage->TexObject->Target == GL_TEXTURE_RECTANGLE_NV) { + /* scale = 1.0 since texture coords directly map to texels */ + swImg->WidthScale = 1.0; + swImg->HeightScale = 1.0; + swImg->DepthScale = 1.0; } else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - } - - { - const GLfloat a = FRAC(u); - GLchan t0[4], t1[4]; /* texels */ - - /* fetch texel colors */ - if (useBorderColor & I0BIT) { - COPY_CHAN4(t0, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, 0, 0, t0); - } - if (useBorderColor & I1BIT) { - COPY_CHAN4(t1, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, 0, 0, t1); - } - - /* do linear interpolation of texel colors */ -#if CHAN_TYPE == GL_FLOAT - rgba[0] = LERP(a, t0[0], t1[0]); - rgba[1] = LERP(a, t0[1], t1[1]); - rgba[2] = LERP(a, t0[2], t1[2]); - rgba[3] = LERP(a, t0[3], t1[3]); -#elif CHAN_TYPE == GL_UNSIGNED_SHORT - rgba[0] = (GLchan) (LERP(a, t0[0], t1[0]) + 0.5); - rgba[1] = (GLchan) (LERP(a, t0[1], t1[1]) + 0.5); - rgba[2] = (GLchan) (LERP(a, t0[2], t1[2]) + 0.5); - rgba[3] = (GLchan) (LERP(a, t0[3], t1[3]) + 0.5); -#else - ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE); - { - /* fixed point interpolants in [0, ILERP_SCALE] */ - const GLint ia = IROUND_POS(a * ILERP_SCALE); - rgba[0] = ILERP(ia, t0[0], t1[0]); - rgba[1] = ILERP(ia, t0[1], t1[1]); - rgba[2] = ILERP(ia, t0[2], t1[2]); - rgba[3] = ILERP(ia, t0[3], t1[3]); - } -#endif - } -} - - -static void -sample_1d_nearest_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); + swImg->WidthScale = (GLfloat) texImage->Width; + swImg->HeightScale = (GLfloat) texImage->Height; + swImg->DepthScale = (GLfloat) texImage->Depth; } -} - -static void -sample_1d_linear_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_1d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } + return texImage->Data != NULL; } - -/* - * This is really just needed in order to prevent warnings with some compilers. +/** + * Called via ctx->Driver.FreeTextureImageBuffer() */ -#if CHAN_TYPE == GL_FLOAT -#define CHAN_CAST -#else -#define CHAN_CAST (GLchan) (GLint) -#endif - - -static void -sample_1d_nearest_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - - -static void -sample_1d_linear_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_1d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_1d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - - -static void -sample_nearest_1d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4] ) +void +_swrast_free_texture_image_buffer(struct gl_context *ctx, + struct gl_texture_image *texImage) { - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - for (i=0;iData) { + _mesa_align_free(texImage->Data); } -} - - -static void -sample_linear_1d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4] ) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - for (i=0;iData = NULL; } -/* - * Given an (s) texture coordinate and lambda (level of detail) value, - * return a texture sample. - * +/** + * Error checking for debugging only. */ static void -sample_lambda_1d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - GLuint i; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], - n, lambda, &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_1d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_1d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* 2-D Texture Sampling Functions */ -/**********************************************************************/ - - -/* - * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. - */ -static INLINE void -sample_2d_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLchan rgba[]) +_mesa_check_map_teximage(struct gl_texture_image *texImage, + GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h) { - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - GLint i, j; - (void) ctx; - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j); + if (texImage->TexObject->Target == GL_TEXTURE_1D) + assert(y == 0 && h == 1); - /* skip over the border, if any */ - i += img->Border; - j += img->Border; - - if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - COPY_CHAN4(rgba, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i, j, 0, rgba); - } + assert(x < texImage->Width || texImage->Width == 0); + assert(y < texImage->Height || texImage->Height == 0); + assert(x + w <= texImage->Width); + assert(y + h <= texImage->Height); } - - /** - * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. - * New sampling code contributed by Lynn Quam . - */ -static INLINE void -sample_2d_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLchan rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLuint useBorderColor; - GLfloat u, v; - (void) ctx; - - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1); - - useBorderColor = 0; - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - } - - { - const GLfloat a = FRAC(u); - const GLfloat b = FRAC(v); -#if CHAN_TYPE == GL_UNSIGNED_BYTE - const GLint ia = IROUND_POS(a * ILERP_SCALE); - const GLint ib = IROUND_POS(b * ILERP_SCALE); -#endif - GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - /* fetch four texel colors */ - if (useBorderColor & (I0BIT | J0BIT)) { - COPY_CHAN4(t00, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j0, 0, t00); - } - if (useBorderColor & (I1BIT | J0BIT)) { - COPY_CHAN4(t10, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j0, 0, t10); - } - if (useBorderColor & (I0BIT | J1BIT)) { - COPY_CHAN4(t01, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j1, 0, t01); - } - if (useBorderColor & (I1BIT | J1BIT)) { - COPY_CHAN4(t11, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j1, 0, t11); - } - - /* do bilinear interpolation of texel colors */ -#if CHAN_TYPE == GL_FLOAT - rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); - rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); - rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); - rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); -#elif CHAN_TYPE == GL_UNSIGNED_SHORT - rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5); - rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5); - rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5); - rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5); -#else - ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE); - rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]); - rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]); - rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]); - rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]); -#endif - } -} - - -/* - * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT. + * Map a 2D slice of a texture image into user space. + * (x,y,w,h) defines a region of interest (ROI). Reading/writing texels + * outside of the ROI is undefined. + * + * \param texImage the texture image + * \param slice the 3D image slice or array texture slice + * \param x, y, w, h region of interest + * \param mode bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT + * \param mapOut returns start of mapping of region of interest + * \param rowStrideOut returns row stride (in bytes) */ -static INLINE void -sample_2d_linear_repeat(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLchan rgba[]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - GLint i0, j0, i1, j1; - GLfloat u, v; - (void) ctx; - (void) tObj; - - ASSERT(tObj->WrapS == GL_REPEAT); - ASSERT(tObj->WrapT == GL_REPEAT); - ASSERT(img->Border == 0); - ASSERT(img->Format != GL_COLOR_INDEX); - ASSERT(img->_IsPowerOfTwo); - - COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[0], u, width, i0, i1); - COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[1], v, height, j0, j1); - - { - const GLfloat a = FRAC(u); - const GLfloat b = FRAC(v); -#if CHAN_TYPE == GL_UNSIGNED_BYTE - const GLint ia = IROUND_POS(a * ILERP_SCALE); - const GLint ib = IROUND_POS(b * ILERP_SCALE); -#endif - GLchan t00[4], t10[4], t01[4], t11[4]; /* sampled texel colors */ - - img->FetchTexelc(img, i0, j0, 0, t00); - img->FetchTexelc(img, i1, j0, 0, t10); - img->FetchTexelc(img, i0, j1, 0, t01); - img->FetchTexelc(img, i1, j1, 0, t11); - - /* do bilinear interpolation of texel colors */ -#if CHAN_TYPE == GL_FLOAT - rgba[0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); - rgba[1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); - rgba[2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); - rgba[3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); -#elif CHAN_TYPE == GL_UNSIGNED_SHORT - rgba[0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5); - rgba[1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5); - rgba[2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5); - rgba[3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5); -#else - ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE); - rgba[0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]); - rgba[1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]); - rgba[2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]); - rgba[3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]); -#endif - } -} - - - -static void -sample_2d_nearest_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - - -static void -sample_2d_linear_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_2d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - - -static void -sample_2d_nearest_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - - -/* Trilinear filtering */ -static void -sample_2d_linear_mipmap_linear( GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_2d_linear_mipmap_linear_repeat( GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - GLuint i; - ASSERT(lambda != NULL); - ASSERT(tObj->WrapS == GL_REPEAT); - ASSERT(tObj->WrapT == GL_REPEAT); - ASSERT(tObj->_IsPowerOfTwo); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_2d_linear_repeat(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_nearest_2d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4] ) +void +_swrast_map_teximage(struct gl_context *ctx, + struct gl_texture_image *texImage, + GLuint slice, + GLuint x, GLuint y, GLuint w, GLuint h, + GLbitfield mode, + GLubyte **mapOut, + GLint *rowStrideOut) { - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - for (i=0;iImage[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - if (tObj->WrapS == GL_REPEAT && tObj->WrapT == GL_REPEAT - && image->Border == 0) { - for (i=0;iTexFormat); + stride = _mesa_format_row_stride(texImage->TexFormat, texImage->Width); + _mesa_get_format_block_size(texImage->TexFormat, &bw, &bh); + assert(texImage->Data); -/* - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border, - * RowStride == Width, - * Format = GL_RGB - */ -static void -opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint k; - (void) ctx; - (void) texUnit; - (void) lambda; - ASSERT(tObj->WrapS==GL_REPEAT); - ASSERT(tObj->WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->Format==GL_RGB); - ASSERT(img->_IsPowerOfTwo); + map = texImage->Data; - for (k=0; kData) + 3*pos; - rgba[k][RCOMP] = texel[0]; - rgba[k][GCOMP] = texel[1]; - rgba[k][BCOMP] = texel[2]; + if (texImage->TexObject->Target == GL_TEXTURE_3D || + texImage->TexObject->Target == GL_TEXTURE_2D_ARRAY) { + GLuint sliceSize = _mesa_format_image_size(texImage->TexFormat, + texImage->Width, + texImage->Height, + 1); + assert(slice < texImage->Depth); + map += slice * sliceSize; + } else if (texImage->TexObject->Target == GL_TEXTURE_1D_ARRAY) { + GLuint sliceSize = _mesa_format_image_size(texImage->TexFormat, + texImage->Width, + 1, + 1); + assert(slice < texImage->Height); + map += slice * sliceSize; } -} + /* apply x/y offset to map address */ + map += stride * (y / bh) + texelSize * (x / bw); -/* - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border - * RowStride == Width, - * Format = GL_RGBA - */ -static void -opt_sample_rgba_2d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - const struct gl_texture_image *img = tObj->Image[0][tObj->BaseLevel]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint colMask = img->Width - 1; - const GLint rowMask = img->Height - 1; - const GLint shift = img->WidthLog2; - GLuint i; - (void) ctx; - (void) texUnit; - (void) lambda; - ASSERT(tObj->WrapS==GL_REPEAT); - ASSERT(tObj->WrapT==GL_REPEAT); - ASSERT(img->Border==0); - ASSERT(img->Format==GL_RGBA); - ASSERT(img->_IsPowerOfTwo); - - for (i = 0; i < n; i++) { - const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; - const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; - const GLint pos = (row << shift) | col; - const GLchan *texel = ((GLchan *) img->Data) + (pos << 2); /* pos*4 */ - COPY_CHAN4(rgba[i], texel); - } + *mapOut = map; + *rowStrideOut = stride; } - -/* - * Given an array of texture coordinate and lambda (level of detail) - * values, return an array of texture sample. - */ -static void -sample_lambda_2d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4] ) +void +_swrast_unmap_teximage(struct gl_context *ctx, + struct gl_texture_image *texImage, + GLuint slice) { - const struct gl_texture_image *tImg = tObj->Image[0][tObj->BaseLevel]; - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - const GLboolean repeatNoBorderPOT = (tObj->WrapS == GL_REPEAT) - && (tObj->WrapT == GL_REPEAT) - && (tImg->Border == 0 && (tImg->Width == tImg->RowStride)) - && (tImg->Format != GL_COLOR_INDEX) - && tImg->_IsPowerOfTwo; - - ASSERT(lambda != NULL); - compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], - n, lambda, &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->MinFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat->MesaFormat) { - case MESA_FORMAT_RGB: - case MESA_FORMAT_RGB888: - /*case MESA_FORMAT_BGR888:*/ - opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case MESA_FORMAT_RGBA: - case MESA_FORMAT_RGBA8888: - case MESA_FORMAT_ARGB8888: - /*case MESA_FORMAT_ABGR8888:*/ - /*case MESA_FORMAT_BGRA8888:*/ - opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - default: - sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart, - NULL, rgba + minStart ); - } - } - else { - sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, texUnit, tObj, m, texcoords + minStart, - NULL, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_nearest_mipmap_nearest(ctx, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - if (repeatNoBorderPOT) - sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, - texcoords + minStart, lambda + minStart, rgba + minStart); - else - sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - - switch (tObj->MagFilter) { - case GL_NEAREST: - if (repeatNoBorderPOT) { - switch (tImg->TexFormat->MesaFormat) { - case MESA_FORMAT_RGB: - case MESA_FORMAT_RGB888: - /*case MESA_FORMAT_BGR888:*/ - opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - case MESA_FORMAT_RGBA: - case MESA_FORMAT_RGBA8888: - case MESA_FORMAT_ARGB8888: - /*case MESA_FORMAT_ABGR8888:*/ - /*case MESA_FORMAT_BGRA8888:*/ - opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart, - NULL, rgba + magStart ); - } - } - else { - sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - } - break; - case GL_LINEAR: - sample_linear_2d(ctx, texUnit, tObj, m, texcoords + magStart, - NULL, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); - } - } -} - - - -/**********************************************************************/ -/* 3-D Texture Sampling Functions */ -/**********************************************************************/ - -/* - * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter. - */ -static void -sample_3d_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLchan rgba[4]) -{ - const GLint width = img->Width2; /* without border, power of two */ - const GLint height = img->Height2; /* without border, power of two */ - const GLint depth = img->Depth2; /* without border, power of two */ - GLint i, j, k; - (void) ctx; - - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, texcoord[2], depth, k); - - if (i < 0 || i >= (GLint) img->Width || - j < 0 || j >= (GLint) img->Height || - k < 0 || k >= (GLint) img->Depth) { - /* Need this test for GL_CLAMP_TO_BORDER mode */ - COPY_CHAN4(rgba, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i, j, k, rgba); - } -} - - - -/* - * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter. - */ -static void -sample_3d_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - const struct gl_texture_image *img, - const GLfloat texcoord[4], - GLchan rgba[4]) -{ - const GLint width = img->Width2; - const GLint height = img->Height2; - const GLint depth = img->Depth2; - GLint i0, j0, k0, i1, j1, k1; - GLuint useBorderColor; - GLfloat u, v, w; - (void) ctx; - - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, texcoord[2], w, depth, k0, k1); - - useBorderColor = 0; - if (img->Border) { - i0 += img->Border; - i1 += img->Border; - j0 += img->Border; - j1 += img->Border; - k0 += img->Border; - k1 += img->Border; - } - else { - /* check if sampling texture border color */ - if (i0 < 0 || i0 >= width) useBorderColor |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderColor |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderColor |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderColor |= J1BIT; - if (k0 < 0 || k0 >= depth) useBorderColor |= K0BIT; - if (k1 < 0 || k1 >= depth) useBorderColor |= K1BIT; - } - - { - const GLfloat a = FRAC(u); - const GLfloat b = FRAC(v); - const GLfloat c = FRAC(w); -#if CHAN_TYPE == GL_UNSIGNED_BYTE - const GLint ia = IROUND_POS(a * ILERP_SCALE); - const GLint ib = IROUND_POS(b * ILERP_SCALE); - const GLint ic = IROUND_POS(c * ILERP_SCALE); -#endif - GLchan t000[4], t010[4], t001[4], t011[4]; - GLchan t100[4], t110[4], t101[4], t111[4]; - - /* Fetch texels */ - if (useBorderColor & (I0BIT | J0BIT | K0BIT)) { - COPY_CHAN4(t000, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j0, k0, t000); - } - if (useBorderColor & (I1BIT | J0BIT | K0BIT)) { - COPY_CHAN4(t100, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j0, k0, t100); - } - if (useBorderColor & (I0BIT | J1BIT | K0BIT)) { - COPY_CHAN4(t010, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j1, k0, t010); - } - if (useBorderColor & (I1BIT | J1BIT | K0BIT)) { - COPY_CHAN4(t110, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j1, k0, t110); - } - - if (useBorderColor & (I0BIT | J0BIT | K1BIT)) { - COPY_CHAN4(t001, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j0, k1, t001); - } - if (useBorderColor & (I1BIT | J0BIT | K1BIT)) { - COPY_CHAN4(t101, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j0, k1, t101); - } - if (useBorderColor & (I0BIT | J1BIT | K1BIT)) { - COPY_CHAN4(t011, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i0, j1, k1, t011); - } - if (useBorderColor & (I1BIT | J1BIT | K1BIT)) { - COPY_CHAN4(t111, tObj->_BorderChan); - } - else { - img->FetchTexelc(img, i1, j1, k1, t111); - } - - /* trilinear interpolation of samples */ -#if CHAN_TYPE == GL_FLOAT - rgba[0] = lerp_3d(a, b, c, - t000[0], t100[0], t010[0], t110[0], - t001[0], t101[0], t011[0], t111[0]); - rgba[1] = lerp_3d(a, b, c, - t000[1], t100[1], t010[1], t110[1], - t001[1], t101[1], t011[1], t111[1]); - rgba[2] = lerp_3d(a, b, c, - t000[2], t100[2], t010[2], t110[2], - t001[2], t101[2], t011[2], t111[2]); - rgba[3] = lerp_3d(a, b, c, - t000[3], t100[3], t010[3], t110[3], - t001[3], t101[3], t011[3], t111[3]); -#elif CHAN_TYPE == GL_UNSIGNED_SHORT - rgba[0] = (GLchan) (lerp_3d(a, b, c, - t000[0], t100[0], t010[0], t110[0], - t001[0], t101[0], t011[0], t111[0]) + 0.5F); - rgba[1] = (GLchan) (lerp_3d(a, b, c, - t000[1], t100[1], t010[1], t110[1], - t001[1], t101[1], t011[1], t111[1]) + 0.5F); - rgba[2] = (GLchan) (lerp_3d(a, b, c, - t000[2], t100[2], t010[2], t110[2], - t001[2], t101[2], t011[2], t111[2]) + 0.5F); - rgba[3] = (GLchan) (lerp_3d(a, b, c, - t000[3], t100[3], t010[3], t110[3], - t001[3], t101[3], t011[3], t111[3]) + 0.5F); -#else - ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE); - rgba[0] = ilerp_3d(ia, ib, ic, - t000[0], t100[0], t010[0], t110[0], - t001[0], t101[0], t011[0], t111[0]); - rgba[1] = ilerp_3d(ia, ib, ic, - t000[1], t100[1], t010[1], t110[1], - t001[1], t101[1], t011[1], t111[1]); - rgba[2] = ilerp_3d(ia, ib, ic, - t000[2], t100[2], t010[2], t110[2], - t001[2], t101[2], t011[2], t111[2]); - rgba[3] = ilerp_3d(ia, ib, ic, - t000[3], t100[3], t010[3], t110[3], - t001[3], t101[3], t011[3], t111[3]); -#endif - } -} - - - -static void -sample_3d_nearest_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4] ) -{ - GLuint i; - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_linear_mipmap_nearest(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - sample_3d_linear(ctx, tObj, tObj->Image[0][level], texcoord[i], rgba[i]); - } -} - - -static void -sample_3d_nearest_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_nearest(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_3d_linear_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - if (level >= tObj->_MaxLevel) { - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->_MaxLevel], - texcoord[i], rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_3d_linear(ctx, tObj, tObj->Image[0][level ], texcoord[i], t0); - sample_3d_linear(ctx, tObj, tObj->Image[0][level+1], texcoord[i], t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_nearest_3d(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - GLuint i; - struct gl_texture_image *image = tObj->Image[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - for (i=0;iImage[0][tObj->BaseLevel]; - (void) texUnit; - (void) lambda; - for (i=0;i_MinMagThresh[texUnit], - n, lambda, &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - GLuint m = minEnd - minStart; - switch (tObj->MinFilter) { - case GL_NEAREST: - for (i = minStart; i < minEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = minStart; i < minEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); - return; - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - switch (tObj->MagFilter) { - case GL_NEAREST: - for (i = magStart; i < magEnd; i++) - sample_3d_nearest(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - case GL_LINEAR: - for (i = magStart; i < magEnd; i++) - sample_3d_linear(ctx, tObj, tObj->Image[0][tObj->BaseLevel], - texcoords[i], rgba[i]); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); - return; - } - } -} - - -/**********************************************************************/ -/* Texture Cube Map Sampling Functions */ -/**********************************************************************/ - -/* - * Choose one of six sides of a texture cube map given the texture - * coord (rx,ry,rz). Return pointer to corresponding array of texture - * images. - */ -static const struct gl_texture_image ** -choose_cube_face(const struct gl_texture_object *texObj, - const GLfloat texcoord[4], GLfloat newCoord[4]) -{ -/* - major axis - direction target sc tc ma - ---------- ------------------------------- --- --- --- - +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx - -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx - +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry - -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry - +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz - -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz -*/ - const GLfloat rx = texcoord[0]; - const GLfloat ry = texcoord[1]; - const GLfloat rz = texcoord[2]; - const struct gl_texture_image **imgArray; - const GLfloat arx = FABSF(rx), ary = FABSF(ry), arz = FABSF(rz); - GLfloat sc, tc, ma; - - if (arx > ary && arx > arz) { - if (rx >= 0.0F) { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_X]; - sc = -rz; - tc = -ry; - ma = arx; - } - else { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_X]; - sc = rz; - tc = -ry; - ma = arx; - } - } - else if (ary > arx && ary > arz) { - if (ry >= 0.0F) { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_Y]; - sc = rx; - tc = rz; - ma = ary; - } - else { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_Y]; - sc = rx; - tc = -rz; - ma = ary; - } - } - else { - if (rz > 0.0F) { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_POS_Z]; - sc = rx; - tc = -ry; - ma = arz; - } - else { - imgArray = (const struct gl_texture_image **) texObj->Image[FACE_NEG_Z]; - sc = -rx; - tc = -ry; - ma = arz; - } - } - - newCoord[0] = ( sc / ma + 1.0F ) * 0.5F; - newCoord[1] = ( tc / ma + 1.0F ) * 0.5F; - return imgArray; -} - - -static void -sample_nearest_cube(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_linear_cube(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - (void) lambda; - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - images = choose_cube_face(tObj, texcoords[i], newCoord); - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_nearest(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - images = choose_cube_face(tObj, texcoord[i], newCoord); - sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_linear_mipmap_nearest(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); - images = choose_cube_face(tObj, texcoord[i], newCoord); - sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); - } -} - - -static void -sample_cube_nearest_mipmap_linear(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda[i]); - sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); - sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_cube_linear_mipmap_linear(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat texcoord[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - GLuint i; - (void) texUnit; - ASSERT(lambda != NULL); - for (i = 0; i < n; i++) { - const struct gl_texture_image **images; - GLfloat newCoord[4]; - GLint level; - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); - images = choose_cube_face(tObj, texcoord[i], newCoord); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], - newCoord, rgba[i]); - } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda[i]); - sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); - sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); - rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); - } - } -} - - -static void -sample_lambda_cube( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - GLuint minStart, minEnd; /* texels with minification */ - GLuint magStart, magEnd; /* texels with magnification */ - - ASSERT(lambda != NULL); - compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], - n, lambda, &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - /* do the minified texels */ - const GLuint m = minEnd - minStart; - switch (tObj->MinFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, texUnit, tObj, m, texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_cube_nearest_mipmap_nearest(ctx, texUnit, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_cube_linear_mipmap_nearest(ctx, texUnit, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_cube_nearest_mipmap_linear(ctx, texUnit, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_cube_linear_mipmap_linear(ctx, texUnit, tObj, m, - texcoords + minStart, - lambda + minStart, rgba + minStart); - break; - default: - _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); - } - } - - if (magStart < magEnd) { - /* do the magnified texels */ - const GLuint m = magEnd - magStart; - switch (tObj->MagFilter) { - case GL_NEAREST: - sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - case GL_LINEAR: - sample_linear_cube(ctx, texUnit, tObj, m, texcoords + magStart, - lambda + magStart, rgba + magStart); - break; - default: - _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); - } - } -} - - -/**********************************************************************/ -/* Texture Rectangle Sampling Functions */ -/**********************************************************************/ - -static void -sample_nearest_rect(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint width_minus_1 = img->Width - 1; - const GLint height_minus_1 = img->Height - 1; - GLuint i; - - (void) ctx; - (void) texUnit; - (void) lambda; - - ASSERT(tObj->WrapS == GL_CLAMP || - tObj->WrapS == GL_CLAMP_TO_EDGE || - tObj->WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->WrapT == GL_CLAMP || - tObj->WrapT == GL_CLAMP_TO_EDGE || - tObj->WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->Format != GL_COLOR_INDEX); - - /* XXX move Wrap mode tests outside of loops for common cases */ - for (i = 0; i < n; i++) { - GLint row, col; - /* NOTE: we DO NOT use [0, 1] texture coordinates! */ - if (tObj->WrapS == GL_CLAMP) { - col = IFLOOR( CLAMP(texcoords[i][0], 0.0F, width - 1) ); - } - else if (tObj->WrapS == GL_CLAMP_TO_EDGE) { - col = IFLOOR( CLAMP(texcoords[i][0], 0.5F, width - 0.5F) ); - } - else { - col = IFLOOR( CLAMP(texcoords[i][0], -0.5F, width + 0.5F) ); - } - if (tObj->WrapT == GL_CLAMP) { - row = IFLOOR( CLAMP(texcoords[i][1], 0.0F, height - 1) ); - } - else if (tObj->WrapT == GL_CLAMP_TO_EDGE) { - row = IFLOOR( CLAMP(texcoords[i][1], 0.5F, height - 0.5F) ); - } - else { - row = IFLOOR( CLAMP(texcoords[i][1], -0.5F, height + 0.5F) ); - } - - if (col < 0 || col > width_minus_1 || row < 0 || row > height_minus_1) - COPY_CHAN4(rgba[i], tObj->_BorderChan); - else - img->FetchTexelc(img, col, row, 0, rgba[i]); - } -} - - -static void -sample_linear_rect(GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], - const GLfloat lambda[], GLchan rgba[][4]) -{ - const struct gl_texture_image *img = tObj->Image[0][0]; - const GLfloat width = (GLfloat) img->Width; - const GLfloat height = (GLfloat) img->Height; - const GLint width_minus_1 = img->Width - 1; - const GLint height_minus_1 = img->Height - 1; - GLuint i; - - (void) ctx; - (void) texUnit; - (void) lambda; - - ASSERT(tObj->WrapS == GL_CLAMP || - tObj->WrapS == GL_CLAMP_TO_EDGE || - tObj->WrapS == GL_CLAMP_TO_BORDER); - ASSERT(tObj->WrapT == GL_CLAMP || - tObj->WrapT == GL_CLAMP_TO_EDGE || - tObj->WrapT == GL_CLAMP_TO_BORDER); - ASSERT(img->Format != GL_COLOR_INDEX); - - /* XXX lots of opportunity for optimization in this loop */ - for (i = 0; i < n; i++) { - GLfloat frow, fcol; - GLint i0, j0, i1, j1; - GLchan t00[4], t01[4], t10[4], t11[4]; - GLfloat a, b; - GLuint useBorderColor = 0; -#if CHAN_TYPE == GL_UNSIGNED_BYTE - GLint ia, ib; -#endif - - /* NOTE: we DO NOT use [0, 1] texture coordinates! */ - if (tObj->WrapS == GL_CLAMP) { - /* Not exactly what the spec says, but it matches NVIDIA output */ - fcol = CLAMP(texcoords[i][0] - 0.5F, 0.0, width_minus_1); - i0 = IFLOOR(fcol); - i1 = i0 + 1; - } - else if (tObj->WrapS == GL_CLAMP_TO_EDGE) { - fcol = CLAMP(texcoords[i][0], 0.5F, width - 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - if (i1 > width_minus_1) - i1 = width_minus_1; - } - else { - ASSERT(tObj->WrapS == GL_CLAMP_TO_BORDER); - fcol = CLAMP(texcoords[i][0], -0.5F, width + 0.5F); - fcol -= 0.5F; - i0 = IFLOOR(fcol); - i1 = i0 + 1; - } - - if (tObj->WrapT == GL_CLAMP) { - /* Not exactly what the spec says, but it matches NVIDIA output */ - frow = CLAMP(texcoords[i][1] - 0.5F, 0.0, width_minus_1); - j0 = IFLOOR(frow); - j1 = j0 + 1; - } - else if (tObj->WrapT == GL_CLAMP_TO_EDGE) { - frow = CLAMP(texcoords[i][1], 0.5F, height - 0.5F); - frow -= 0.5F; - j0 = IFLOOR(frow); - j1 = j0 + 1; - if (j1 > height_minus_1) - j1 = height_minus_1; - } - else { - ASSERT(tObj->WrapT == GL_CLAMP_TO_BORDER); - frow = CLAMP(texcoords[i][1], -0.5F, height + 0.5F); - frow -= 0.5F; - j0 = IFLOOR(frow); - j1 = j0 + 1; - } - - /* compute integer rows/columns */ - if (i0 < 0 || i0 > width_minus_1) useBorderColor |= I0BIT; - if (i1 < 0 || i1 > width_minus_1) useBorderColor |= I1BIT; - if (j0 < 0 || j0 > height_minus_1) useBorderColor |= J0BIT; - if (j1 < 0 || j1 > height_minus_1) useBorderColor |= J1BIT; - - /* get four texel samples */ - if (useBorderColor & (I0BIT | J0BIT)) - COPY_CHAN4(t00, tObj->_BorderChan); - else - img->FetchTexelc(img, i0, j0, 0, t00); - - if (useBorderColor & (I1BIT | J0BIT)) - COPY_CHAN4(t10, tObj->_BorderChan); - else - img->FetchTexelc(img, i1, j0, 0, t10); - - if (useBorderColor & (I0BIT | J1BIT)) - COPY_CHAN4(t01, tObj->_BorderChan); - else - img->FetchTexelc(img, i0, j1, 0, t01); - - if (useBorderColor & (I1BIT | J1BIT)) - COPY_CHAN4(t11, tObj->_BorderChan); - else - img->FetchTexelc(img, i1, j1, 0, t11); - - /* compute interpolants */ - a = FRAC(fcol); - b = FRAC(frow); -#if CHAN_TYPE == GL_UNSIGNED_BYTE - ia = IROUND_POS(a * ILERP_SCALE); - ib = IROUND_POS(b * ILERP_SCALE); -#endif - - /* do bilinear interpolation of texel colors */ -#if CHAN_TYPE == GL_FLOAT - rgba[i][0] = lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]); - rgba[i][1] = lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]); - rgba[i][2] = lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]); - rgba[i][3] = lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]); -#elif CHAN_TYPE == GL_UNSIGNED_SHORT - rgba[i][0] = (GLchan) (lerp_2d(a, b, t00[0], t10[0], t01[0], t11[0]) + 0.5); - rgba[i][1] = (GLchan) (lerp_2d(a, b, t00[1], t10[1], t01[1], t11[1]) + 0.5); - rgba[i][2] = (GLchan) (lerp_2d(a, b, t00[2], t10[2], t01[2], t11[2]) + 0.5); - rgba[i][3] = (GLchan) (lerp_2d(a, b, t00[3], t10[3], t01[3], t11[3]) + 0.5); -#else - ASSERT(CHAN_TYPE == GL_UNSIGNED_BYTE); - rgba[i][0] = ilerp_2d(ia, ib, t00[0], t10[0], t01[0], t11[0]); - rgba[i][1] = ilerp_2d(ia, ib, t00[1], t10[1], t01[1], t11[1]); - rgba[i][2] = ilerp_2d(ia, ib, t00[2], t10[2], t01[2], t11[2]); - rgba[i][3] = ilerp_2d(ia, ib, t00[3], t10[3], t01[3], t11[3]); -#endif - } -} - - -static void -sample_lambda_rect( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - GLuint minStart, minEnd, magStart, magEnd; - - /* We only need lambda to decide between minification and magnification. - * There is no mipmapping with rectangular textures. - */ - compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], - n, lambda, &minStart, &minEnd, &magStart, &magEnd); - - if (minStart < minEnd) { - if (tObj->MinFilter == GL_NEAREST) { - sample_nearest_rect( ctx, texUnit, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - else { - sample_linear_rect( ctx, texUnit, tObj, minEnd - minStart, - texcoords + minStart, NULL, rgba + minStart); - } - } - if (magStart < magEnd) { - if (tObj->MagFilter == GL_NEAREST) { - sample_nearest_rect( ctx, texUnit, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - else { - sample_linear_rect( ctx, texUnit, tObj, magEnd - magStart, - texcoords + magStart, NULL, rgba + magStart); - } - } -} - - - -/* - * Sample a shadow/depth texture. - */ -static void -sample_depth_texture( GLcontext *ctx, GLuint unit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan texel[][4] ) -{ - const GLint baseLevel = tObj->BaseLevel; - const struct gl_texture_image *texImage = tObj->Image[0][baseLevel]; - const GLuint width = texImage->Width; - const GLuint height = texImage->Height; - GLchan ambient; - GLenum function; - GLchan result; - - (void) lambda; - (void) unit; - - ASSERT(tObj->Image[0][tObj->BaseLevel]->Format == GL_DEPTH_COMPONENT); - ASSERT(tObj->Target == GL_TEXTURE_1D || - tObj->Target == GL_TEXTURE_2D || - tObj->Target == GL_TEXTURE_RECTANGLE_NV); - - UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient); - - /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */ - - /* XXX this could be precomputed and saved in the texture object */ - if (tObj->CompareFlag) { - /* GL_SGIX_shadow */ - if (tObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { - function = GL_LEQUAL; - } - else { - ASSERT(tObj->CompareOperator == GL_TEXTURE_GEQUAL_R_SGIX); - function = GL_GEQUAL; - } - } - else if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) { - /* GL_ARB_shadow */ - function = tObj->CompareFunc; - } - else { - function = GL_NONE; /* pass depth through as grayscale */ - } - - if (tObj->MagFilter == GL_NEAREST) { - GLuint i; - for (i = 0; i < n; i++) { - GLfloat depthSample; - GLint col, row; - /* XXX fix for texture rectangle! */ - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoords[i][0], width, col); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoords[i][1], height, row); - texImage->FetchTexelf(texImage, col, row, 0, &depthSample); - - switch (function) { - case GL_LEQUAL: - result = (texcoords[i][2] <= depthSample) ? CHAN_MAX : ambient; - break; - case GL_GEQUAL: - result = (texcoords[i][2] >= depthSample) ? CHAN_MAX : ambient; - break; - case GL_LESS: - result = (texcoords[i][2] < depthSample) ? CHAN_MAX : ambient; - break; - case GL_GREATER: - result = (texcoords[i][2] > depthSample) ? CHAN_MAX : ambient; - break; - case GL_EQUAL: - result = (texcoords[i][2] == depthSample) ? CHAN_MAX : ambient; - break; - case GL_NOTEQUAL: - result = (texcoords[i][2] != depthSample) ? CHAN_MAX : ambient; - break; - case GL_ALWAYS: - result = CHAN_MAX; - break; - case GL_NEVER: - result = ambient; - break; - case GL_NONE: - CLAMPED_FLOAT_TO_CHAN(result, depthSample); - break; - default: - _mesa_problem(ctx, "Bad compare func in sample_depth_texture"); - return; - } - - switch (tObj->DepthMode) { - case GL_LUMINANCE: - texel[i][RCOMP] = result; - texel[i][GCOMP] = result; - texel[i][BCOMP] = result; - texel[i][ACOMP] = CHAN_MAX; - break; - case GL_INTENSITY: - texel[i][RCOMP] = result; - texel[i][GCOMP] = result; - texel[i][BCOMP] = result; - texel[i][ACOMP] = result; - break; - case GL_ALPHA: - texel[i][RCOMP] = 0; - texel[i][GCOMP] = 0; - texel[i][BCOMP] = 0; - texel[i][ACOMP] = result; - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - } - } - else { - GLuint i; - ASSERT(tObj->MagFilter == GL_LINEAR); - for (i = 0; i < n; i++) { - GLfloat depth00, depth01, depth10, depth11; - GLint i0, i1, j0, j1; - GLfloat u, v; - GLuint useBorderTexel; - - /* XXX fix for texture rectangle! */ - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoords[i][0], u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoords[i][1], v, height,j0, j1); - - useBorderTexel = 0; - if (texImage->Border) { - i0 += texImage->Border; - i1 += texImage->Border; - j0 += texImage->Border; - j1 += texImage->Border; - } - else { - if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; - if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; - if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; - if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; - } - - /* get four depth samples from the texture */ - if (useBorderTexel & (I0BIT | J0BIT)) { - depth00 = 1.0; - } - else { - texImage->FetchTexelf(texImage, i0, j0, 0, &depth00); - } - if (useBorderTexel & (I1BIT | J0BIT)) { - depth10 = 1.0; - } - else { - texImage->FetchTexelf(texImage, i1, j0, 0, &depth10); - } - if (useBorderTexel & (I0BIT | J1BIT)) { - depth01 = 1.0; - } - else { - texImage->FetchTexelf(texImage, i0, j1, 0, &depth01); - } - if (useBorderTexel & (I1BIT | J1BIT)) { - depth11 = 1.0; - } - else { - texImage->FetchTexelf(texImage, i1, j1, 0, &depth11); - } - - if (0) { - /* compute a single weighted depth sample and do one comparison */ - const GLfloat a = FRAC(u + 1.0F); - const GLfloat b = FRAC(v + 1.0F); - const GLfloat depthSample - = lerp_2d(a, b, depth00, depth10, depth01, depth11); - if ((depthSample <= texcoords[i][2] && function == GL_LEQUAL) || - (depthSample >= texcoords[i][2] && function == GL_GEQUAL)) { - result = ambient; - } - else { - result = CHAN_MAX; - } - } - else { - /* Do four depth/R comparisons and compute a weighted result. - * If this touches on somebody's I.P., I'll remove this code - * upon request. - */ - const GLfloat d = (CHAN_MAXF - (GLfloat) ambient) * 0.25F; - GLfloat luminance = CHAN_MAXF; - - switch (function) { - case GL_LEQUAL: - if (depth00 <= texcoords[i][2]) luminance -= d; - if (depth01 <= texcoords[i][2]) luminance -= d; - if (depth10 <= texcoords[i][2]) luminance -= d; - if (depth11 <= texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_GEQUAL: - if (depth00 >= texcoords[i][2]) luminance -= d; - if (depth01 >= texcoords[i][2]) luminance -= d; - if (depth10 >= texcoords[i][2]) luminance -= d; - if (depth11 >= texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_LESS: - if (depth00 < texcoords[i][2]) luminance -= d; - if (depth01 < texcoords[i][2]) luminance -= d; - if (depth10 < texcoords[i][2]) luminance -= d; - if (depth11 < texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_GREATER: - if (depth00 > texcoords[i][2]) luminance -= d; - if (depth01 > texcoords[i][2]) luminance -= d; - if (depth10 > texcoords[i][2]) luminance -= d; - if (depth11 > texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_EQUAL: - if (depth00 == texcoords[i][2]) luminance -= d; - if (depth01 == texcoords[i][2]) luminance -= d; - if (depth10 == texcoords[i][2]) luminance -= d; - if (depth11 == texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_NOTEQUAL: - if (depth00 != texcoords[i][2]) luminance -= d; - if (depth01 != texcoords[i][2]) luminance -= d; - if (depth10 != texcoords[i][2]) luminance -= d; - if (depth11 != texcoords[i][2]) luminance -= d; - result = (GLchan) luminance; - break; - case GL_ALWAYS: - result = 0; - break; - case GL_NEVER: - result = CHAN_MAX; - break; - case GL_NONE: - /* ordinary bilinear filtering */ - { - const GLfloat a = FRAC(u + 1.0F); - const GLfloat b = FRAC(v + 1.0F); - const GLfloat depthSample - = lerp_2d(a, b, depth00, depth10, depth01, depth11); - CLAMPED_FLOAT_TO_CHAN(result, depthSample); - } - break; - default: - _mesa_problem(ctx, "Bad compare func in sample_depth_texture"); - return; - } - } - - switch (tObj->DepthMode) { - case GL_LUMINANCE: - texel[i][RCOMP] = result; - texel[i][GCOMP] = result; - texel[i][BCOMP] = result; - texel[i][ACOMP] = CHAN_MAX; - break; - case GL_INTENSITY: - texel[i][RCOMP] = result; - texel[i][GCOMP] = result; - texel[i][BCOMP] = result; - texel[i][ACOMP] = result; - break; - case GL_ALPHA: - texel[i][RCOMP] = 0; - texel[i][GCOMP] = 0; - texel[i][BCOMP] = 0; - texel[i][ACOMP] = result; - break; - default: - _mesa_problem(ctx, "Bad depth texture mode"); - } - } /* for */ - } /* if filter */ -} - - -#if 0 -/* - * Experimental depth texture sampling function. - */ -static void -sample_depth_texture2(const GLcontext *ctx, - const struct gl_texture_unit *texUnit, - GLuint n, const GLfloat texcoords[][4], - GLchan texel[][4]) -{ - const struct gl_texture_object *texObj = texUnit->_Current; - const GLint baseLevel = texObj->BaseLevel; - const struct gl_texture_image *texImage = texObj->Image[0][baseLevel]; - const GLuint width = texImage->Width; - const GLuint height = texImage->Height; - GLchan ambient; - GLboolean lequal, gequal; - - if (texObj->Target != GL_TEXTURE_2D) { - _mesa_problem(ctx, "only 2-D depth textures supported at this time"); - return; - } - - if (texObj->MinFilter != texObj->MagFilter) { - _mesa_problem(ctx, "mipmapped depth textures not supported at this time"); - return; - } - - /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if - * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object - * isn't a depth texture. - */ - if (texImage->Format != GL_DEPTH_COMPONENT) { - _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture"); - return; - } - - UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient); - - if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { - lequal = GL_TRUE; - gequal = GL_FALSE; - } - else { - lequal = GL_FALSE; - gequal = GL_TRUE; - } - - { - GLuint i; - for (i = 0; i < n; i++) { - const GLint K = 3; - GLint col, row, ii, jj, imin, imax, jmin, jmax, samples, count; - GLfloat w; - GLchan lum; - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, texcoords[i][0], - width, col); - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, texcoords[i][1], - height, row); - - imin = col - K; - imax = col + K; - jmin = row - K; - jmax = row + K; - - if (imin < 0) imin = 0; - if (imax >= width) imax = width - 1; - if (jmin < 0) jmin = 0; - if (jmax >= height) jmax = height - 1; - - samples = (imax - imin + 1) * (jmax - jmin + 1); - count = 0; - for (jj = jmin; jj <= jmax; jj++) { - for (ii = imin; ii <= imax; ii++) { - GLfloat depthSample; - texImage->FetchTexelf(texImage, ii, jj, 0, &depthSample); - if ((depthSample <= r[i] && lequal) || - (depthSample >= r[i] && gequal)) { - count++; - } - } - } - - w = (GLfloat) count / (GLfloat) samples; - w = CHAN_MAXF - w * (CHAN_MAXF - (GLfloat) ambient); - lum = (GLint) w; - - texel[i][RCOMP] = lum; - texel[i][GCOMP] = lum; - texel[i][BCOMP] = lum; - texel[i][ACOMP] = CHAN_MAX; - } - } -} -#endif - - -/** - * We use this function when a texture object is in an "incomplete" state. - * When a fragment program attempts to sample an incomplete texture we - * return black (see issue 23 in GL_ARB_fragment_program spec). - * Note: fragment programss don't observe the texture enable/disable flags. - */ -static void -null_sample_func( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat texcoords[][4], const GLfloat lambda[], - GLchan rgba[][4]) -{ - GLuint i; - (void) ctx; - (void) texUnit; - (void) tObj; - (void) texcoords; - (void) lambda; - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = 0; - rgba[i][GCOMP] = 0; - rgba[i][BCOMP] = 0; - rgba[i][ACOMP] = CHAN_MAX; - } -} - - -/** - * Setup the texture sampling function for this texture object. - */ -texture_sample_func -_swrast_choose_texture_sample_func( GLcontext *ctx, - const struct gl_texture_object *t ) -{ - if (!t || !t->Complete) { - return &null_sample_func; - } - else { - const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter); - const GLenum format = t->Image[0][t->BaseLevel]->Format; - - switch (t->Target) { - case GL_TEXTURE_1D: - if (format == GL_DEPTH_COMPONENT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_1d; - } - else if (t->MinFilter == GL_LINEAR) { - return &sample_linear_1d; - } - else { - ASSERT(t->MinFilter == GL_NEAREST); - return &sample_nearest_1d; - } - case GL_TEXTURE_2D: - if (format == GL_DEPTH_COMPONENT) { - return &sample_depth_texture; - } - else if (needLambda) { - return &sample_lambda_2d; - } - else if (t->MinFilter == GL_LINEAR) { - return &sample_linear_2d; - } - else { - GLint baseLevel = t->BaseLevel; - ASSERT(t->MinFilter == GL_NEAREST); - if (t->WrapS == GL_REPEAT && - t->WrapT == GL_REPEAT && - t->_IsPowerOfTwo && - t->Image[0][baseLevel]->Border == 0 && - t->Image[0][baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGB) { - return &opt_sample_rgb_2d; - } - else if (t->WrapS == GL_REPEAT && - t->WrapT == GL_REPEAT && - t->_IsPowerOfTwo && - t->Image[0][baseLevel]->Border == 0 && - t->Image[0][baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGBA) { - return &opt_sample_rgba_2d; - } - else { - return &sample_nearest_2d; - } - } - case GL_TEXTURE_3D: - if (needLambda) { - return &sample_lambda_3d; - } - else if (t->MinFilter == GL_LINEAR) { - return &sample_linear_3d; - } - else { - ASSERT(t->MinFilter == GL_NEAREST); - return &sample_nearest_3d; - } - case GL_TEXTURE_CUBE_MAP: - if (needLambda) { - return &sample_lambda_cube; - } - else if (t->MinFilter == GL_LINEAR) { - return &sample_linear_cube; - } - else { - ASSERT(t->MinFilter == GL_NEAREST); - return &sample_nearest_cube; - } - case GL_TEXTURE_RECTANGLE_NV: - if (needLambda) { - return &sample_lambda_rect; - } - else if (t->MinFilter == GL_LINEAR) { - return &sample_linear_rect; - } - else { - ASSERT(t->MinFilter == GL_NEAREST); - return &sample_nearest_rect; - } - default: - _mesa_problem(ctx, - "invalid target in _swrast_choose_texture_sample_func"); - return &null_sample_func; - } - } -} - - -#define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) ) -#define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) ) - - -/** - * Do texture application for GL_ARB/EXT_texture_env_combine. - * This function also supports GL_{EXT,ARB}_texture_env_dot3 and - * GL_ATI_texture_env_combine3. Since "classic" texture environments are - * implemented using GL_ARB_texture_env_combine-like state, this same function - * is used for classic texture environment application as well. - * - * \param ctx rendering context - * \param textureUnit the texture unit to apply - * \param n number of fragments to process (span width) - * \param primary_rgba incoming fragment color array - * \param texelBuffer pointer to texel colors for all texture units - * - * \param rgba incoming colors, which get modified here - */ -static INLINE void -texture_combine( const GLcontext *ctx, GLuint unit, GLuint n, - CONST GLchan (*primary_rgba)[4], - CONST GLchan *texelBuffer, - GLchan (*rgba)[4] ) -{ - const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); - const GLchan (*argRGB [3])[4]; - const GLchan (*argA [3])[4]; - const GLuint RGBshift = textureUnit->_CurrentCombine->ScaleShiftRGB; - const GLuint Ashift = textureUnit->_CurrentCombine->ScaleShiftA; -#if CHAN_TYPE == GL_FLOAT - const GLchan RGBmult = (GLfloat) (1 << RGBshift); - const GLchan Amult = (GLfloat) (1 << Ashift); - static const GLchan one[4] = { 1.0, 1.0, 1.0, 1.0 }; - static const GLchan zero[4] = { 0.0, 0.0, 0.0, 0.0 }; -#else - const GLint half = (CHAN_MAX + 1) / 2; - static const GLchan one[4] = { CHAN_MAX, CHAN_MAX, CHAN_MAX, CHAN_MAX }; - static const GLchan zero[4] = { 0, 0, 0, 0 }; -#endif - GLuint i, j; - GLuint numColorArgs; - GLuint numAlphaArgs; - - /* GLchan ccolor[3][4]; */ - DEFMNARRAY(GLchan, ccolor, 3, 3 * MAX_WIDTH, 4); /* mac 32k limitation */ - CHECKARRAY(ccolor, return); /* mac 32k limitation */ - - ASSERT(ctx->Extensions.EXT_texture_env_combine || - ctx->Extensions.ARB_texture_env_combine); - ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine); - - - /* - printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", - textureUnit->_CurrentCombine->ModeRGB, - textureUnit->_CurrentCombine->ModeA, - textureUnit->_CurrentCombine->SourceRGB[0], - textureUnit->_CurrentCombine->SourceA[0], - textureUnit->_CurrentCombine->SourceRGB[1], - textureUnit->_CurrentCombine->SourceA[1]); - */ - - /* - * Do operand setup for up to 3 operands. Loop over the terms. - */ - numColorArgs = textureUnit->_CurrentCombine->_NumArgsRGB; - numAlphaArgs = textureUnit->_CurrentCombine->_NumArgsA; - - for (j = 0; j < numColorArgs; j++) { - const GLenum srcRGB = textureUnit->_CurrentCombine->SourceRGB[j]; - - - switch (srcRGB) { - case GL_TEXTURE: - argRGB[j] = (const GLchan (*)[4]) - (texelBuffer + unit * (n * 4 * sizeof(GLchan))); - break; - case GL_PRIMARY_COLOR: - argRGB[j] = primary_rgba; - break; - case GL_PREVIOUS: - argRGB[j] = (const GLchan (*)[4]) rgba; - break; - case GL_CONSTANT: - { - GLchan (*c)[4] = ccolor[j]; - GLchan red, green, blue, alpha; - UNCLAMPED_FLOAT_TO_CHAN(red, textureUnit->EnvColor[0]); - UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]); - UNCLAMPED_FLOAT_TO_CHAN(blue, textureUnit->EnvColor[2]); - UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]); - for (i = 0; i < n; i++) { - c[i][RCOMP] = red; - c[i][GCOMP] = green; - c[i][BCOMP] = blue; - c[i][ACOMP] = alpha; - } - argRGB[j] = (const GLchan (*)[4]) ccolor[j]; - } - break; - /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. - */ - case GL_ZERO: - argRGB[j] = & zero; - break; - case GL_ONE: - argRGB[j] = & one; - break; - default: - /* ARB_texture_env_crossbar source */ - { - const GLuint srcUnit = srcRGB - GL_TEXTURE0; - ASSERT(srcUnit < ctx->Const.MaxTextureUnits); - if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) - return; - argRGB[j] = (const GLchan (*)[4]) - (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); - } - } - - if (textureUnit->_CurrentCombine->OperandRGB[j] != GL_SRC_COLOR) { - const GLchan (*src)[4] = argRGB[j]; - GLchan (*dst)[4] = ccolor[j]; - - /* point to new arg[j] storage */ - argRGB[j] = (const GLchan (*)[4]) ccolor[j]; - - if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) { - for (i = 0; i < n; i++) { - dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP]; - dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP]; - dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP]; - } - } - else if (textureUnit->_CurrentCombine->OperandRGB[j] == GL_SRC_ALPHA) { - for (i = 0; i < n; i++) { - dst[i][RCOMP] = src[i][ACOMP]; - dst[i][GCOMP] = src[i][ACOMP]; - dst[i][BCOMP] = src[i][ACOMP]; - } - } - else { - ASSERT(textureUnit->_CurrentCombine->OperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA); - for (i = 0; i < n; i++) { - dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP]; - dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP]; - dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP]; - } - } - } - } - - - for (j = 0; j < numAlphaArgs; j++) { - const GLenum srcA = textureUnit->_CurrentCombine->SourceA[j]; - - switch (srcA) { - case GL_TEXTURE: - argA[j] = (const GLchan (*)[4]) - (texelBuffer + unit * (n * 4 * sizeof(GLchan))); - break; - case GL_PRIMARY_COLOR: - argA[j] = primary_rgba; - break; - case GL_PREVIOUS: - argA[j] = (const GLchan (*)[4]) rgba; - break; - case GL_CONSTANT: - { - GLchan alpha, (*c)[4] = ccolor[j]; - UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]); - for (i = 0; i < n; i++) - c[i][ACOMP] = alpha; - argA[j] = (const GLchan (*)[4]) ccolor[j]; - } - break; - /* GL_ATI_texture_env_combine3 allows GL_ZERO & GL_ONE as sources. - */ - case GL_ZERO: - argA[j] = & zero; - break; - case GL_ONE: - argA[j] = & one; - break; - default: - /* ARB_texture_env_crossbar source */ - { - const GLuint srcUnit = srcA - GL_TEXTURE0; - ASSERT(srcUnit < ctx->Const.MaxTextureUnits); - if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) - return; - argA[j] = (const GLchan (*)[4]) - (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); - } - } - - if (textureUnit->_CurrentCombine->OperandA[j] == GL_ONE_MINUS_SRC_ALPHA) { - const GLchan (*src)[4] = argA[j]; - GLchan (*dst)[4] = ccolor[j]; - argA[j] = (const GLchan (*)[4]) ccolor[j]; - for (i = 0; i < n; i++) { - dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP]; - } - } - } - - /* - * Do the texture combine. - */ - switch (textureUnit->_CurrentCombine->ModeRGB) { - case GL_REPLACE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - if (RGBshift) { - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult; - rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult; - rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult; -#else - GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift; - GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift; - GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift; - rgba[i][RCOMP] = MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = MIN2(b, CHAN_MAX); -#endif - } - } - else { - for (i = 0; i < n; i++) { - rgba[i][RCOMP] = arg0[i][RCOMP]; - rgba[i][GCOMP] = arg0[i][GCOMP]; - rgba[i][BCOMP] = arg0[i][BCOMP]; - } - } - } - break; - case GL_MODULATE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - RGBshift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult; - rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult; - rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult; -#else - GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift; - GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift; - GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift; - rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); -#endif - } - } - break; - case GL_ADD: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult; - rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult; - rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult; -#else - GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift; - GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift; - GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift; - rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); -#endif - } - } - break; - case GL_ADD_SIGNED: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult; - rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult; - rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult; -#else - GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half; - GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half; - GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half; - r = (r < 0) ? 0 : r << RGBshift; - g = (g < 0) ? 0 : g << RGBshift; - b = (b < 0) ? 0 : b << RGBshift; - rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); -#endif - } - } - break; - case GL_INTERPOLATE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - RGBshift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + - arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult; - rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + - arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult; - rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + - arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult; -#else - GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP]) - + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP])) - >> shift; - GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP]) - + PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP])) - >> shift; - GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP]) - + PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP])) - >> shift; - rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); -#endif - } - } - break; - case GL_SUBTRACT: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult; - rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult; - rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult; -#else - GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift; - GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift; - GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift; - rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); -#endif - } - } - break; - case GL_DOT3_RGB_EXT: - case GL_DOT3_RGBA_EXT: - { - /* Do not scale the result by 1 2 or 4 */ - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + - (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + - (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) - * 4.0F; - dot = CLAMP(dot, 0.0F, CHAN_MAXF); -#else - GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, - (GLint)arg1[i][RCOMP] - half) + - S_PROD((GLint)arg0[i][GCOMP] - half, - (GLint)arg1[i][GCOMP] - half) + - S_PROD((GLint)arg0[i][BCOMP] - half, - (GLint)arg1[i][BCOMP] - half)) >> 6; - dot = CLAMP(dot, 0, CHAN_MAX); -#endif - rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; - } - } - break; - case GL_DOT3_RGB: - case GL_DOT3_RGBA: - { - /* DO scale the result by 1 2 or 4 */ - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + - (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + - (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) - * 4.0F * RGBmult; - dot = CLAMP(dot, 0.0, CHAN_MAXF); -#else - GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, - (GLint)arg1[i][RCOMP] - half) + - S_PROD((GLint)arg0[i][GCOMP] - half, - (GLint)arg1[i][GCOMP] - half) + - S_PROD((GLint)arg0[i][BCOMP] - half, - (GLint)arg1[i][BCOMP] - half)) >> 6; - dot <<= RGBshift; - dot = CLAMP(dot, 0, CHAN_MAX); -#endif - rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; - } - } - break; - case GL_MODULATE_ADD_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - RGBshift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP]) * RGBmult; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP]) * RGBmult; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP]) * RGBmult; -#else - GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP]) - + ((GLuint) arg1[i][RCOMP] << CHAN_BITS)) >> shift; - GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP]) - + ((GLuint) arg1[i][GCOMP] << CHAN_BITS)) >> shift; - GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP]) - + ((GLuint) arg1[i][BCOMP] << CHAN_BITS)) >> shift; - rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); -#endif - } - } - break; - case GL_MODULATE_SIGNED_ADD_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - RGBshift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) + arg1[i][RCOMP] - 0.5) * RGBmult; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) + arg1[i][GCOMP] - 0.5) * RGBmult; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) + arg1[i][BCOMP] - 0.5) * RGBmult; -#else - GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP]) - + (((GLint) arg1[i][RCOMP] - half) << CHAN_BITS)) - >> shift; - GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP]) - + (((GLint) arg1[i][GCOMP] - half) << CHAN_BITS)) - >> shift; - GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP]) - + (((GLint) arg1[i][BCOMP] - half) << CHAN_BITS)) - >> shift; - rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); -#endif - } - } - break; - case GL_MODULATE_SUBTRACT_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - RGBshift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][RCOMP] = ((arg0[i][RCOMP] * arg2[i][RCOMP]) - arg1[i][RCOMP]) * RGBmult; - rgba[i][GCOMP] = ((arg0[i][GCOMP] * arg2[i][GCOMP]) - arg1[i][GCOMP]) * RGBmult; - rgba[i][BCOMP] = ((arg0[i][BCOMP] * arg2[i][BCOMP]) - arg1[i][BCOMP]) * RGBmult; -#else - GLint r = (S_PROD(arg0[i][RCOMP], arg2[i][RCOMP]) - - ((GLint) arg1[i][RCOMP] << CHAN_BITS)) - >> shift; - GLint g = (S_PROD(arg0[i][GCOMP], arg2[i][GCOMP]) - - ((GLint) arg1[i][GCOMP] << CHAN_BITS)) - >> shift; - GLint b = (S_PROD(arg0[i][BCOMP], arg2[i][BCOMP]) - - ((GLint) arg1[i][BCOMP] << CHAN_BITS)) - >> shift; - rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); - rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); - rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); -#endif - } - } - break; - default: - _mesa_problem(ctx, "invalid combine mode"); - } - - switch (textureUnit->_CurrentCombine->ModeA) { - case GL_REPLACE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - if (Ashift) { - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - GLchan a = arg0[i][ACOMP] * Amult; -#else - GLuint a = (GLuint) arg0[i][ACOMP] << Ashift; -#endif - rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); - } - } - else { - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = arg0[i][ACOMP]; - } - } - } - break; - case GL_MODULATE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - Ashift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult; -#else - GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift); - rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); -#endif - } - } - break; - case GL_ADD: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult; -#else - GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift; - rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); -#endif - } - } - break; - case GL_ADD_SIGNED: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult; -#else - GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half; - a = (a < 0) ? 0 : a << Ashift; - rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); -#endif - } - } - break; - case GL_INTERPOLATE: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - Ashift; -#endif - for (i=0; i> shift; - rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); -#endif - } - } - break; - case GL_SUBTRACT: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult; -#else - GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift; - rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); -#endif - } - } - break; - case GL_MODULATE_ADD_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - Ashift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP]) * Amult; -#else - GLint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP]) - + ((GLuint) arg1[i][ACOMP] << CHAN_BITS)) - >> shift; - rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); -#endif - } - } - break; - case GL_MODULATE_SIGNED_ADD_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - Ashift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) + arg1[i][ACOMP] - 0.5F) * Amult; -#else - GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP]) - + (((GLint) arg1[i][ACOMP] - half) << CHAN_BITS)) - >> shift; - rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); -#endif - } - } - break; - case GL_MODULATE_SUBTRACT_ATI: - { - const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; - const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; -#if CHAN_TYPE != GL_FLOAT - const GLint shift = CHAN_BITS - Ashift; -#endif - for (i = 0; i < n; i++) { -#if CHAN_TYPE == GL_FLOAT - rgba[i][ACOMP] = ((arg0[i][ACOMP] * arg2[i][ACOMP]) - arg1[i][ACOMP]) * Amult; -#else - GLint a = (S_PROD(arg0[i][ACOMP], arg2[i][ACOMP]) - - ((GLint) arg1[i][ACOMP] << CHAN_BITS)) - >> shift; - rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); -#endif - } - } - break; - default: - _mesa_problem(ctx, "invalid combine mode"); - } - - /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. - * This is kind of a kludge. It would have been better if the spec - * were written such that the GL_COMBINE_ALPHA value could be set to - * GL_DOT3. - */ - if (textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA_EXT || - textureUnit->_CurrentCombine->ModeRGB == GL_DOT3_RGBA) { - for (i = 0; i < n; i++) { - rgba[i][ACOMP] = rgba[i][RCOMP]; - } - } - UNDEFARRAY(ccolor); /* mac 32k limitation */ -} -#undef PROD - - -/** - * Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND, - * MODULATE, or DECAL) to an array of fragments. - * Input: textureUnit - pointer to texture unit to apply - * format - base internal texture format - * n - number of fragments - * primary_rgba - primary colors (may alias rgba for single texture) - * texels - array of texel colors - * InOut: rgba - incoming fragment colors modified by texel colors - * according to the texture environment mode. - */ -static void -texture_apply( const GLcontext *ctx, - const struct gl_texture_unit *texUnit, - GLuint n, - CONST GLchan primary_rgba[][4], CONST GLchan texel[][4], - GLchan rgba[][4] ) -{ - GLint baseLevel; - GLuint i; - GLint Rc, Gc, Bc, Ac; - GLenum format; - (void) primary_rgba; - - ASSERT(texUnit); - ASSERT(texUnit->_Current); - - baseLevel = texUnit->_Current->BaseLevel; - ASSERT(texUnit->_Current->Image[0][baseLevel]); - - format = texUnit->_Current->Image[0][baseLevel]->Format; - - if (format == GL_COLOR_INDEX || format == GL_YCBCR_MESA) { - format = GL_RGBA; /* a bit of a hack */ - } - else if (format == GL_DEPTH_COMPONENT) { - format = texUnit->_Current->DepthMode; - } - - switch (texUnit->EnvMode) { - case GL_REPLACE: - switch (format) { - case GL_ALPHA: - for (i=0;iEnvColor[0] * CHAN_MAXF); - Gc = (GLint) (texUnit->EnvColor[1] * CHAN_MAXF); - Bc = (GLint) (texUnit->EnvColor[2] * CHAN_MAXF); - Ac = (GLint) (texUnit->EnvColor[3] * CHAN_MAXF); - switch (format) { - case GL_ALPHA: - for (i=0;iend < MAX_WIDTH); - ASSERT(span->arrayMask & SPAN_TEXTURE); - - /* - * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) - */ - if (swrast->_AnyTextureCombine) - MEMCPY(primary_rgba, span->array->rgba, 4 * span->end * sizeof(GLchan)); - - /* - * Must do all texture sampling before combining in order to - * accomodate GL_ARB_texture_env_crossbar. - */ - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; - const struct gl_texture_object *curObj = texUnit->_Current; - GLfloat *lambda = span->array->lambda[unit]; - GLchan (*texels)[4] = (GLchan (*)[4]) - (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan))); - - /* adjust texture lod (lambda) */ - if (span->arrayMask & SPAN_LAMBDA) { - if (texUnit->LodBias + curObj->LodBias != 0.0F) { - /* apply LOD bias, but don't clamp yet */ - const GLfloat bias = CLAMP(texUnit->LodBias + curObj->LodBias, - -ctx->Const.MaxTextureLodBias, - ctx->Const.MaxTextureLodBias); - GLuint i; - for (i = 0; i < span->end; i++) { - lambda[i] += bias; - } - } - - if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) { - /* apply LOD clamping to lambda */ - const GLfloat min = curObj->MinLod; - const GLfloat max = curObj->MaxLod; - GLuint i; - for (i = 0; i < span->end; i++) { - GLfloat l = lambda[i]; - lambda[i] = CLAMP(l, min, max); - } - } - } - - /* Sample the texture (span->end fragments) */ - swrast->TextureSample[unit]( ctx, unit, texUnit->_Current, span->end, - (const GLfloat (*)[4]) span->array->texcoords[unit], - lambda, texels ); - - /* GL_SGI_texture_color_table */ - if (texUnit->ColorTableEnabled) { - _mesa_lookup_rgba_chan(&texUnit->ColorTable, span->end, texels); - } - } - } - - /* - * OK, now apply the texture (aka texture combine/blend). - * We modify the span->color.rgba values. - */ - for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { - if (ctx->Texture.Unit[unit]._ReallyEnabled) { - const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; - if (texUnit->_CurrentCombine != &texUnit->_EnvMode ) { - texture_combine( ctx, unit, span->end, - (CONST GLchan (*)[4]) primary_rgba, - swrast->TexelBuffer, - span->array->rgba ); - } - else { - /* conventional texture blend */ - const GLchan (*texels)[4] = (const GLchan (*)[4]) - (swrast->TexelBuffer + unit * - (span->end * 4 * sizeof(GLchan))); - texture_apply( ctx, texUnit, span->end, - (CONST GLchan (*)[4]) primary_rgba, texels, - span->array->rgba ); - } - } - } + /* nop */ }