(cmp { tem; } @1)))))
/* Fold comparisons against built-in math functions. */
- (if (flag_unsafe_math_optimizations
- && ! flag_errno_math)
+ (if (flag_unsafe_math_optimizations && ! flag_errno_math)
(for sq (SQRT)
(simplify
(cmp (sq @0) REAL_CST@1)
if x is negative or NaN. Due to -funsafe-math-optimizations,
the results for other x follow from natural arithmetic. */
(cmp @0 @1)))
- (if (cmp == GT_EXPR || cmp == GE_EXPR)
+ (if ((cmp == LT_EXPR
+ || cmp == LE_EXPR
+ || cmp == GT_EXPR
+ || cmp == GE_EXPR)
+ && !REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
+ /* Give up for -frounding-math. */
+ && !HONOR_SIGN_DEPENDENT_ROUNDING (TREE_TYPE (@0)))
(with
{
- REAL_VALUE_TYPE c2;
+ REAL_VALUE_TYPE c2;
+ enum tree_code ncmp = cmp;
+ const real_format *fmt
+ = REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@0)));
real_arithmetic (&c2, MULT_EXPR,
&TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
- real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
- }
- (if (REAL_VALUE_ISINF (c2))
- /* sqrt(x) > y is x == +Inf, when y is very large. */
- (if (HONOR_INFINITIES (@0))
- (eq @0 { build_real (TREE_TYPE (@0), c2); })
- { constant_boolean_node (false, type); })
- /* sqrt(x) > c is the same as x > c*c. */
- (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
- (if (cmp == LT_EXPR || cmp == LE_EXPR)
- (with
- {
- REAL_VALUE_TYPE c2;
- real_arithmetic (&c2, MULT_EXPR,
- &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
- real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
+ real_convert (&c2, fmt, &c2);
+ /* See PR91734: if c2 is inexact and sqrt(c2) < c (or sqrt(c2) >= c),
+ then change LT_EXPR into LE_EXPR or GE_EXPR into GT_EXPR. */
+ if (!REAL_VALUE_ISINF (c2))
+ {
+ tree c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
+ build_real (TREE_TYPE (@0), c2));
+ if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
+ ncmp = ERROR_MARK;
+ else if ((cmp == LT_EXPR || cmp == GE_EXPR)
+ && real_less (&TREE_REAL_CST (c3), &TREE_REAL_CST (@1)))
+ ncmp = cmp == LT_EXPR ? LE_EXPR : GT_EXPR;
+ else if ((cmp == LE_EXPR || cmp == GT_EXPR)
+ && real_less (&TREE_REAL_CST (@1), &TREE_REAL_CST (c3)))
+ ncmp = cmp == LE_EXPR ? LT_EXPR : GE_EXPR;
+ else
+ {
+ /* With rounding to even, sqrt of up to 3 different values
+ gives the same normal result, so in some cases c2 needs
+ to be adjusted. */
+ REAL_VALUE_TYPE c2alt, tow;
+ if (cmp == LT_EXPR || cmp == GE_EXPR)
+ tow = dconst0;
+ else
+ real_inf (&tow);
+ real_nextafter (&c2alt, fmt, &c2, &tow);
+ real_convert (&c2alt, fmt, &c2alt);
+ if (REAL_VALUE_ISINF (c2alt))
+ ncmp = ERROR_MARK;
+ else
+ {
+ c3 = fold_const_call (CFN_SQRT, TREE_TYPE (@0),
+ build_real (TREE_TYPE (@0), c2alt));
+ if (c3 == NULL_TREE || TREE_CODE (c3) != REAL_CST)
+ ncmp = ERROR_MARK;
+ else if (real_equal (&TREE_REAL_CST (c3),
+ &TREE_REAL_CST (@1)))
+ c2 = c2alt;
+ }
+ }
+ }
}
- (if (REAL_VALUE_ISINF (c2))
- (switch
- /* sqrt(x) < y is always true, when y is a very large
- value and we don't care about NaNs or Infinities. */
- (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
- { constant_boolean_node (true, type); })
- /* sqrt(x) < y is x != +Inf when y is very large and we
- don't care about NaNs. */
- (if (! HONOR_NANS (@0))
- (ne @0 { build_real (TREE_TYPE (@0), c2); }))
- /* sqrt(x) < y is x >= 0 when y is very large and we
- don't care about Infinities. */
- (if (! HONOR_INFINITIES (@0))
- (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
- /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
- (if (GENERIC)
- (truth_andif
- (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
- (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
- /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
- (if (! HONOR_NANS (@0))
- (cmp @0 { build_real (TREE_TYPE (@0), c2); })
- /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
- (if (GENERIC)
- (truth_andif
- (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
- (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
+ (if (cmp == GT_EXPR || cmp == GE_EXPR)
+ (if (REAL_VALUE_ISINF (c2))
+ /* sqrt(x) > y is x == +Inf, when y is very large. */
+ (if (HONOR_INFINITIES (@0))
+ (eq @0 { build_real (TREE_TYPE (@0), c2); })
+ { constant_boolean_node (false, type); })
+ /* sqrt(x) > c is the same as x > c*c. */
+ (if (ncmp != ERROR_MARK)
+ (if (ncmp == GE_EXPR)
+ (ge @0 { build_real (TREE_TYPE (@0), c2); })
+ (gt @0 { build_real (TREE_TYPE (@0), c2); }))))
+ /* else if (cmp == LT_EXPR || cmp == LE_EXPR) */
+ (if (REAL_VALUE_ISINF (c2))
+ (switch
+ /* sqrt(x) < y is always true, when y is a very large
+ value and we don't care about NaNs or Infinities. */
+ (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
+ { constant_boolean_node (true, type); })
+ /* sqrt(x) < y is x != +Inf when y is very large and we
+ don't care about NaNs. */
+ (if (! HONOR_NANS (@0))
+ (ne @0 { build_real (TREE_TYPE (@0), c2); }))
+ /* sqrt(x) < y is x >= 0 when y is very large and we
+ don't care about Infinities. */
+ (if (! HONOR_INFINITIES (@0))
+ (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
+ /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
+ (if (GENERIC)
+ (truth_andif
+ (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
+ (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
+ /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
+ (if (ncmp != ERROR_MARK && ! HONOR_NANS (@0))
+ (if (ncmp == LT_EXPR)
+ (lt @0 { build_real (TREE_TYPE (@0), c2); })
+ (le @0 { build_real (TREE_TYPE (@0), c2); }))
+ /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
+ (if (ncmp != ERROR_MARK && GENERIC)
+ (if (ncmp == LT_EXPR)
+ (truth_andif
+ (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
+ (lt @0 { build_real (TREE_TYPE (@0), c2); }))
+ (truth_andif
+ (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
+ (le @0 { build_real (TREE_TYPE (@0), c2); })))))))))))
/* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
(simplify
(cmp (sq @0) (sq @1))
--- /dev/null
+/* PR tree-optimization/91734 */
+/* { dg-do run } */
+/* { dg-add-options ieee } */
+/* { dg-additional-options "-O2 -std=gnu99" } */
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f1 (float x)
+{
+ return __builtin_sqrtf (x) < __FLT_MIN__;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f2 (float x)
+{
+ return __builtin_sqrtf (x) < 0x1.2dd3d0p-65f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f3 (float x)
+{
+ return __builtin_sqrtf (x) >= 0x1.2dd3d0p-65f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f4 (float x)
+{
+ return __builtin_sqrtf (x) >= 0x1.5642e6p+54f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f5 (float x)
+{
+ return __builtin_sqrtf (x) > 0x1.5642e6p+54f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f6 (float x)
+{
+ return __builtin_sqrtf (x) < 0x1.4da1cp-19f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f7 (float x)
+{
+ return __builtin_sqrtf (x) <= 0x1.4da1cp-19f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f8 (float x)
+{
+ return __builtin_sqrtf (x) < 0x1.50cb62p-65f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f9 (float x)
+{
+ return __builtin_sqrtf (x) <= 0x1.4fc00cp-73f;
+}
+
+__attribute__((noipa, optimize ("Ofast"))) int
+f10 (float x)
+{
+ return __builtin_sqrtf (x) < 0x1.001002p+0f;
+}
+
+int
+main ()
+{
+ if (__FLT_RADIX__ != 2
+ || __FLT_MANT_DIG__ != 24
+ || __FLT_MIN_EXP__ != -125
+ || __FLT_MAX_EXP__ != 128
+ || __FLT_HAS_DENORM__ != 1
+ || __FLT_HAS_INFINITY__ != 1)
+ return 0;
+ if (!f1 (0.0f) || f1 (0x1.0p-149f))
+ __builtin_abort ();
+ if (!f2 (0x1.63dbc0p-130f))
+ __builtin_abort ();
+ if (f3 (0x1.63dbc0p-130f))
+ __builtin_abort ();
+ if (!f4 (0x1.c996d0p+108f) || !f4 (0x1.c996cep+108f) || f4 (0x1.c996ccp+108f))
+ __builtin_abort ();
+ if (f5 (0x1.c996d0p+108f) || f5 (0x1.c996d2p+108f) || !f5 (0x1.c996d4p+108f))
+ __builtin_abort ();
+ if (!f6 (0x1.b2ce3p-38f) || f6 (0x1.b2ce32p-38f) || f6 (0x1.b2ce34p-38f))
+ __builtin_abort ();
+ if (!f7 (0x1.b2ce3p-38f) || !f7 (0x1.b2ce34p-38f) || !f7 (0x1.b2ce36p-38f) || f7 (0x1.b2ce38p-38f))
+ __builtin_abort ();
+ if (!f8 (0x1.bb166p-130f) || !f8 (0x1.bb168p-130f) || f8 (0x1.bb16ap-130f) || f8 (0x1.bb16cp-130f))
+ __builtin_abort ();
+ if (!f9 (0x1.8p-146f) || !f9 (0x1.ap-146f) || f9 (0x1.cp-146f) || f9 (0x1.ep-146f))
+ __builtin_abort ();
+ if (f10 (0x1.002004p+0f))
+ __builtin_abort ();
+ return 0;
+}