X-Git-Url: https://git.libre-soc.org/?a=blobdiff_plain;f=src%2Fmesa%2Fswrast%2Fs_texture.c;h=97a8447c3062d23970839f78386b24b55c201037;hb=f595212336ae63c981f0f39f4ea1dec67ff7fe25;hp=7b1b4e94e3fb4dbd83cd92e98fd0c766653c2c7a;hpb=08836341788a9f9d638d9dc8328510ccd18ddeb5;p=mesa.git diff --git a/src/mesa/swrast/s_texture.c b/src/mesa/swrast/s_texture.c index 7b1b4e94e3f..97a8447c306 100644 --- a/src/mesa/swrast/s_texture.c +++ b/src/mesa/swrast/s_texture.c @@ -1,10 +1,10 @@ -/* $Id: s_texture.c,v 1.14 2001/03/03 20:33:30 brianp Exp $ */ +/* $Id: s_texture.c,v 1.62 2002/05/02 00:59:20 brianp Exp $ */ /* * Mesa 3-D graphics library - * Version: 3.5 + * Version: 4.1 * - * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. + * Copyright (C) 1999-2002 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), @@ -31,14 +31,13 @@ #include "macros.h" #include "mmath.h" #include "mem.h" +#include "texformat.h" #include "teximage.h" #include "s_context.h" -#include "s_pb.h" #include "s_texture.h" - /* * These values are used in the fixed-point arithmetic used * for linear filtering. @@ -50,7 +49,7 @@ /* * Used to compute texel locations for linear sampling. * Input: - * wrapMode = GL_REPEAT, GL_CLAMP or GL_CLAMP_TO_EDGE + * wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER_ARB * S = texcoord in [0,1] * SIZE = width (or height or depth) of texture * Output: @@ -64,21 +63,58 @@ I0 = IFLOOR(U) & (SIZE - 1); \ I1 = (I0 + 1) & (SIZE - 1); \ } \ + else if (wrapMode == GL_CLAMP_TO_EDGE) { \ + if (S <= 0.0F) \ + U = 0.0F; \ + else if (S >= 1.0F) \ + U = (GLfloat) SIZE; \ + else \ + U = S * SIZE; \ + U -= 0.5F; \ + I0 = IFLOOR(U); \ + I1 = I0 + 1; \ + if (I0 < 0) \ + I0 = 0; \ + if (I1 >= (GLint) SIZE) \ + I1 = SIZE - 1; \ + } \ + else if (wrapMode == GL_CLAMP_TO_BORDER_ARB) { \ + const GLfloat min = -1.0F / (2.0F * SIZE); \ + const GLfloat max = 1.0F - min; \ + if (S <= min) \ + U = min * SIZE; \ + else if (S >= max) \ + U = max * SIZE; \ + else \ + U = S * SIZE; \ + U -= 0.5F; \ + I0 = IFLOOR(U); \ + I1 = I0 + 1; \ + } \ + else if (wrapMode == GL_MIRRORED_REPEAT_ARB) { \ + const GLint flr = IFLOOR(S); \ + if (flr & 1) \ + U = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \ + else \ + U = S - (GLfloat) flr; /* flr is even */ \ + I0 = IFLOOR(U); \ + I1 = I0 + 1; \ + if (I0 < 0) \ + I0 = 0; \ + if (I1 >= (GLint) SIZE) \ + I1 = SIZE - 1; \ + } \ else { \ - U = S * SIZE; \ - if (U < 0.0F) \ + ASSERT(wrapMode == GL_CLAMP); \ + if (S <= 0.0F) \ U = 0.0F; \ - else if (U >= SIZE) \ - U = SIZE; \ + else if (S >= 1.0F) \ + U = (GLfloat) SIZE; \ + else \ + U = S * SIZE; \ U -= 0.5F; \ I0 = IFLOOR(U); \ I1 = I0 + 1; \ - if (wrapMode == GL_CLAMP_TO_EDGE) { \ - if (I0 < 0) \ - I0 = 0; \ - if (I1 >= SIZE) \ - I1 = SIZE - 1; \ - } \ } \ } @@ -90,13 +126,13 @@ { \ if (wrapMode == GL_REPEAT) { \ /* s limited to [0,1) */ \ - /* i limited to [0,width-1] */ \ - I = (GLint) (S * SIZE); \ - if (S < 0.0F) \ - I -= 1; \ + /* i limited to [0,size-1] */ \ + I = IFLOOR(S * SIZE); \ I &= (SIZE - 1); \ } \ else if (wrapMode == GL_CLAMP_TO_EDGE) { \ + /* s limited to [min,max] */ \ + /* i limited to [0, size-1] */ \ const GLfloat min = 1.0F / (2.0F * SIZE); \ const GLfloat max = 1.0F - min; \ if (S < min) \ @@ -104,32 +140,69 @@ else if (S > max) \ I = SIZE - 1; \ else \ - I = (GLint) (S * SIZE); \ + I = IFLOOR(S * SIZE); \ + } \ + else if (wrapMode == GL_CLAMP_TO_BORDER_ARB) { \ + /* s limited to [min,max] */ \ + /* i limited to [-1, size] */ \ + const GLfloat min = -1.0F / (2.0F * SIZE); \ + const GLfloat max = 1.0F - min; \ + if (S <= min) \ + I = -1; \ + else if (S >= max) \ + I = SIZE; \ + else \ + I = IFLOOR(S * SIZE); \ + } \ + else if (wrapMode == GL_MIRRORED_REPEAT_ARB) { \ + const GLfloat min = 1.0F / (2.0F * SIZE); \ + const GLfloat max = 1.0F - min; \ + const GLint flr = IFLOOR(S); \ + GLfloat u; \ + if (flr & 1) \ + u = 1.0F - (S - (GLfloat) flr); /* flr is odd */ \ + else \ + u = S - (GLfloat) flr; /* flr is even */ \ + if (u < min) \ + I = 0; \ + else if (u > max) \ + I = SIZE - 1; \ + else \ + I = IFLOOR(u * SIZE); \ } \ else { \ ASSERT(wrapMode == GL_CLAMP); \ /* s limited to [0,1] */ \ - /* i limited to [0,width-1] */ \ + /* i limited to [0,size-1] */ \ if (S <= 0.0F) \ I = 0; \ else if (S >= 1.0F) \ I = SIZE - 1; \ else \ - I = (GLint) (S * SIZE); \ + I = IFLOOR(S * SIZE); \ } \ } +#define COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(S, U, SIZE, I0, I1) \ +{ \ + U = S * SIZE - 0.5F; \ + I0 = IFLOOR(U) & (SIZE - 1); \ + I1 = (I0 + 1) & (SIZE - 1); \ +} + + /* * Compute linear mipmap levels for given lambda. */ #define COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level) \ { \ if (lambda < 0.0F) \ - lambda = 0.0F; \ + level = tObj->BaseLevel; \ else if (lambda > tObj->_MaxLambda) \ - lambda = tObj->_MaxLambda; \ - level = (GLint) (tObj->BaseLevel + lambda); \ + level = (GLint) (tObj->BaseLevel + tObj->_MaxLambda); \ + else \ + level = (GLint) (tObj->BaseLevel + lambda); \ } @@ -138,17 +211,30 @@ */ #define COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level) \ { \ + GLfloat l; \ if (lambda <= 0.5F) \ - lambda = 0.0F; \ + l = 0.0F; \ else if (lambda > tObj->_MaxLambda + 0.4999F) \ - lambda = tObj->_MaxLambda + 0.4999F; \ - level = (GLint) (tObj->BaseLevel + lambda + 0.5F); \ + l = tObj->_MaxLambda + 0.4999F; \ + else \ + l = lambda; \ + level = (GLint) (tObj->BaseLevel + l + 0.5F); \ if (level > tObj->_MaxLevel) \ level = tObj->_MaxLevel; \ } +/* + * Note, the FRAC macro has to work perfectly. Otherwise you'll sometimes + * see 1-pixel bands of improperly weighted linear-sampled texels. The + * tests/texwrap.c demo is a good test. + * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0. + * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x). + */ +#define FRAC(f) ((f) - IFLOOR(f)) + + /* * Bitflags for texture border color sampling. @@ -213,6 +299,100 @@ palette_sample(const GLcontext *ctx, } +/* + * The lambda[] array values are always monotonic. Either the whole span + * will be minified, magnified, or split between the two. This function + * determines the subranges in [0, n-1] that are to be minified or magnified. + */ +static INLINE void +compute_min_mag_ranges( GLfloat minMagThresh, GLuint n, const GLfloat lambda[], + GLuint *minStart, GLuint *minEnd, + GLuint *magStart, GLuint *magEnd ) +{ + ASSERT(lambda != NULL); +#if 0 + /* Verify that lambda[] is monotonous. + * We can't really use this because the inaccuracy in the LOG2 function + * causes this test to fail, yet the resulting texturing is correct. + */ + if (n > 1) { + GLuint i; + printf("lambda delta = %g\n", lambda[0] - lambda[n-1]); + if (lambda[0] >= lambda[n-1]) { /* decreasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10)); + } + } + else { /* increasing */ + for (i = 0; i < n - 1; i++) { + ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10)); + } + } + } +#endif /* DEBUG */ + + /* since lambda is monotonous-array use this check first */ + if (lambda[0] <= minMagThresh && lambda[n-1] <= minMagThresh) { + /* magnification for whole span */ + *magStart = 0; + *magEnd = n; + *minStart = *minEnd = 0; + } + else if (lambda[0] > minMagThresh && lambda[n-1] > minMagThresh) { + /* minification for whole span */ + *minStart = 0; + *minEnd = n; + *magStart = *magEnd = 0; + } + else { + /* a mix of minification and magnification */ + GLuint i; + if (lambda[0] > minMagThresh) { + /* start with minification */ + for (i = 1; i < n; i++) { + if (lambda[i] <= minMagThresh) + break; + } + *minStart = 0; + *minEnd = i; + *magStart = i; + *magEnd = n; + } + else { + /* start with magnification */ + for (i = 1; i < n; i++) { + if (lambda[i] > minMagThresh) + break; + } + *magStart = 0; + *magEnd = i; + *minStart = i; + *minEnd = n; + } + } + +#if 0 + /* Verify the min/mag Start/End values + * We don't use this either (see above) + */ + { + GLint i; + for (i = 0; i < n; i++) { + if (lambda[i] > minMagThresh) { + /* minification */ + ASSERT(i >= *minStart); + ASSERT(i < *minEnd); + } + else { + /* magnification */ + ASSERT(i >= *magStart); + ASSERT(i < *magEnd); + } + } + } +#endif +} + /**********************************************************************/ /* 1-D Texture Sampling Functions */ @@ -225,19 +405,25 @@ static void sample_1d_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLchan rgba[4]) + const GLfloat texcoord[4], GLchan rgba[4]) { const GLint width = img->Width2; /* without border, power of two */ GLint i; - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); /* skip over the border, if any */ i += img->Border; - (*img->FetchTexel)(img, i, 0, 0, (GLvoid *) rgba); - if (img->Format == GL_COLOR_INDEX) { - palette_sample(ctx, tObj, rgba[0], rgba); + if (i < 0 || i >= (GLint) img->Width) { + /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */ + COPY_CHAN4(rgba, tObj->BorderColor); + } + else { + (*img->FetchTexel)(img, i, 0, 0, (GLvoid *) rgba); + if (img->Format == GL_COLOR_INDEX) { + palette_sample(ctx, tObj, rgba[0], rgba); + } } } @@ -250,14 +436,14 @@ static void sample_1d_linear(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLchan rgba[4]) + const GLfloat texcoord[4], GLchan rgba[4]) { const GLint width = img->Width2; GLint i0, i1; GLfloat u; GLuint useBorderColor; - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); useBorderColor = 0; if (img->Border) { @@ -271,10 +457,15 @@ sample_1d_linear(GLcontext *ctx, { const GLfloat a = FRAC(u); - /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ - const GLint w0 = (GLint) ((1.0F-a) * WEIGHT_SCALE + 0.5F); - const GLint w1 = (GLint) ( a * WEIGHT_SCALE + 0.5F); +#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT + const GLfloat w0 = (1.0F-a); + const GLfloat w1 = a ; +#else /* CHAN_BITS == 8 */ + /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ + const GLint w0 = IROUND_POS((1.0F - a) * WEIGHT_SCALE); + const GLint w1 = IROUND_POS( a * WEIGHT_SCALE); +#endif GLchan t0[4], t1[4]; /* texels */ if (useBorderColor & I0BIT) { @@ -296,10 +487,23 @@ sample_1d_linear(GLcontext *ctx, } } +#if CHAN_TYPE == GL_FLOAT + rgba[0] = w0 * t0[0] + w1 * t1[0]; + rgba[1] = w0 * t0[1] + w1 * t1[1]; + rgba[2] = w0 * t0[2] + w1 * t1[2]; + rgba[3] = w0 * t0[3] + w1 * t1[3]; +#elif CHAN_TYPE == GL_UNSIGNED_SHORT + rgba[0] = (GLchan) (w0 * t0[0] + w1 * t1[0] + 0.5); + rgba[1] = (GLchan) (w0 * t0[1] + w1 * t1[1] + 0.5); + rgba[2] = (GLchan) (w0 * t0[2] + w1 * t1[2] + 0.5); + rgba[3] = (GLchan) (w0 * t0[3] + w1 * t1[3] + 0.5); +#else /* CHAN_BITS == 8 */ rgba[0] = (GLchan) ((w0 * t0[0] + w1 * t1[0]) >> WEIGHT_SHIFT); rgba[1] = (GLchan) ((w0 * t0[1] + w1 * t1[1]) >> WEIGHT_SHIFT); rgba[2] = (GLchan) ((w0 * t0[2] + w1 * t1[2]) >> WEIGHT_SHIFT); rgba[3] = (GLchan) ((w0 * t0[3] + w1 * t1[3]) >> WEIGHT_SHIFT); +#endif + } } @@ -307,50 +511,71 @@ sample_1d_linear(GLcontext *ctx, static void sample_1d_nearest_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_1d_nearest(ctx, tObj, tObj->Image[level], s, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_1d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } static void sample_1d_linear_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_1d_linear(ctx, tObj, tObj->Image[level], s, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_1d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } +/* + * This is really just needed in order to prevent warnings with some compilers. + */ +#if CHAN_TYPE == GL_FLOAT +#define CHAN_CAST +#else +#define CHAN_CAST (GLchan) (GLint) +#endif + + static void sample_1d_nearest_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - if (level >= tObj->_MaxLevel) { - sample_1d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], s, rgba); - } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda); - sample_1d_nearest(ctx, tObj, tObj->Image[level ], s, t0); - sample_1d_nearest(ctx, tObj, tObj->Image[level+1], s, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_1d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_nearest(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_1d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } @@ -359,25 +584,28 @@ sample_1d_nearest_mipmap_linear(GLcontext *ctx, static void sample_1d_linear_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - if (level >= tObj->_MaxLevel) { - sample_1d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], s, rgba); - } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda); - sample_1d_linear(ctx, tObj, tObj->Image[level ], s, t0); - sample_1d_linear(ctx, tObj, tObj->Image[level+1], s, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_1d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_1d_linear(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_1d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } @@ -386,17 +614,14 @@ sample_1d_linear_mipmap_linear(GLcontext *ctx, static void sample_nearest_1d( GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], + GLfloat texcoords[][4], const GLfloat lambda[], GLchan rgba[][4] ) { GLuint i; struct gl_texture_image *image = tObj->Image[tObj->BaseLevel]; - (void) t; - (void) u; (void) lambda; for (i=0;iImage[tObj->BaseLevel]; - (void) t; - (void) u; (void) lambda; for (i=0;i_MinMagThresh[texUnit]; + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ GLuint i; - (void) t; - (void) u; + ASSERT(lambda != NULL); + compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], + n, lambda, &minStart, &minEnd, &magStart, &magEnd); - for (i=0;i MinMagThresh) { - /* minification */ - switch (tObj->MinFilter) { - case GL_NEAREST: - sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], rgba[i]); - break; - case GL_LINEAR: - sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_1d_nearest_mipmap_nearest(ctx, tObj, lambda[i], s[i], - rgba[i]); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_1d_linear_mipmap_nearest(ctx, tObj, s[i], lambda[i], - rgba[i]); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_1d_nearest_mipmap_linear(ctx, tObj, s[i], lambda[i], - rgba[i]); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_1d_linear_mipmap_linear(ctx, tObj, s[i], lambda[i], - rgba[i]); - break; - default: - _mesa_problem(NULL, "Bad min filter in sample_1d_texture"); - return; - } + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_1d_texture"); + return; } - else { - /* magnification */ - switch (tObj->MagFilter) { - case GL_NEAREST: - sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], rgba[i]); - break; - case GL_LINEAR: - sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], rgba[i]); - break; - default: - _mesa_problem(NULL, "Bad mag filter in sample_1d_texture"); - return; - } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_1d_texture"); + return; } } } - - /**********************************************************************/ /* 2-D Texture Sampling Functions */ /**********************************************************************/ @@ -501,27 +726,33 @@ sample_lambda_1d( GLcontext *ctx, GLuint texUnit, /* * Return the texture sample for coordinate (s,t) using GL_NEAREST filter. */ -static void +static INLINE void sample_2d_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLfloat t, + const GLfloat texcoord[4], GLchan rgba[]) { const GLint width = img->Width2; /* without border, power of two */ const GLint height = img->Height2; /* without border, power of two */ GLint i, j; - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j); /* skip over the border, if any */ i += img->Border; j += img->Border; - (*img->FetchTexel)(img, i, j, 0, (GLvoid *) rgba); - if (img->Format == GL_COLOR_INDEX) { - palette_sample(ctx, tObj, rgba[0], rgba); + if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) { + /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */ + COPY_CHAN4(rgba, tObj->BorderColor); + } + else { + (*img->FetchTexel)(img, i, j, 0, (GLvoid *) rgba); + if (img->Format == GL_COLOR_INDEX) { + palette_sample(ctx, tObj, rgba[0], rgba); + } } } @@ -531,11 +762,11 @@ sample_2d_nearest(GLcontext *ctx, * Return the texture sample for coordinate (s,t) using GL_LINEAR filter. * New sampling code contributed by Lynn Quam . */ -static void +static INLINE void sample_2d_linear(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLfloat t, + const GLfloat texcoord[4], GLchan rgba[]) { const GLint width = img->Width2; @@ -544,8 +775,8 @@ sample_2d_linear(GLcontext *ctx, GLuint useBorderColor; GLfloat u, v; - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1); useBorderColor = 0; if (img->Border) { @@ -564,11 +795,19 @@ sample_2d_linear(GLcontext *ctx, { const GLfloat a = FRAC(u); const GLfloat b = FRAC(v); + +#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT + const GLfloat w00 = (1.0F-a) * (1.0F-b); + const GLfloat w10 = a * (1.0F-b); + const GLfloat w01 = (1.0F-a) * b ; + const GLfloat w11 = a * b ; +#else /* CHAN_BITS == 8 */ /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ - const GLint w00 = (GLint) ((1.0F-a)*(1.0F-b) * WEIGHT_SCALE + 0.5F); - const GLint w10 = (GLint) ( a *(1.0F-b) * WEIGHT_SCALE + 0.5F); - const GLint w01 = (GLint) ((1.0F-a)* b * WEIGHT_SCALE + 0.5F); - const GLint w11 = (GLint) ( a * b * WEIGHT_SCALE + 0.5F); + const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE); + const GLint w10 = IROUND_POS( a * (1.0F-b) * WEIGHT_SCALE); + const GLint w01 = IROUND_POS((1.0F-a) * b * WEIGHT_SCALE); + const GLint w11 = IROUND_POS( a * b * WEIGHT_SCALE); +#endif GLchan t00[4]; GLchan t10[4]; GLchan t01[4]; @@ -610,11 +849,111 @@ sample_2d_linear(GLcontext *ctx, palette_sample(ctx, tObj, t11[0], t11); } } +#if CHAN_TYPE == GL_FLOAT + rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]; + rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]; + rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]; + rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]; +#elif CHAN_TYPE == GL_UNSIGNED_SHORT + rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] + + w01 * t01[0] + w11 * t11[0] + 0.5); + rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] + + w01 * t01[1] + w11 * t11[1] + 0.5); + rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] + + w01 * t01[2] + w11 * t11[2] + 0.5); + rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] + + w01 * t01[3] + w11 * t11[3] + 0.5); +#else /* CHAN_BITS == 8 */ + rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] + + w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT); + rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] + + w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT); + rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] + + w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT); + rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] + + w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT); +#endif + + } + +} + + +/* + * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT + * and we're not using a paletted texture. + */ +static INLINE void +sample_2d_linear_repeat(GLcontext *ctx, + const struct gl_texture_object *tObj, + const struct gl_texture_image *img, + const GLfloat texcoord[4], + GLchan rgba[]) +{ + const GLint width = img->Width2; + const GLint height = img->Height2; + GLint i0, j0, i1, j1; + GLfloat u, v; + + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + ASSERT(img->Border == 0); + ASSERT(img->Format != GL_COLOR_INDEX); + + COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[0], u, width, i0, i1); + COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[1], v, height, j0, j1); + + { + const GLfloat a = FRAC(u); + const GLfloat b = FRAC(v); + +#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT + const GLfloat w00 = (1.0F-a) * (1.0F-b); + const GLfloat w10 = a * (1.0F-b); + const GLfloat w01 = (1.0F-a) * b ; + const GLfloat w11 = a * b ; +#else /* CHAN_BITS == 8 */ + /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ + const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE); + const GLint w10 = IROUND_POS( a * (1.0F-b) * WEIGHT_SCALE); + const GLint w01 = IROUND_POS((1.0F-a) * b * WEIGHT_SCALE); + const GLint w11 = IROUND_POS( a * b * WEIGHT_SCALE); +#endif + GLchan t00[4]; + GLchan t10[4]; + GLchan t01[4]; + GLchan t11[4]; + + (*img->FetchTexel)(img, i0, j0, 0, (GLvoid *) t00); + (*img->FetchTexel)(img, i1, j0, 0, (GLvoid *) t10); + (*img->FetchTexel)(img, i0, j1, 0, (GLvoid *) t01); + (*img->FetchTexel)(img, i1, j1, 0, (GLvoid *) t11); + +#if CHAN_TYPE == GL_FLOAT + rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]; + rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]; + rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]; + rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]; +#elif CHAN_TYPE == GL_UNSIGNED_SHORT + rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] + + w01 * t01[0] + w11 * t11[0] + 0.5); + rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] + + w01 * t01[1] + w11 * t11[1] + 0.5); + rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] + + w01 * t01[2] + w11 * t11[2] + 0.5); + rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] + + w01 * t01[3] + w11 * t11[3] + 0.5); +#else /* CHAN_BITS == 8 */ + rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] + + w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT); + rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] + + w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT); + rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] + + w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT); + rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] + + w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT); +#endif - rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT); - rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT); - rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT); - rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT); } } @@ -624,12 +963,15 @@ sample_2d_linear(GLcontext *ctx, static void sample_2d_nearest_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_2d_nearest(ctx, tObj, tObj->Image[level], s, t, rgba); + GLuint i; + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_2d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } @@ -637,12 +979,16 @@ sample_2d_nearest_mipmap_nearest(GLcontext *ctx, static void sample_2d_linear_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_2d_linear(ctx, tObj, tObj->Image[level], s, t, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_2d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } @@ -650,70 +996,105 @@ sample_2d_linear_mipmap_nearest(GLcontext *ctx, static void sample_2d_nearest_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat lambda, - GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], s, t, rgba); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda); - sample_2d_nearest(ctx, tObj, tObj->Image[level ], s, t, t0); - sample_2d_nearest(ctx, tObj, tObj->Image[level+1], s, t, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_2d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } +/* Trilinear filtering */ static void -sample_2d_linear_mipmap_linear(GLcontext *ctx, - const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat lambda, - GLchan rgba[4]) +sample_2d_linear_mipmap_linear( GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4] ) { - GLint level; + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_2d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } + } +} - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], s, t, rgba); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda); - sample_2d_linear(ctx, tObj, tObj->Image[level ], s, t, t0); - sample_2d_linear(ctx, tObj, tObj->Image[level+1], s, t, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); +static void +sample_2d_linear_mipmap_linear_repeat( GLcontext *ctx, + const struct gl_texture_object *tObj, + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4] ) +{ + GLuint i; + ASSERT(lambda != NULL); + ASSERT(tObj->WrapS == GL_REPEAT); + ASSERT(tObj->WrapT == GL_REPEAT); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_2d_linear_repeat(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_2d_linear_repeat(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } - static void sample_nearest_2d( GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], - GLchan rgba[][4] ) + GLfloat texcoords[][4], + const GLfloat lambda[], GLchan rgba[][4] ) { GLuint i; struct gl_texture_image *image = tObj->Image[tObj->BaseLevel]; - (void) u; (void) lambda; for (i=0;iImage[tObj->BaseLevel]; - (void) u; (void) lambda; for (i=0;i_MinMagThresh[texUnit]; - GLuint i; - (void) u; - - /* check if lambda is monotonous-array */ - if (lambda[0] <= minMagThresh && lambda[n-1] <= minMagThresh) { - /* magnification */ - switch (tObj->MagFilter) { - case GL_NEAREST: - for (i = 0; i < n; i++) - sample_2d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i] ); - break; - case GL_LINEAR: - for (i = 0; i < n; i++) - sample_2d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i] ); - break; - default: - _mesa_problem(NULL, "Bad mag filter in sample_2d_texture"); - } - } - else { - for (i = 0; i < n; i++) { - if (lambda[i] > minMagThresh) { - /* minification */ - switch (tObj->MinFilter) { - case GL_NEAREST: - sample_2d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i]); - break; - case GL_LINEAR: - sample_2d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_2d_nearest_mipmap_nearest(ctx, tObj, s[i], t[i], - lambda[i], rgba[i]); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_2d_linear_mipmap_nearest(ctx,tObj, s[i], t[i], - lambda[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_2d_nearest_mipmap_linear(ctx,tObj, s[i], t[i], - lambda[i], rgba[i]); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_2d_linear_mipmap_linear(ctx,tObj, s[i], t[i], - lambda[i], rgba[i] ); - break; - default: - _mesa_problem(NULL, "Bad min filter in sample_2d_texture"); - return; - } - } - else { - /* magnification */ - switch (tObj->MagFilter) { - case GL_NEAREST: - sample_2d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i]); - break; - case GL_LINEAR: - sample_2d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], rgba[i] ); - break; - default: - _mesa_problem(NULL, "Bad mag filter in sample_2d_texture"); - } - } - } - } -} - - -/* - * Optimized 2-D texture sampling: - * S and T wrap mode == GL_REPEAT - * GL_NEAREST min/mag filter - * No border - * Format = GL_RGB - */ -static void -opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, - GLuint n, const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], - GLchan rgba[][4] ) +opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit, + const struct gl_texture_object *tObj, + GLuint n, GLfloat texcoords[][4], + const GLfloat lambda[], GLchan rgba[][4] ) { const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel]; const GLfloat width = (GLfloat) img->Width; @@ -845,21 +1135,17 @@ opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit, const GLint rowMask = img->Height - 1; const GLint shift = img->WidthLog2; GLuint k; - (void) u; (void) lambda; ASSERT(tObj->WrapS==GL_REPEAT); ASSERT(tObj->WrapT==GL_REPEAT); - ASSERT(tObj->MinFilter==GL_NEAREST); - ASSERT(tObj->MagFilter==GL_NEAREST); ASSERT(img->Border==0); ASSERT(img->Format==GL_RGB); - /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */ - for (k=0;kData) + pos + pos + pos; /* pos*3 */ + GLchan *texel = ((GLchan *) img->Data) + 3*pos; rgba[k][RCOMP] = texel[0]; rgba[k][GCOMP] = texel[1]; rgba[k][BCOMP] = texel[2]; @@ -877,9 +1163,8 @@ opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit, static void opt_sample_rgba_2d( GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, - GLuint n, const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], - GLchan rgba[][4] ) + GLuint n, GLfloat texcoords[][4], + const GLfloat lambda[], GLchan rgba[][4] ) { const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel]; const GLfloat width = (GLfloat) img->Width; @@ -887,26 +1172,134 @@ opt_sample_rgba_2d( GLcontext *ctx, GLuint texUnit, const GLint colMask = img->Width - 1; const GLint rowMask = img->Height - 1; const GLint shift = img->WidthLog2; - GLuint k; - (void) u; + GLuint i; (void) lambda; ASSERT(tObj->WrapS==GL_REPEAT); ASSERT(tObj->WrapT==GL_REPEAT); - ASSERT(tObj->MinFilter==GL_NEAREST); - ASSERT(tObj->MagFilter==GL_NEAREST); ASSERT(img->Border==0); ASSERT(img->Format==GL_RGBA); - /* NOTE: negative float->int doesn't floor, add 10000 as to work-around */ - for (k=0;kData) + (pos << 2); /* pos*4 */ - rgba[k][RCOMP] = texel[0]; - rgba[k][GCOMP] = texel[1]; - rgba[k][BCOMP] = texel[2]; - rgba[k][ACOMP] = texel[3]; + for (i = 0; i < n; i++) { + const GLint col = IFLOOR(texcoords[i][0] * width) & colMask; + const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask; + const GLint pos = (row << shift) | col; + const GLchan *texel = ((GLchan *) img->Data) + (pos << 2); /* pos*4 */ + COPY_CHAN4(rgba[i], texel); + } +} + + +/* + * Given an array of texture coordinate and lambda (level of detail) + * values, return an array of texture sample. + */ +static void +sample_lambda_2d( GLcontext *ctx, GLuint texUnit, + const struct gl_texture_object *tObj, + GLuint n, GLfloat texcoords[][4], + const GLfloat lambda[], GLchan rgba[][4] ) +{ + const struct gl_texture_image *tImg = tObj->Image[tObj->BaseLevel]; + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ + + const GLboolean repeatNoBorder = (tObj->WrapS == GL_REPEAT) + && (tObj->WrapT == GL_REPEAT) + && (tImg->Border == 0) + && (tImg->Format != GL_COLOR_INDEX); + + ASSERT(lambda != NULL); + compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], + n, lambda, &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + if (repeatNoBorder) { + switch (tImg->Format) { + case GL_RGB: + opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case GL_RGBA: + opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + default: + sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart, + NULL, rgba + minStart ); + } + } + else { + sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, texUnit, tObj, m, texcoords + minStart, + NULL, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_2d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + if (repeatNoBorder) + sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m, + texcoords + minStart, lambda + minStart, rgba + minStart); + else + sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_2d_texture"); + return; + } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + + switch (tObj->MagFilter) { + case GL_NEAREST: + if (repeatNoBorder) { + switch (tImg->Format) { + case GL_RGB: + opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + case GL_RGBA: + opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart, + NULL, rgba + magStart ); + } + } + else { + sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + } + break; + case GL_LINEAR: + sample_linear_2d(ctx, texUnit, tObj, m, texcoords + magStart, + NULL, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d"); + } } } @@ -923,7 +1316,7 @@ static void sample_3d_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLfloat t, GLfloat r, + const GLfloat texcoord[4], GLchan rgba[4]) { const GLint width = img->Width2; /* without border, power of two */ @@ -931,13 +1324,21 @@ sample_3d_nearest(GLcontext *ctx, const GLint depth = img->Depth2; /* without border, power of two */ GLint i, j, k; - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, s, width, i); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, t, height, j); - COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, r, depth, k); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, texcoord[2], depth, k); - (*img->FetchTexel)(img, i, j, k, (GLvoid *) rgba); - if (img->Format == GL_COLOR_INDEX) { - palette_sample(ctx, tObj, rgba[0], rgba); + if (i < 0 || i >= (GLint) img->Width || + j < 0 || j >= (GLint) img->Height || + k < 0 || k >= (GLint) img->Depth) { + /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */ + COPY_CHAN4(rgba, tObj->BorderColor); + } + else { + (*img->FetchTexel)(img, i, j, k, (GLvoid *) rgba); + if (img->Format == GL_COLOR_INDEX) { + palette_sample(ctx, tObj, rgba[0], rgba); + } } } @@ -950,7 +1351,7 @@ static void sample_3d_linear(GLcontext *ctx, const struct gl_texture_object *tObj, const struct gl_texture_image *img, - GLfloat s, GLfloat t, GLfloat r, + const GLfloat texcoord[4], GLchan rgba[4]) { const GLint width = img->Width2; @@ -960,9 +1361,9 @@ sample_3d_linear(GLcontext *ctx, GLuint useBorderColor; GLfloat u, v, w; - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, s, u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, t, v, height, j0, j1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, r, w, depth, k0, k1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, texcoord[2], w, depth, k0, k1); useBorderColor = 0; if (img->Border) { @@ -987,15 +1388,28 @@ sample_3d_linear(GLcontext *ctx, const GLfloat a = FRAC(u); const GLfloat b = FRAC(v); const GLfloat c = FRAC(w); + +#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ - GLint w000 = (GLint) ((1.0F-a)*(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F); - GLint w100 = (GLint) ( a *(1.0F-b)*(1.0F-c) * WEIGHT_SCALE + 0.5F); - GLint w010 = (GLint) ((1.0F-a)* b *(1.0F-c) * WEIGHT_SCALE + 0.5F); - GLint w110 = (GLint) ( a * b *(1.0F-c) * WEIGHT_SCALE + 0.5F); - GLint w001 = (GLint) ((1.0F-a)*(1.0F-b)* c * WEIGHT_SCALE + 0.5F); - GLint w101 = (GLint) ( a *(1.0F-b)* c * WEIGHT_SCALE + 0.5F); - GLint w011 = (GLint) ((1.0F-a)* b * c * WEIGHT_SCALE + 0.5F); - GLint w111 = (GLint) ( a * b * c * WEIGHT_SCALE + 0.5F); + GLfloat w000 = (1.0F-a) * (1.0F-b) * (1.0F-c); + GLfloat w100 = a * (1.0F-b) * (1.0F-c); + GLfloat w010 = (1.0F-a) * b * (1.0F-c); + GLfloat w110 = a * b * (1.0F-c); + GLfloat w001 = (1.0F-a) * (1.0F-b) * c ; + GLfloat w101 = a * (1.0F-b) * c ; + GLfloat w011 = (1.0F-a) * b * c ; + GLfloat w111 = a * b * c ; +#else /* CHAN_BITS == 8 */ + /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */ + GLint w000 = IROUND_POS((1.0F-a) * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE); + GLint w100 = IROUND_POS( a * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE); + GLint w010 = IROUND_POS((1.0F-a) * b * (1.0F-c) * WEIGHT_SCALE); + GLint w110 = IROUND_POS( a * b * (1.0F-c) * WEIGHT_SCALE); + GLint w001 = IROUND_POS((1.0F-a) * (1.0F-b) * c * WEIGHT_SCALE); + GLint w101 = IROUND_POS( a * (1.0F-b) * c * WEIGHT_SCALE); + GLint w011 = IROUND_POS((1.0F-a) * b * c * WEIGHT_SCALE); + GLint w111 = IROUND_POS( a * b * c * WEIGHT_SCALE); +#endif GLchan t000[4], t010[4], t001[4], t011[4]; GLchan t100[4], t110[4], t101[4], t111[4]; @@ -1074,9 +1488,36 @@ sample_3d_linear(GLcontext *ctx, } } +#if CHAN_TYPE == GL_FLOAT + rgba[0] = w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] + + w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0]; + rgba[1] = w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] + + w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1]; + rgba[2] = w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] + + w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2]; + rgba[3] = w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] + + w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3]; +#elif CHAN_TYPE == GL_UNSIGNED_SHORT + rgba[0] = (GLchan) (w000*t000[0] + w010*t010[0] + + w001*t001[0] + w011*t011[0] + + w100*t100[0] + w110*t110[0] + + w101*t101[0] + w111*t111[0] + 0.5); + rgba[1] = (GLchan) (w000*t000[1] + w010*t010[1] + + w001*t001[1] + w011*t011[1] + + w100*t100[1] + w110*t110[1] + + w101*t101[1] + w111*t111[1] + 0.5); + rgba[2] = (GLchan) (w000*t000[2] + w010*t010[2] + + w001*t001[2] + w011*t011[2] + + w100*t100[2] + w110*t110[2] + + w101*t101[2] + w111*t111[2] + 0.5); + rgba[3] = (GLchan) (w000*t000[3] + w010*t010[3] + + w001*t001[3] + w011*t011[3] + + w100*t100[3] + w110*t110[3] + + w101*t101[3] + w111*t111[3] + 0.5); +#else /* CHAN_BITS == 8 */ rgba[0] = (GLchan) ( (w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] + - w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] ) + w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] ) >> WEIGHT_SHIFT); rgba[1] = (GLchan) ( (w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] + @@ -1090,6 +1531,8 @@ sample_3d_linear(GLcontext *ctx, (w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] + w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3] ) >> WEIGHT_SHIFT); +#endif + } } @@ -1098,50 +1541,59 @@ sample_3d_linear(GLcontext *ctx, static void sample_3d_nearest_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat r, - GLfloat lambda, GLchan rgba[4] ) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4] ) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_3d_nearest(ctx, tObj, tObj->Image[level], s, t, r, rgba); + GLuint i; + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_3d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } static void sample_3d_linear_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat r, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - sample_3d_linear(ctx, tObj, tObj->Image[level], s, t, r, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + sample_3d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]); + } } static void sample_3d_nearest_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat r, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - if (level >= tObj->_MaxLevel) { - sample_3d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], - s, t, r, rgba); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda); - sample_3d_nearest(ctx, tObj, tObj->Image[level ], s, t, r, t0); - sample_3d_nearest(ctx, tObj, tObj->Image[level+1], s, t, r, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_3d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_nearest(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_3d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } @@ -1149,25 +1601,28 @@ sample_3d_nearest_mipmap_linear(GLcontext *ctx, static void sample_3d_linear_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat r, - GLfloat lambda, GLchan rgba[4] ) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - if (level >= tObj->_MaxLevel) { - sample_3d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], s, t, r, rgba); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda); - sample_3d_linear(ctx, tObj, tObj->Image[level ], s, t, r, t0); - sample_3d_linear(ctx, tObj, tObj->Image[level+1], s, t, r, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + if (level >= tObj->_MaxLevel) { + sample_3d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel], + texcoord[i], rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_3d_linear(ctx, tObj, tObj->Image[level ], texcoord[i], t0); + sample_3d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } @@ -1175,15 +1630,14 @@ sample_3d_linear_mipmap_linear(GLcontext *ctx, static void sample_nearest_3d(GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], + GLfloat texcoords[][4], const GLfloat lambda[], GLchan rgba[][4]) { GLuint i; struct gl_texture_image *image = tObj->Image[tObj->BaseLevel]; (void) lambda; for (i=0;iImage[tObj->BaseLevel]; (void) lambda; for (i=0;i_MinMagThresh[texUnit]; - for (i=0;i_MinMagThresh[texUnit], + n, lambda, &minStart, &minEnd, &magStart, &magEnd); - if (lambda[i] > MinMagThresh) { - /* minification */ - switch (tObj->MinFilter) { - case GL_NEAREST: - sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], u[i], rgba[i]); - break; - case GL_LINEAR: - sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], u[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_3d_nearest_mipmap_nearest(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); - break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_3d_linear_mipmap_nearest(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); - break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_3d_nearest_mipmap_linear(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); - break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_3d_linear_mipmap_linear(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); - break; - default: - _mesa_problem(NULL, "Bad min filterin sample_3d_texture"); - } + if (minStart < minEnd) { + /* do the minified texels */ + GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + for (i = minStart; i < minEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = minStart; i < minEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_3d_texture"); + return; } - else { - /* magnification */ - switch (tObj->MagFilter) { - case GL_NEAREST: - sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], u[i], rgba[i]); - break; - case GL_LINEAR: - sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], - s[i], t[i], u[i], rgba[i]); - break; - default: - _mesa_problem(NULL, "Bad mag filter in sample_3d_texture"); - } + } + + if (magStart < magEnd) { + /* do the magnified texels */ + switch (tObj->MagFilter) { + case GL_NEAREST: + for (i = magStart; i < magEnd; i++) + sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + case GL_LINEAR: + for (i = magStart; i < magEnd; i++) + sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel], + texcoords[i], rgba[i]); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_3d_texture"); + return; } } } @@ -1282,8 +1744,7 @@ sample_lambda_3d( GLcontext *ctx, GLuint texUnit, */ static const struct gl_texture_image ** choose_cube_face(const struct gl_texture_object *texObj, - GLfloat rx, GLfloat ry, GLfloat rz, - GLfloat *newS, GLfloat *newT) + const GLfloat texcoord[4], GLfloat newCoord[4]) { /* major axis @@ -1296,6 +1757,9 @@ choose_cube_face(const struct gl_texture_object *texObj, +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz */ + const GLfloat rx = texcoord[0]; + const GLfloat ry = texcoord[1]; + const GLfloat rz = texcoord[2]; const struct gl_texture_image **imgArray; const GLfloat arx = ABSF(rx), ary = ABSF(ry), arz = ABSF(rz); GLfloat sc, tc, ma; @@ -1343,8 +1807,8 @@ choose_cube_face(const struct gl_texture_object *texObj, } } - *newS = ( sc / ma + 1.0F ) * 0.5F; - *newT = ( tc / ma + 1.0F ) * 0.5F; + newCoord[0] = ( sc / ma + 1.0F ) * 0.5F; + newCoord[1] = ( tc / ma + 1.0F ) * 0.5F; return imgArray; } @@ -1352,18 +1816,17 @@ choose_cube_face(const struct gl_texture_object *texObj, static void sample_nearest_cube(GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], + GLfloat texcoords[][4], const GLfloat lambda[], GLchan rgba[][4]) { GLuint i; (void) lambda; for (i = 0; i < n; i++) { const struct gl_texture_image **images; - GLfloat newS, newT; - images = choose_cube_face(tObj, s[i], t[i], u[i], &newS, &newT); + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); + newCoord, rgba[i]); } } @@ -1371,18 +1834,17 @@ sample_nearest_cube(GLcontext *ctx, GLuint texUnit, static void sample_linear_cube(GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], - GLchan rgba[][4]) + GLfloat texcoords[][4], + const GLfloat lambda[], GLchan rgba[][4]) { GLuint i; (void) lambda; for (i = 0; i < n; i++) { const struct gl_texture_image **images; - GLfloat newS, newT; - images = choose_cube_face(tObj, s[i], t[i], u[i], &newS, &newT); + GLfloat newCoord[4]; + images = choose_cube_face(tObj, texcoords[i], newCoord); sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); + newCoord, rgba[i]); } } @@ -1390,63 +1852,69 @@ sample_linear_cube(GLcontext *ctx, GLuint texUnit, static void sample_cube_nearest_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat u, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - const struct gl_texture_image **images; - GLfloat newS, newT; - GLint level; - - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - - images = choose_cube_face(tObj, s, t, u, &newS, &newT); - sample_2d_nearest(ctx, tObj, images[level], newS, newT, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + images = choose_cube_face(tObj, texcoord[i], newCoord); + sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]); + } } static void sample_cube_linear_mipmap_nearest(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat u, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - const struct gl_texture_image **images; - GLfloat newS, newT; - GLint level; - - COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level); - - images = choose_cube_face(tObj, s, t, u, &newS, &newT); - sample_2d_linear(ctx, tObj, images[level], newS, newT, rgba); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level); + images = choose_cube_face(tObj, texcoord[i], newCoord); + sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]); + } } static void sample_cube_nearest_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat u, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - const struct gl_texture_image **images; - GLfloat newS, newT; - GLint level; - - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - - images = choose_cube_face(tObj, s, t, u, &newS, &newT); - - if (level >= tObj->_MaxLevel) { - sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], newS, newT, rgba); - } - else { - GLchan t0[4], t1[4]; /* texels */ - const GLfloat f = FRAC(lambda); - sample_2d_nearest(ctx, tObj, images[level ], newS, newT, t0); - sample_2d_nearest(ctx, tObj, images[level+1], newS, newT, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLchan t0[4], t1[4]; /* texels */ + const GLfloat f = FRAC(lambda[i]); + sample_2d_nearest(ctx, tObj, images[level ], newCoord, t0); + sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } } } @@ -1454,124 +1922,492 @@ sample_cube_nearest_mipmap_linear(GLcontext *ctx, static void sample_cube_linear_mipmap_linear(GLcontext *ctx, const struct gl_texture_object *tObj, - GLfloat s, GLfloat t, GLfloat u, - GLfloat lambda, GLchan rgba[4]) + GLuint n, GLfloat texcoord[][4], + const GLfloat lambda[], GLchan rgba[][4]) { - const struct gl_texture_image **images; - GLfloat newS, newT; - GLint level; + GLuint i; + ASSERT(lambda != NULL); + for (i = 0; i < n; i++) { + const struct gl_texture_image **images; + GLfloat newCoord[4]; + GLint level; + COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level); + images = choose_cube_face(tObj, texcoord[i], newCoord); + if (level >= tObj->_MaxLevel) { + sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], + newCoord, rgba[i]); + } + else { + GLchan t0[4], t1[4]; + const GLfloat f = FRAC(lambda[i]); + sample_2d_linear(ctx, tObj, images[level ], newCoord, t0); + sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1); + rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); + rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); + rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); + rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + } + } +} - COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level); - images = choose_cube_face(tObj, s, t, u, &newS, &newT); +static void +sample_lambda_cube( GLcontext *ctx, GLuint texUnit, + const struct gl_texture_object *tObj, GLuint n, + GLfloat texcoords[][4], const GLfloat lambda[], + GLchan rgba[][4]) +{ + GLuint minStart, minEnd; /* texels with minification */ + GLuint magStart, magEnd; /* texels with magnification */ - if (level >= tObj->_MaxLevel) { - sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel], newS, newT, rgba); + ASSERT(lambda != NULL); + compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit], + n, lambda, &minStart, &minEnd, &magStart, &magEnd); + + if (minStart < minEnd) { + /* do the minified texels */ + const GLuint m = minEnd - minStart; + switch (tObj->MinFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, texUnit, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_NEAREST: + sample_cube_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_NEAREST: + sample_cube_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_NEAREST_MIPMAP_LINEAR: + sample_cube_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + case GL_LINEAR_MIPMAP_LINEAR: + sample_cube_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart, + lambda + minStart, rgba + minStart); + break; + default: + _mesa_problem(ctx, "Bad min filter in sample_lambda_cube"); + } } - else { - GLchan t0[4], t1[4]; - const GLfloat f = FRAC(lambda); - sample_2d_linear(ctx, tObj, images[level ], newS, newT, t0); - sample_2d_linear(ctx, tObj, images[level+1], newS, newT, t1); - rgba[RCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]); - rgba[GCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]); - rgba[BCOMP] = (GLchan) (GLint) ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]); - rgba[ACOMP] = (GLchan) (GLint) ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]); + + if (magStart < magEnd) { + /* do the magnified texels */ + const GLuint m = magEnd - magStart; + switch (tObj->MagFilter) { + case GL_NEAREST: + sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + case GL_LINEAR: + sample_linear_cube(ctx, texUnit, tObj, m, texcoords + magStart, + lambda + magStart, rgba + magStart); + break; + default: + _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube"); + } } } +/* + * Sample a shadow/depth texture. + */ static void -sample_lambda_cube( GLcontext *ctx, GLuint texUnit, - const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], - GLchan rgba[][4]) +sample_depth_texture( GLcontext *ctx, GLuint unit, + const struct gl_texture_object *tObj, GLuint n, + GLfloat texcoords[][4], const GLfloat lambda[], + GLchan texel[][4] ) { - GLfloat MinMagThresh = SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit]; - GLuint i; + const GLint baseLevel = tObj->BaseLevel; + const struct gl_texture_image *texImage = tObj->Image[baseLevel]; + const GLuint width = texImage->Width; + const GLuint height = texImage->Height; + const GLchan ambient = tObj->ShadowAmbient; + GLenum function; + GLchan result; - for (i = 0; i < n; i++) { - if (lambda[i] > MinMagThresh) { - /* minification */ - switch (tObj->MinFilter) { - case GL_NEAREST: - { - const struct gl_texture_image **images; - GLfloat newS, newT; - images = choose_cube_face(tObj, s[i], t[i], u[i], - &newS, &newT); - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); - } + (void) unit; + + ASSERT(tObj->Image[tObj->BaseLevel]->Format == GL_DEPTH_COMPONENT); + ASSERT(tObj->Dimensions == 1 || tObj->Dimensions == 2); + + /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */ + + /* XXX this could be precomputed and saved in the texture object */ + if (tObj->CompareFlag) { + /* GL_SGIX_shadow */ + if (tObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { + function = GL_LEQUAL; + } + else { + ASSERT(tObj->CompareOperator == GL_TEXTURE_GEQUAL_R_SGIX); + function = GL_GEQUAL; + } + } + else if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) { + /* GL_ARB_shadow */ + function = tObj->CompareFunc; + } + else { + function = GL_NONE; /* pass depth through as grayscale */ + } + + if (tObj->MagFilter == GL_NEAREST) { + GLuint i; + for (i = 0; i < n; i++) { + GLfloat depthSample; + GLint col, row; + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoords[i][0], width, col); + COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoords[i][1], height, row); + depthSample = *((const GLfloat *) texImage->Data + row * width + col); + + switch (function) { + case GL_LEQUAL: + result = (texcoords[i][2] <= depthSample) ? CHAN_MAX : ambient; + break; + case GL_GEQUAL: + result = (texcoords[i][2] >= depthSample) ? CHAN_MAX : ambient; + break; + case GL_LESS: + result = (texcoords[i][2] < depthSample) ? CHAN_MAX : ambient; + break; + case GL_GREATER: + result = (texcoords[i][2] > depthSample) ? CHAN_MAX : ambient; + break; + case GL_EQUAL: + result = (texcoords[i][2] == depthSample) ? CHAN_MAX : ambient; + break; + case GL_NOTEQUAL: + result = (texcoords[i][2] != depthSample) ? CHAN_MAX : ambient; + break; + case GL_ALWAYS: + result = CHAN_MAX; + break; + case GL_NEVER: + result = ambient; + break; + case GL_NONE: + CLAMPED_FLOAT_TO_CHAN(result, depthSample); + break; + default: + _mesa_problem(ctx, "Bad compare func in sample_depth_texture"); + return; + } + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + texel[i][RCOMP] = result; + texel[i][GCOMP] = result; + texel[i][BCOMP] = result; + texel[i][ACOMP] = CHAN_MAX; + break; + case GL_INTENSITY: + texel[i][RCOMP] = result; + texel[i][GCOMP] = result; + texel[i][BCOMP] = result; + texel[i][ACOMP] = result; + break; + case GL_ALPHA: + texel[i][RCOMP] = 0; + texel[i][GCOMP] = 0; + texel[i][BCOMP] = 0; + texel[i][ACOMP] = result; + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + } + } + else { + GLuint i; + ASSERT(tObj->MagFilter == GL_LINEAR); + for (i = 0; i < n; i++) { + GLfloat depth00, depth01, depth10, depth11; + GLint i0, i1, j0, j1; + GLfloat u, v; + GLuint useBorderTexel; + + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoords[i][0], u, width, i0, i1); + COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoords[i][1], v, height,j0, j1); + + useBorderTexel = 0; + if (texImage->Border) { + i0 += texImage->Border; + i1 += texImage->Border; + j0 += texImage->Border; + j1 += texImage->Border; + } + else { + if (i0 < 0 || i0 >= (GLint) width) useBorderTexel |= I0BIT; + if (i1 < 0 || i1 >= (GLint) width) useBorderTexel |= I1BIT; + if (j0 < 0 || j0 >= (GLint) height) useBorderTexel |= J0BIT; + if (j1 < 0 || j1 >= (GLint) height) useBorderTexel |= J1BIT; + } + + /* get four depth samples from the texture */ + if (useBorderTexel & (I0BIT | J0BIT)) { + depth00 = 1.0; + } + else { + depth00 = *((const GLfloat *) texImage->Data + j0 * width + i0); + } + if (useBorderTexel & (I1BIT | J0BIT)) { + depth10 = 1.0; + } + else { + depth10 = *((const GLfloat *) texImage->Data + j0 * width + i1); + } + if (useBorderTexel & (I0BIT | J1BIT)) { + depth01 = 1.0; + } + else { + depth01 = *((const GLfloat *) texImage->Data + j1 * width + i0); + } + if (useBorderTexel & (I1BIT | J1BIT)) { + depth11 = 1.0; + } + else { + depth11 = *((const GLfloat *) texImage->Data + j1 * width + i1); + } + + if (0) { + /* compute a single weighted depth sample and do one comparison */ + const GLfloat a = FRAC(u + 1.0F); + const GLfloat b = FRAC(v + 1.0F); + const GLfloat w00 = (1.0F - a) * (1.0F - b); + const GLfloat w10 = ( a) * (1.0F - b); + const GLfloat w01 = (1.0F - a) * ( b); + const GLfloat w11 = ( a) * ( b); + const GLfloat depthSample = w00 * depth00 + w10 * depth10 + + w01 * depth01 + w11 * depth11; + if ((depthSample <= texcoords[i][2] && function == GL_LEQUAL) || + (depthSample >= texcoords[i][2] && function == GL_GEQUAL)) { + result = ambient; + } + else { + result = CHAN_MAX; + } + } + else { + /* Do four depth/R comparisons and compute a weighted result. + * If this touches on somebody's I.P., I'll remove this code + * upon request. + */ + const GLfloat d = (CHAN_MAXF - (GLfloat) ambient) * 0.25F; + GLfloat luminance = CHAN_MAXF; + + switch (function) { + case GL_LEQUAL: + if (depth00 <= texcoords[i][2]) luminance -= d; + if (depth01 <= texcoords[i][2]) luminance -= d; + if (depth10 <= texcoords[i][2]) luminance -= d; + if (depth11 <= texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - case GL_LINEAR: - { - const struct gl_texture_image **images; - GLfloat newS, newT; - images = choose_cube_face(tObj, s[i], t[i], u[i], - &newS, &newT); - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); - } + case GL_GEQUAL: + if (depth00 >= texcoords[i][2]) luminance -= d; + if (depth01 >= texcoords[i][2]) luminance -= d; + if (depth10 >= texcoords[i][2]) luminance -= d; + if (depth11 >= texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - case GL_NEAREST_MIPMAP_NEAREST: - sample_cube_nearest_mipmap_nearest(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); + case GL_LESS: + if (depth00 < texcoords[i][2]) luminance -= d; + if (depth01 < texcoords[i][2]) luminance -= d; + if (depth10 < texcoords[i][2]) luminance -= d; + if (depth11 < texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - case GL_LINEAR_MIPMAP_NEAREST: - sample_cube_linear_mipmap_nearest(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); + case GL_GREATER: + if (depth00 > texcoords[i][2]) luminance -= d; + if (depth01 > texcoords[i][2]) luminance -= d; + if (depth10 > texcoords[i][2]) luminance -= d; + if (depth11 > texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - case GL_NEAREST_MIPMAP_LINEAR: - sample_cube_nearest_mipmap_linear(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); + case GL_EQUAL: + if (depth00 == texcoords[i][2]) luminance -= d; + if (depth01 == texcoords[i][2]) luminance -= d; + if (depth10 == texcoords[i][2]) luminance -= d; + if (depth11 == texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - case GL_LINEAR_MIPMAP_LINEAR: - sample_cube_linear_mipmap_linear(ctx, tObj, s[i], t[i], u[i], - lambda[i], rgba[i]); + case GL_NOTEQUAL: + if (depth00 != texcoords[i][2]) luminance -= d; + if (depth01 != texcoords[i][2]) luminance -= d; + if (depth10 != texcoords[i][2]) luminance -= d; + if (depth11 != texcoords[i][2]) luminance -= d; + result = (GLchan) luminance; break; - default: - _mesa_problem(NULL, "Bad min filter in sample_lambda_cube"); - } - } - else { - /* magnification */ - const struct gl_texture_image **images; - GLfloat newS, newT; - images = choose_cube_face(tObj, s[i], t[i], u[i], - &newS, &newT); - switch (tObj->MagFilter) { - case GL_NEAREST: - sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); + case GL_ALWAYS: + result = 0; + break; + case GL_NEVER: + result = CHAN_MAX; break; - case GL_LINEAR: - sample_2d_linear(ctx, tObj, images[tObj->BaseLevel], - newS, newT, rgba[i]); + case GL_NONE: + /* ordinary bilinear filtering */ + { + const GLfloat a = FRAC(u + 1.0F); + const GLfloat b = FRAC(v + 1.0F); + const GLfloat w00 = (1.0F - a) * (1.0F - b); + const GLfloat w10 = ( a) * (1.0F - b); + const GLfloat w01 = (1.0F - a) * ( b); + const GLfloat w11 = ( a) * ( b); + const GLfloat depthSample = w00 * depth00 + w10 * depth10 + + w01 * depth01 + w11 * depth11; + CLAMPED_FLOAT_TO_CHAN(result, depthSample); + } break; default: - _mesa_problem(NULL, "Bad mag filter in sample_lambda_cube"); + _mesa_problem(ctx, "Bad compare func in sample_depth_texture"); + return; + } } + + switch (tObj->DepthMode) { + case GL_LUMINANCE: + texel[i][RCOMP] = result; + texel[i][GCOMP] = result; + texel[i][BCOMP] = result; + texel[i][ACOMP] = CHAN_MAX; + break; + case GL_INTENSITY: + texel[i][RCOMP] = result; + texel[i][GCOMP] = result; + texel[i][BCOMP] = result; + texel[i][ACOMP] = result; + break; + case GL_ALPHA: + texel[i][RCOMP] = 0; + texel[i][GCOMP] = 0; + texel[i][BCOMP] = 0; + texel[i][ACOMP] = result; + break; + default: + _mesa_problem(ctx, "Bad depth texture mode"); + } + } /* for */ + } /* if filter */ +} + + +#if 0 +/* + * Experimental depth texture sampling function. + */ +static void +sample_depth_texture2(const GLcontext *ctx, + const struct gl_texture_unit *texUnit, + GLuint n, GLfloat texcoords[][4], + GLchan texel[][4]) +{ + const struct gl_texture_object *texObj = texUnit->_Current; + const GLint baseLevel = texObj->BaseLevel; + const struct gl_texture_image *texImage = texObj->Image[baseLevel]; + const GLuint width = texImage->Width; + const GLuint height = texImage->Height; + const GLchan ambient = texObj->ShadowAmbient; + GLboolean lequal, gequal; + + if (texObj->Dimensions != 2) { + _mesa_problem(ctx, "only 2-D depth textures supported at this time"); + return; + } + + if (texObj->MinFilter != texObj->MagFilter) { + _mesa_problem(ctx, "mipmapped depth textures not supported at this time"); + return; + } + + /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if + * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object + * isn't a depth texture. + */ + if (texImage->Format != GL_DEPTH_COMPONENT) { + _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture"); + return; + } + + if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { + lequal = GL_TRUE; + gequal = GL_FALSE; + } + else { + lequal = GL_FALSE; + gequal = GL_TRUE; + } + + { + GLuint i; + for (i = 0; i < n; i++) { + const GLint K = 3; + GLint col, row, ii, jj, imin, imax, jmin, jmax, samples, count; + GLfloat w; + GLchan lum; + COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, texcoords[i][0], + width, col); + COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, texcoords[i][1], + height, row); + + imin = col - K; + imax = col + K; + jmin = row - K; + jmax = row + K; + + if (imin < 0) imin = 0; + if (imax >= width) imax = width - 1; + if (jmin < 0) jmin = 0; + if (jmax >= height) jmax = height - 1; + + samples = (imax - imin + 1) * (jmax - jmin + 1); + count = 0; + for (jj = jmin; jj <= jmax; jj++) { + for (ii = imin; ii <= imax; ii++) { + GLfloat depthSample = *((const GLfloat *) texImage->Data + + jj * width + ii); + if ((depthSample <= r[i] && lequal) || + (depthSample >= r[i] && gequal)) { + count++; + } + } + } + + w = (GLfloat) count / (GLfloat) samples; + w = CHAN_MAXF - w * (CHAN_MAXF - (GLfloat) ambient); + lum = (GLint) w; + + texel[i][RCOMP] = lum; + texel[i][GCOMP] = lum; + texel[i][BCOMP] = lum; + texel[i][ACOMP] = CHAN_MAX; } } } +#endif + +/** + * We use this function when a texture object is in an "incomplete" state. + */ static void null_sample_func( GLcontext *ctx, GLuint texUnit, const struct gl_texture_object *tObj, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat u[], const GLfloat lambda[], + GLfloat texcoords[][4], const GLfloat lambda[], GLchan rgba[][4]) { } -/**********************************************************************/ -/* Texture Sampling Setup */ -/**********************************************************************/ -/* +/** * Setup the texture sampling function for this texture object. */ void @@ -1580,11 +2416,12 @@ _swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit, { SWcontext *swrast = SWRAST_CONTEXT(ctx); - if (!t->Complete) { - swrast->TextureSample[texUnit] = null_sample_func; + if (!t->Complete) { + swrast->TextureSample[texUnit] = null_sample_func; } else { - GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter); + const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter); + const GLenum format = t->Image[t->BaseLevel]->Format; if (needLambda) { /* Compute min/mag filter threshold */ @@ -1600,39 +2437,43 @@ _swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit, switch (t->Dimensions) { case 1: - if (needLambda) { + if (format == GL_DEPTH_COMPONENT) { + swrast->TextureSample[texUnit] = sample_depth_texture; + } + else if (needLambda) { swrast->TextureSample[texUnit] = sample_lambda_1d; } - else if (t->MinFilter==GL_LINEAR) { + else if (t->MinFilter == GL_LINEAR) { swrast->TextureSample[texUnit] = sample_linear_1d; } else { - ASSERT(t->MinFilter==GL_NEAREST); + ASSERT(t->MinFilter == GL_NEAREST); swrast->TextureSample[texUnit] = sample_nearest_1d; } break; case 2: - if (needLambda) { + if (format == GL_DEPTH_COMPONENT) { + swrast->TextureSample[texUnit] = sample_depth_texture; + } + else if (needLambda) { swrast->TextureSample[texUnit] = sample_lambda_2d; } - else if (t->MinFilter==GL_LINEAR) { + else if (t->MinFilter == GL_LINEAR) { swrast->TextureSample[texUnit] = sample_linear_2d; } else { GLint baseLevel = t->BaseLevel; - ASSERT(t->MinFilter==GL_NEAREST); + ASSERT(t->MinFilter == GL_NEAREST); if (t->WrapS == GL_REPEAT && t->WrapT == GL_REPEAT && t->Image[baseLevel]->Border == 0 && - t->Image[baseLevel]->Format == GL_RGB && - t->Image[baseLevel]->Type == CHAN_TYPE) { + t->Image[baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGB) { swrast->TextureSample[texUnit] = opt_sample_rgb_2d; } else if (t->WrapS == GL_REPEAT && t->WrapT == GL_REPEAT && t->Image[baseLevel]->Border == 0 && - t->Image[baseLevel]->Format==GL_RGBA && - t->Image[baseLevel]->Type == CHAN_TYPE) { + t->Image[baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGBA) { swrast->TextureSample[texUnit] = opt_sample_rgba_2d; } else @@ -1643,11 +2484,11 @@ _swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit, if (needLambda) { swrast->TextureSample[texUnit] = sample_lambda_3d; } - else if (t->MinFilter==GL_LINEAR) { + else if (t->MinFilter == GL_LINEAR) { swrast->TextureSample[texUnit] = sample_linear_3d; } else { - ASSERT(t->MinFilter==GL_NEAREST); + ASSERT(t->MinFilter == GL_NEAREST); swrast->TextureSample[texUnit] = sample_nearest_3d; } break; @@ -1655,16 +2496,16 @@ _swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit, if (needLambda) { swrast->TextureSample[texUnit] = sample_lambda_cube; } - else if (t->MinFilter==GL_LINEAR) { + else if (t->MinFilter == GL_LINEAR) { swrast->TextureSample[texUnit] = sample_linear_cube; } else { - ASSERT(t->MinFilter==GL_NEAREST); + ASSERT(t->MinFilter == GL_NEAREST); swrast->TextureSample[texUnit] = sample_nearest_cube; } break; default: - _mesa_problem(NULL, "invalid dimensions in _mesa_set_texture_sampler"); + _mesa_problem(ctx, "invalid dimensions in _swrast_choose_texture_sample_func"); } } } @@ -1673,27 +2514,67 @@ _swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit, #define PROD(A,B) ( (GLuint)(A) * ((GLuint)(B)+1) ) #define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) ) + +/** + * Do texture application for GL_ARB/EXT_texture_env_combine. + * Input: + * ctx - rendering context + * textureUnit - the texture unit to apply + * n - number of fragments to process (span width) + * primary_rgba - incoming fragment color array + * texelBuffer - pointer to texel colors for all texture units + * Input/Output: + * rgba - incoming colors, which get modified here + */ static INLINE void -texture_combine(const GLcontext *ctx, - const struct gl_texture_unit *textureUnit, - GLuint n, - CONST GLchan (*primary_rgba)[4], - CONST GLchan (*texel)[4], - GLchan (*rgba)[4]) +texture_combine( const GLcontext *ctx, GLuint unit, GLuint n, + CONST GLchan (*primary_rgba)[4], + CONST GLchan *texelBuffer, + GLchan (*rgba)[4] ) { - GLchan ccolor [3][3*MAX_WIDTH][4]; + const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]); const GLchan (*argRGB [3])[4]; const GLchan (*argA [3])[4]; - GLuint i, j; const GLuint RGBshift = textureUnit->CombineScaleShiftRGB; const GLuint Ashift = textureUnit->CombineScaleShiftA; +#if CHAN_TYPE == GL_FLOAT + const GLchan RGBmult = (GLfloat) (1 << RGBshift); + const GLchan Amult = (GLfloat) (1 << Ashift); +#else + const GLint half = (CHAN_MAX + 1) / 2; +#endif + GLuint i, j; - ASSERT(ctx->Extensions.EXT_texture_env_combine); + /* GLchan ccolor[3][4]; */ + DEFMNARRAY(GLchan, ccolor, 3, 3 * MAX_WIDTH, 4); /* mac 32k limitation */ + CHECKARRAY(ccolor, return); /* mac 32k limitation */ + ASSERT(ctx->Extensions.EXT_texture_env_combine || + ctx->Extensions.ARB_texture_env_combine); + ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine); + + + /* + printf("modeRGB 0x%x modeA 0x%x srcRGB1 0x%x srcA1 0x%x srcRGB2 0x%x srcA2 0x%x\n", + textureUnit->CombineModeRGB, + textureUnit->CombineModeA, + textureUnit->CombineSourceRGB[0], + textureUnit->CombineSourceA[0], + textureUnit->CombineSourceRGB[1], + textureUnit->CombineSourceA[1]); + */ + + /* + * Do operand setup for up to 3 operands. Loop over the terms. + */ for (j = 0; j < 3; j++) { - switch (textureUnit->CombineSourceA[j]) { + const GLenum srcA = textureUnit->CombineSourceA[j]; + const GLenum srcRGB = textureUnit->CombineSourceRGB[j]; + + switch (srcA) { case GL_TEXTURE: - argA[j] = texel; + argA[j] = (const GLchan (*)[4]) + (texelBuffer + unit * (n * 4 * sizeof(GLchan))); break; case GL_PRIMARY_COLOR_EXT: argA[j] = primary_rgba; @@ -1711,12 +2592,21 @@ texture_combine(const GLcontext *ctx, } break; default: - _mesa_problem(NULL, "invalid combine source"); + /* ARB_texture_env_crossbar source */ + { + const GLuint srcUnit = srcA - GL_TEXTURE0_ARB; + ASSERT(srcUnit < ctx->Const.MaxTextureUnits); + if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) + return; + argA[j] = (const GLchan (*)[4]) + (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); + } } - switch (textureUnit->CombineSourceRGB[j]) { + switch (srcRGB) { case GL_TEXTURE: - argRGB[j] = texel; + argRGB[j] = (const GLchan (*)[4]) + (texelBuffer + unit * (n * 4 * sizeof(GLchan))); break; case GL_PRIMARY_COLOR_EXT: argRGB[j] = primary_rgba; @@ -1727,26 +2617,38 @@ texture_combine(const GLcontext *ctx, case GL_CONSTANT_EXT: { GLchan (*c)[4] = ccolor[j]; - GLchan red, green, blue; + GLchan red, green, blue, alpha; UNCLAMPED_FLOAT_TO_CHAN(red, textureUnit->EnvColor[0]); UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]); UNCLAMPED_FLOAT_TO_CHAN(blue, textureUnit->EnvColor[2]); + UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]); for (i = 0; i < n; i++) { c[i][RCOMP] = red; c[i][GCOMP] = green; c[i][BCOMP] = blue; + c[i][ACOMP] = alpha; } argRGB[j] = (const GLchan (*)[4]) ccolor[j]; } break; default: - _mesa_problem(NULL, "invalid combine source"); + /* ARB_texture_env_crossbar source */ + { + const GLuint srcUnit = srcRGB - GL_TEXTURE0_ARB; + ASSERT(srcUnit < ctx->Const.MaxTextureUnits); + if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled) + return; + argRGB[j] = (const GLchan (*)[4]) + (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan))); + printf("unit %d from unit %d\n", unit, srcUnit); + } } if (textureUnit->CombineOperandRGB[j] != GL_SRC_COLOR) { const GLchan (*src)[4] = argRGB[j]; GLchan (*dst)[4] = ccolor[j]; + /* point to new arg[j] storage */ argRGB[j] = (const GLchan (*)[4]) ccolor[j]; if (textureUnit->CombineOperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) { @@ -1757,15 +2659,14 @@ texture_combine(const GLcontext *ctx, } } else if (textureUnit->CombineOperandRGB[j] == GL_SRC_ALPHA) { - src = (const GLchan (*)[4]) argA[j]; for (i = 0; i < n; i++) { dst[i][RCOMP] = src[i][ACOMP]; dst[i][GCOMP] = src[i][ACOMP]; dst[i][BCOMP] = src[i][ACOMP]; } } - else { /* GL_ONE_MINUS_SRC_ALPHA */ - src = (const GLchan (*)[4]) argA[j]; + else { + ASSERT(textureUnit->CombineOperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA); for (i = 0; i < n; i++) { dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP]; dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP]; @@ -1795,18 +2696,27 @@ texture_combine(const GLcontext *ctx, } } + /* + * Do the texture combine. + */ switch (textureUnit->CombineModeRGB) { case GL_REPLACE: { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; if (RGBshift) { for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult; + rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult; + rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult; +#else GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift; GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift; GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift; rgba[i][RCOMP] = MIN2(r, CHAN_MAX); rgba[i][GCOMP] = MIN2(g, CHAN_MAX); rgba[i][BCOMP] = MIN2(b, CHAN_MAX); +#endif } } else { @@ -1822,14 +2732,22 @@ texture_combine(const GLcontext *ctx, { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; - const GLint shift = 8 - RGBshift; +#if CHAN_TYPE != GL_FLOAT + const GLint shift = CHAN_BITS - RGBshift; +#endif for (i = 0; i < n; i++) { - GLuint r = PROD(arg0[i][0], arg1[i][RCOMP]) >> shift; - GLuint g = PROD(arg0[i][1], arg1[i][GCOMP]) >> shift; - GLuint b = PROD(arg0[i][2], arg1[i][BCOMP]) >> shift; +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult; + rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult; + rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult; +#else + GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift; + GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift; + GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); +#endif } } break; @@ -1838,12 +2756,18 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult; + rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult; + rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult; +#else GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift; GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift; GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); +#endif } } break; @@ -1852,15 +2776,21 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { - GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] - 128; - GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] - 128; - GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] - 128; +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult; + rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult; + rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult; +#else + GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half; + GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half; + GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half; r = (r < 0) ? 0 : r << RGBshift; g = (g < 0) ? 0 : g << RGBshift; b = (b < 0) ? 0 : b << RGBshift; rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); +#endif } } break; @@ -1869,8 +2799,18 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2]; - const GLint shift = 8 - RGBshift; +#if CHAN_TYPE != GL_FLOAT + const GLint shift = CHAN_BITS - RGBshift; +#endif for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] + + arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult; + rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] + + arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult; + rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] + + arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult; +#else GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP]) + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP])) >> shift; @@ -1883,33 +2823,82 @@ texture_combine(const GLcontext *ctx, rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX); rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX); rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX); +#endif + } + } + break; + case GL_SUBTRACT_ARB: + { + const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; + const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; + for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult; + rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult; + rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult; +#else + GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift; + GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift; + GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift; + rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX); + rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX); + rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX); +#endif + } + } + break; + case GL_DOT3_RGB_EXT: + case GL_DOT3_RGBA_EXT: + { + /* Do not scale the result by 1 2 or 4 */ + const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; + const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; + for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + + (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + + (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) + * 4.0F; +#else + GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, + (GLint)arg1[i][RCOMP] - half) + + S_PROD((GLint)arg0[i][GCOMP] - half, + (GLint)arg1[i][GCOMP] - half) + + S_PROD((GLint)arg0[i][BCOMP] - half, + (GLint)arg1[i][BCOMP] - half)) >> 6; +#endif + dot = CLAMP(dot, 0, CHAN_MAX); + rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; } } break; - case GL_DOT3_RGB_EXT: - case GL_DOT3_RGBA_EXT: + case GL_DOT3_RGB_ARB: + case GL_DOT3_RGBA_ARB: { - const GLubyte (*arg0)[4] = (const GLubyte (*)[4]) argRGB[0]; - const GLubyte (*arg1)[4] = (const GLubyte (*)[4]) argRGB[1]; - /* ATI's EXT extension has a constant scale by 4. The ARB - * one will likely remove this restriction, and we should - * drop the EXT extension in favour of the ARB one. - */ + /* DO scale the result by 1 2 or 4 */ + const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0]; + const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1]; for (i = 0; i < n; i++) { - GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - 128, - (GLint)arg1[i][RCOMP] - 128) + - S_PROD((GLint)arg0[i][GCOMP] - 128, - (GLint)arg1[i][GCOMP] - 128) + - S_PROD((GLint)arg0[i][BCOMP] - 128, - (GLint)arg1[i][BCOMP] - 128)) >> 6; - rgba[i][RCOMP] = (GLubyte) CLAMP(dot, 0, 255); - rgba[i][GCOMP] = (GLubyte) CLAMP(dot, 0, 255); - rgba[i][BCOMP] = (GLubyte) CLAMP(dot, 0, 255); +#if CHAN_TYPE == GL_FLOAT + GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) + + (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) + + (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F)) + * 4.0F; +#else + GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half, + (GLint)arg1[i][RCOMP] - half) + + S_PROD((GLint)arg0[i][GCOMP] - half, + (GLint)arg1[i][GCOMP] - half) + + S_PROD((GLint)arg0[i][BCOMP] - half, + (GLint)arg1[i][BCOMP] - half)) >> 6; +#endif + dot = CLAMP(dot, 0, CHAN_MAX) << RGBshift; + rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot; } } break; default: - _mesa_problem(NULL, "invalid combine mode"); + _mesa_problem(ctx, "invalid combine mode"); } switch (textureUnit->CombineModeA) { @@ -1918,7 +2907,11 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; if (Ashift) { for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + GLchan a = arg0[i][ACOMP] * Amult; +#else GLuint a = (GLuint) arg0[i][ACOMP] << Ashift; +#endif rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); } } @@ -1933,10 +2926,16 @@ texture_combine(const GLcontext *ctx, { const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; - const GLint shift = 8 - Ashift; +#if CHAN_TYPE != GL_FLOAT + const GLint shift = CHAN_BITS - Ashift; +#endif for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult; +#else GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift); rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); +#endif } } break; @@ -1945,8 +2944,12 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult; +#else GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); +#endif } } break; @@ -1955,9 +2958,13 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; for (i = 0; i < n; i++) { - GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] - 128; +#if CHAN_TYPE == GL_FLOAT + rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult; +#else + GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half; a = (a < 0) ? 0 : a << Ashift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); +#endif } } break; @@ -1966,38 +2973,75 @@ texture_combine(const GLcontext *ctx, const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2]; - const GLint shift = 8 - Ashift; +#if CHAN_TYPE != GL_FLOAT + const GLint shift = CHAN_BITS - Ashift; +#endif for (i=0; i> shift; rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX); +#endif } } break; + case GL_SUBTRACT_ARB: + { + const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0]; + const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1]; + for (i = 0; i < n; i++) { +#if CHAN_TYPE == GL_FLOAT + rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult; +#else + GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift; + rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX); +#endif + } + } + break; + default: - _mesa_problem(NULL, "invalid combine mode"); + _mesa_problem(ctx, "invalid combine mode"); } - /* Fix the alpha component for GL_DOT3_RGBA_EXT combining. + /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining. + * This is kind of a kludge. It would have been better if the spec + * were written such that the GL_COMBINE_ALPHA value could be set to + * GL_DOT3. */ - if (textureUnit->CombineModeRGB == GL_DOT3_RGBA_EXT) { + if (textureUnit->CombineModeRGB == GL_DOT3_RGBA_EXT || + textureUnit->CombineModeRGB == GL_DOT3_RGBA_ARB) { for (i = 0; i < n; i++) { rgba[i][ACOMP] = rgba[i][RCOMP]; } } + UNDEFARRAY(ccolor); /* mac 32k limitation */ } #undef PROD +/** + * Implement NVIDIA's GL_NV_texture_env_combine4 extension when + * texUnit->EnvMode == GL_COMBINE4_NV. + */ +static INLINE void +texture_combine4( const GLcontext *ctx, GLuint unit, GLuint n, + CONST GLchan (*primary_rgba)[4], + CONST GLchan *texelBuffer, + GLchan (*rgba)[4] ) +{ +} -/**********************************************************************/ -/* Texture Application */ -/**********************************************************************/ -/* - * Combine incoming fragment color with texel color to produce output color. +/** + * Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND, + * MODULATE, or DECAL) to an array of fragments. * Input: textureUnit - pointer to texture unit to apply * format - base internal texture format * n - number of fragments @@ -2007,7 +3051,7 @@ texture_combine(const GLcontext *ctx, * according to the texture environment mode. */ static void -apply_texture( const GLcontext *ctx, +texture_apply( const GLcontext *ctx, const struct gl_texture_unit *texUnit, GLuint n, CONST GLchan primary_rgba[][4], CONST GLchan texel[][4], @@ -2026,8 +3070,8 @@ apply_texture( const GLcontext *ctx, format = texUnit->_Current->Image[baseLevel]->Format; - if (format==GL_COLOR_INDEX || format==GL_DEPTH_COMPONENT) { - format = GL_RGBA; /* XXXX a hack! */ + if (format == GL_COLOR_INDEX || format == GL_DEPTH_COMPONENT) { + format = GL_RGBA; /* a bit of a hack */ } switch (texUnit->EnvMode) { @@ -2086,7 +3130,7 @@ apply_texture( const GLcontext *ctx, } break; default: - _mesa_problem(ctx, "Bad format (GL_REPLACE) in apply_texture"); + _mesa_problem(ctx, "Bad format (GL_REPLACE) in texture_apply"); return; } break; @@ -2152,7 +3196,7 @@ apply_texture( const GLcontext *ctx, } break; default: - _mesa_problem(ctx, "Bad format (GL_MODULATE) in apply_texture"); + _mesa_problem(ctx, "Bad format (GL_MODULATE) in texture_apply"); return; } break; @@ -2185,7 +3229,7 @@ apply_texture( const GLcontext *ctx, } break; default: - _mesa_problem(ctx, "Bad format (GL_DECAL) in apply_texture"); + _mesa_problem(ctx, "Bad format (GL_DECAL) in texture_apply"); return; } break; @@ -2255,11 +3299,13 @@ apply_texture( const GLcontext *ctx, } break; default: - _mesa_problem(ctx, "Bad format (GL_BLEND) in apply_texture"); + _mesa_problem(ctx, "Bad format (GL_BLEND) in texture_apply"); return; } break; + /* XXX don't clamp results if GLchan is float??? */ + case GL_ADD: /* GL_EXT_texture_add_env */ switch (format) { case GL_ALPHA: @@ -2330,349 +3376,109 @@ apply_texture( const GLcontext *ctx, } break; default: - _mesa_problem(ctx, "Bad format (GL_ADD) in apply_texture"); + _mesa_problem(ctx, "Bad format (GL_ADD) in texture_apply"); return; } break; - case GL_COMBINE_EXT: - texture_combine(ctx, texUnit, n, primary_rgba, texel, rgba); - break; - default: - _mesa_problem(ctx, "Bad env mode in apply_texture"); + _mesa_problem(ctx, "Bad env mode in texture_apply"); return; } } -/* - * Sample a shadow/depth texture. - * Input: ctx - context - * texUnit - the texture unit - * n - number of samples - * s,t,r - array [n] of texture coordinates - * In/Out: rgba - array [n] of texel colors. +/** + * Apply texture mapping to a span of fragments. */ -static void -sample_depth_texture(const GLcontext *ctx, - const struct gl_texture_unit *texUnit, - GLuint n, - const GLfloat s[], const GLfloat t[], const GLfloat r[], - GLchan texel[][4]) +void +_swrast_texture_span( GLcontext *ctx, struct sw_span *span ) { - const struct gl_texture_object *texObj = texUnit->_Current; - const GLint baseLevel = texObj->BaseLevel; - const struct gl_texture_image *texImage = texObj->Image[baseLevel]; - const GLuint width = texImage->Width; - const GLuint height = texImage->Height; - const GLchan ambient = texObj->ShadowAmbient; - GLboolean lequal, gequal; - - if (texObj->Dimensions != 2) { - _mesa_problem(ctx, "only 2-D depth textures supported at this time"); - return; - } + SWcontext *swrast = SWRAST_CONTEXT(ctx); + GLchan primary_rgba[MAX_WIDTH][4]; + GLuint unit; - if (texObj->MinFilter != texObj->MagFilter) { - _mesa_problem(ctx, "mipmapped depth textures not supported at this time"); - return; - } + ASSERT(span->end < MAX_WIDTH); + ASSERT(span->arrayMask & SPAN_TEXTURE); - /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if - * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object - * isn't a depth texture. + /* + * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR) */ - if (texImage->Format != GL_DEPTH_COMPONENT) { - _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture"); - return; - } - - if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { - lequal = GL_TRUE; - gequal = GL_FALSE; - } - else { - lequal = GL_FALSE; - gequal = GL_TRUE; - } - - if (texObj->MagFilter == GL_NEAREST) { - GLuint i; - for (i = 0; i < n; i++) { - GLfloat depthSample; - GLint col, row; - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, s[i], width, col); - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, t[i], height, row); - depthSample = *((const GLfloat *) texImage->Data + row * width + col); - if ((depthSample <= r[i] && lequal) || - (depthSample >= r[i] && gequal)) { - texel[i][RCOMP] = ambient; - texel[i][GCOMP] = ambient; - texel[i][BCOMP] = ambient; - texel[i][ACOMP] = CHAN_MAX; - } - else { - texel[i][RCOMP] = CHAN_MAX; - texel[i][GCOMP] = CHAN_MAX; - texel[i][BCOMP] = CHAN_MAX; - texel[i][ACOMP] = CHAN_MAX; - } - } - } - else { - GLuint i; - ASSERT(texObj->MagFilter == GL_LINEAR); - for (i = 0; i < n; i++) { - GLfloat depth00, depth01, depth10, depth11; - GLint i0, i1, j0, j1; - GLfloat u, v; - GLuint useBorderTexel; - - COMPUTE_LINEAR_TEXEL_LOCATIONS(texObj->WrapS, s[i], u, width, i0, i1); - COMPUTE_LINEAR_TEXEL_LOCATIONS(texObj->WrapT, t[i], v, height,j0, j1); - - useBorderTexel = 0; - if (texImage->Border) { - i0 += texImage->Border; - i1 += texImage->Border; - j0 += texImage->Border; - j1 += texImage->Border; - } - else { - if (i0 < 0 || i0 >= width) useBorderTexel |= I0BIT; - if (i1 < 0 || i1 >= width) useBorderTexel |= I1BIT; - if (j0 < 0 || j0 >= height) useBorderTexel |= J0BIT; - if (j1 < 0 || j1 >= height) useBorderTexel |= J1BIT; - } - - /* get four depth samples from the texture */ - if (useBorderTexel & (I0BIT | J0BIT)) { - depth00 = 1.0; - } - else { - depth00 = *((const GLfloat *) texImage->Data + j0 * width + i0); - } - if (useBorderTexel & (I1BIT | J0BIT)) { - depth10 = 1.0; - } - else { - depth10 = *((const GLfloat *) texImage->Data + j0 * width + i1); - } - if (useBorderTexel & (I0BIT | J1BIT)) { - depth01 = 1.0; - } - else { - depth01 = *((const GLfloat *) texImage->Data + j1 * width + i0); - } - if (useBorderTexel & (I1BIT | J1BIT)) { - depth11 = 1.0; - } - else { - depth11 = *((const GLfloat *) texImage->Data + j1 * width + i1); - } - - if (0) { - /* compute a single weighted depth sample and do one comparison */ - const GLfloat a = FRAC(u); - const GLfloat b = FRAC(v); - const GLfloat w00 = (1.0F - a) * (1.0F - b); - const GLfloat w10 = ( a) * (1.0F - b); - const GLfloat w01 = (1.0F - a) * ( b); - const GLfloat w11 = ( a) * ( b); - const GLfloat depthSample = w00 * depth00 + w10 * depth10 - + w01 * depth01 + w11 * depth11; - if ((depthSample <= r[i] && lequal) || - (depthSample >= r[i] && gequal)) { - texel[i][RCOMP] = ambient; - texel[i][GCOMP] = ambient; - texel[i][BCOMP] = ambient; - texel[i][ACOMP] = CHAN_MAX; - } - else { - texel[i][RCOMP] = CHAN_MAX; - texel[i][GCOMP] = CHAN_MAX; - texel[i][BCOMP] = CHAN_MAX; - texel[i][ACOMP] = CHAN_MAX; - } - } - else { - /* Do four depth/R comparisons and compute a weighted result. - * If this touches on somebody's I.P., I'll remove this code - * upon request. - */ - const GLfloat d = (CHAN_MAXF - (GLfloat) ambient) * 0.25F; - GLfloat luminance = CHAN_MAXF; - GLchan lum; - if (lequal) { - if (depth00 <= r[i]) luminance -= d; - if (depth01 <= r[i]) luminance -= d; - if (depth10 <= r[i]) luminance -= d; - if (depth11 <= r[i]) luminance -= d; - } - else { - if (depth00 >= r[i]) luminance -= d; - if (depth01 >= r[i]) luminance -= d; - if (depth10 >= r[i]) luminance -= d; - if (depth11 >= r[i]) luminance -= d; - } - lum = (GLchan) luminance; - texel[i][RCOMP] = lum; - texel[i][GCOMP] = lum; - texel[i][BCOMP] = lum; - texel[i][ACOMP] = CHAN_MAX; - } - } - } -} - + if (swrast->_AnyTextureCombine) + MEMCPY(primary_rgba, span->color.rgba, 4 * span->end * sizeof(GLchan)); -#if 0 -/* - * Experimental depth texture sampling function. - */ -static void -sample_depth_texture2(const GLcontext *ctx, - const struct gl_texture_unit *texUnit, - GLuint n, - const GLfloat s[], const GLfloat t[], const GLfloat r[], - GLchan texel[][4]) -{ - const struct gl_texture_object *texObj = texUnit->_Current; - const GLint baseLevel = texObj->BaseLevel; - const struct gl_texture_image *texImage = texObj->Image[baseLevel]; - const GLuint width = texImage->Width; - const GLuint height = texImage->Height; - const GLchan ambient = texObj->ShadowAmbient; - GLboolean lequal, gequal; - - if (texObj->Dimensions != 2) { - _mesa_problem(ctx, "only 2-D depth textures supported at this time"); - return; - } - - if (texObj->MinFilter != texObj->MagFilter) { - _mesa_problem(ctx, "mipmapped depth textures not supported at this time"); - return; - } - - /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if - * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object - * isn't a depth texture. + /* + * Must do all texture sampling before combining in order to + * accomodate GL_ARB_texture_env_crossbar. */ - if (texImage->Format != GL_DEPTH_COMPONENT) { - _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture"); - return; - } - - if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) { - lequal = GL_TRUE; - gequal = GL_FALSE; - } - else { - lequal = GL_FALSE; - gequal = GL_TRUE; - } - - { - GLuint i; - for (i = 0; i < n; i++) { - const GLint K = 3; - GLint col, row, ii, jj, imin, imax, jmin, jmax, samples, count; - GLfloat w; - GLchan lum; - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, s[i], width, col); - COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, t[i], height, row); - - imin = col - K; - imax = col + K; - jmin = row - K; - jmax = row + K; - - if (imin < 0) imin = 0; - if (imax >= width) imax = width - 1; - if (jmin < 0) jmin = 0; - if (jmax >= height) jmax = height - 1; + for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { + if (ctx->Texture.Unit[unit]._ReallyEnabled) { + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; + const struct gl_texture_object *curObj = texUnit->_Current; + GLfloat *lambda = span->lambda[unit]; + GLchan (*texels)[4] = (GLchan (*)[4]) + (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan))); + + /* adjust texture lod (lambda) */ + if (span->arrayMask | SPAN_LAMBDA) { + if (texUnit->LodBias != 0.0F) { + /* apply LOD bias, but don't clamp yet */ + GLuint i; + for (i = 0; i < span->end; i++) { + lambda[i] += texUnit->LodBias; + } + } - samples = (imax - imin + 1) * (jmax - jmin + 1); - count = 0; - for (jj = jmin; jj <= jmax; jj++) { - for (ii = imin; ii <= imax; ii++) { - GLfloat depthSample = *((const GLfloat *) texImage->Data - + jj * width + ii); - if ((depthSample <= r[i] && lequal) || - (depthSample >= r[i] && gequal)) { - count++; + if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) { + /* apply LOD clamping to lambda */ + const GLfloat min = curObj->MinLod; + const GLfloat max = curObj->MaxLod; + GLuint i; + for (i = 0; i < span->end; i++) { + GLfloat l = lambda[i]; + lambda[i] = CLAMP(l, min, max); } } } - w = (GLfloat) count / (GLfloat) samples; - w = CHAN_MAXF - w * (CHAN_MAXF - (GLfloat) ambient); - lum = (GLint) w; - - texel[i][RCOMP] = lum; - texel[i][GCOMP] = lum; - texel[i][BCOMP] = lum; - texel[i][ACOMP] = CHAN_MAX; + /* Sample the texture (span->end fragments) */ + swrast->TextureSample[unit]( ctx, unit, texUnit->_Current, + span->end, span->texcoords[unit], + lambda, texels ); } } -} -#endif - - -/* - * Apply a unit of texture mapping to the incoming fragments. - */ -void -_swrast_texture_fragments( GLcontext *ctx, GLuint texUnit, GLuint n, - const GLfloat s[], const GLfloat t[], - const GLfloat r[], GLfloat lambda[], - CONST GLchan primary_rgba[][4], GLchan rgba[][4] ) -{ - const GLuint mask = TEXTURE0_ANY << (texUnit * 4); - if (ctx->Texture._ReallyEnabled & mask) { - const struct gl_texture_unit *textureUnit = &ctx->Texture.Unit[texUnit]; - - if (textureUnit->_Current) { /* XXX need this? */ - GLchan texel[PB_SIZE][4]; - - if (textureUnit->LodBias != 0.0F) { - /* apply LOD bias, but don't clamp yet */ - GLuint i; - for (i=0;iLodBias; - } - } - - if (textureUnit->_Current->MinLod != -1000.0 - || textureUnit->_Current->MaxLod != 1000.0) { - /* apply LOD clamping to lambda */ - const GLfloat min = textureUnit->_Current->MinLod; - const GLfloat max = textureUnit->_Current->MaxLod; - GLuint i; - for (i=0;icolor.rgba values. + */ + for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) { + if (ctx->Texture.Unit[unit]._ReallyEnabled) { + const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit]; + if (texUnit->EnvMode == GL_COMBINE_EXT) { + /* GL_ARB/EXT_texture_env_combine */ + texture_combine( ctx, unit, span->end, + (CONST GLchan (*)[4]) primary_rgba, + swrast->TexelBuffer, + span->color.rgba ); } - - /* Sample the texture. */ - if (textureUnit->_Current->CompareFlag) { - /* depth texture */ - sample_depth_texture(ctx, textureUnit, n, s, t, r, texel); + else if (texUnit->EnvMode == GL_COMBINE4_NV) { + /* GL_NV_texture_env_combine4 */ + texture_combine4( ctx, unit, span->end, + (CONST GLchan (*)[4]) primary_rgba, + swrast->TexelBuffer, + span->color.rgba ); } else { - /* color texture */ - SWRAST_CONTEXT(ctx)->TextureSample[texUnit]( ctx, texUnit, - textureUnit->_Current, - n, s, t, r, - lambda, texel ); - } - apply_texture( ctx, textureUnit, n, primary_rgba, - (const GLchan (*)[4]) texel, rgba ); + /* conventional texture blend */ + const GLchan (*texels)[4] = (const GLchan (*)[4]) + (swrast->TexelBuffer + unit * + (span->end * 4 * sizeof(GLchan))); + texture_apply( ctx, texUnit, span->end, + (CONST GLchan (*)[4]) primary_rgba, texels, + span->color.rgba ); + } } } }