};
+
+static struct setup_stage setup;
+
+
+
+
#if 0
/**
* Basically a cast wrapper.
#if 0
/**
- * Clip setup->quad against the scissor/surface bounds.
+ * Clip setup.quad against the scissor/surface bounds.
*/
static INLINE void
quad_clip(struct setup_stage *setup)
{
- const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect;
+ const struct pipe_scissor_state *cliprect = &setup.softpipe->cliprect;
const int minx = (int) cliprect->minx;
const int maxx = (int) cliprect->maxx;
const int miny = (int) cliprect->miny;
const int maxy = (int) cliprect->maxy;
- if (setup->quad.x0 >= maxx ||
- setup->quad.y0 >= maxy ||
- setup->quad.x0 + 1 < minx ||
- setup->quad.y0 + 1 < miny) {
+ if (setup.quad.x0 >= maxx ||
+ setup.quad.y0 >= maxy ||
+ setup.quad.x0 + 1 < minx ||
+ setup.quad.y0 + 1 < miny) {
/* totally clipped */
- setup->quad.mask = 0x0;
+ setup.quad.mask = 0x0;
return;
}
- if (setup->quad.x0 < minx)
- setup->quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
- if (setup->quad.y0 < miny)
- setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
- if (setup->quad.x0 == maxx - 1)
- setup->quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
- if (setup->quad.y0 == maxy - 1)
- setup->quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
+ if (setup.quad.x0 < minx)
+ setup.quad.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
+ if (setup.quad.y0 < miny)
+ setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
+ if (setup.quad.x0 == maxx - 1)
+ setup.quad.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
+ if (setup.quad.y0 == maxy - 1)
+ setup.quad.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
}
#endif
clip_emit_quad(struct setup_stage *setup)
{
quad_clip(setup);
- if (setup->quad.mask) {
- struct softpipe_context *sp = setup->softpipe;
- sp->quad.first->run(sp->quad.first, &setup->quad);
+ if (setup.quad.mask) {
+ struct softpipe_context *sp = setup.softpipe;
+ sp->quad.first->run(sp->quad.first, &setup.quad);
}
}
#endif
* Eg: four colors will be compute.
*/
static INLINE void
-eval_coeff( struct setup_stage *setup, uint slot,
- float x, float y, float result[4][4])
+eval_coeff(uint slot, float x, float y, float result[4][4])
{
switch (spu.vertex_info.interp_mode[slot]) {
case INTERP_CONSTANT:
result[QUAD_TOP_LEFT][i] =
result[QUAD_TOP_RIGHT][i] =
result[QUAD_BOTTOM_LEFT][i] =
- result[QUAD_BOTTOM_RIGHT][i] = setup->coef[slot].a0[i];
+ result[QUAD_BOTTOM_RIGHT][i] = setup.coef[slot].a0[i];
}
}
break;
default:
{
uint i;
- const float *dadx = setup->coef[slot].dadx;
- const float *dady = setup->coef[slot].dady;
+ const float *dadx = setup.coef[slot].dadx;
+ const float *dady = setup.coef[slot].dady;
/* loop over XYZW comps */
for (i = 0; i < 4; i++) {
- result[QUAD_TOP_LEFT][i] = setup->coef[slot].a0[i] + x * dadx[i] + y * dady[i];
+ result[QUAD_TOP_LEFT][i] = setup.coef[slot].a0[i] + x * dadx[i] + y * dady[i];
result[QUAD_TOP_RIGHT][i] = result[0][i] + dadx[i];
result[QUAD_BOTTOM_LEFT][i] = result[0][i] + dady[i];
result[QUAD_BOTTOM_RIGHT][i] = result[0][i] + dadx[i] + dady[i];
static INLINE void
-eval_z( struct setup_stage *setup,
- float x, float y, float result[4])
+eval_z(float x, float y, float result[4])
{
const uint slot = 0;
const uint i = 2;
- const float *dadx = setup->coef[slot].dadx;
- const float *dady = setup->coef[slot].dady;
+ const float *dadx = setup.coef[slot].dadx;
+ const float *dady = setup.coef[slot].dady;
- result[QUAD_TOP_LEFT] = setup->coef[slot].a0[i] + x * dadx[i] + y * dady[i];
+ result[QUAD_TOP_LEFT] = setup.coef[slot].a0[i] + x * dadx[i] + y * dady[i];
result[QUAD_TOP_RIGHT] = result[0] + dadx[i];
result[QUAD_BOTTOM_LEFT] = result[0] + dady[i];
result[QUAD_BOTTOM_RIGHT] = result[0] + dadx[i] + dady[i];
static uint
-do_depth_test(struct setup_stage *setup, int x, int y, unsigned mask)
+do_depth_test(int x, int y, unsigned mask)
{
- int ix = x - setup->cliprect_minx;
- int iy = y - setup->cliprect_miny;
+ int ix = x - setup.cliprect_minx;
+ int iy = y - setup.cliprect_miny;
float zvals[4];
- eval_z(setup, (float) x, (float) y, zvals);
+ eval_z((float) x, (float) y, zvals);
- if (tile_status_z[setup->ty][setup->tx] == TILE_STATUS_CLEAR) {
+ if (tile_status_z[setup.ty][setup.tx] == TILE_STATUS_CLEAR) {
/* now, _really_ clear the tile */
clear_z_tile(&ztile);
}
- else if (tile_status_z[setup->ty][setup->tx] != TILE_STATUS_DIRTY) {
+ else if (tile_status_z[setup.ty][setup.tx] != TILE_STATUS_DIRTY) {
/* make sure we've got the tile from main mem */
wait_on_mask(1 << TAG_READ_TILE_Z);
}
- tile_status_z[setup->ty][setup->tx] = TILE_STATUS_DIRTY;
+ tile_status_z[setup.ty][setup.tx] = TILE_STATUS_DIRTY;
if (spu.fb.depth_format == PIPE_FORMAT_Z16_UNORM) {
* Emit a quad (pass to next stage). No clipping is done.
*/
static INLINE void
-emit_quad( struct setup_stage *setup, int x, int y, unsigned mask )
+emit_quad( int x, int y, unsigned mask )
{
#if 0
- struct softpipe_context *sp = setup->softpipe;
- setup->quad.x0 = x;
- setup->quad.y0 = y;
- setup->quad.mask = mask;
- sp->quad.first->run(sp->quad.first, &setup->quad);
+ struct softpipe_context *sp = setup.softpipe;
+ setup.quad.x0 = x;
+ setup.quad.y0 = y;
+ setup.quad.mask = mask;
+ sp->quad.first->run(sp->quad.first, &setup.quad);
#else
/* Cell: "write" quad fragments to the tile by setting prim color */
- const int ix = x - setup->cliprect_minx;
- const int iy = y - setup->cliprect_miny;
+ const int ix = x - setup.cliprect_minx;
+ const int iy = y - setup.cliprect_miny;
uint colors[4]; /* indexed by QUAD_x */
if (spu.texture.start) {
float texcoords[4][4];
uint i;
- eval_coeff(setup, 2, (float) x, (float) y, texcoords);
+ eval_coeff(2, (float) x, (float) y, texcoords);
for (i = 0; i < 4; i++) {
colors[i] = sample_texture(texcoords[i]);
}
}
else {
float fcolors[4][4];
- eval_coeff(setup, 1, (float) x, (float) y, fcolors);
+ eval_coeff(1, (float) x, (float) y, fcolors);
colors[QUAD_TOP_LEFT] = pack_color(fcolors[QUAD_TOP_LEFT]);
colors[QUAD_TOP_RIGHT] = pack_color(fcolors[QUAD_TOP_RIGHT]);
colors[QUAD_BOTTOM_LEFT] = pack_color(fcolors[QUAD_BOTTOM_LEFT]);
}
if (spu.depth_stencil.depth.enabled) {
- mask &= do_depth_test(setup, x, y, mask);
+ mask &= do_depth_test(x, y, mask);
}
if (mask) {
- if (tile_status[setup->ty][setup->tx] == TILE_STATUS_CLEAR) {
+ if (tile_status[setup.ty][setup.tx] == TILE_STATUS_CLEAR) {
/* now, _really_ clear the tile */
clear_c_tile(&ctile);
}
- else if (tile_status[setup->ty][setup->tx] != TILE_STATUS_DIRTY) {
+ else if (tile_status[setup.ty][setup.tx] != TILE_STATUS_DIRTY) {
/* make sure we've got the tile from main mem */
wait_on_mask(1 << TAG_READ_TILE_COLOR);
}
- tile_status[setup->ty][setup->tx] = TILE_STATUS_DIRTY;
+ tile_status[setup.ty][setup.tx] = TILE_STATUS_DIRTY;
if (mask & MASK_TOP_LEFT)
ctile.t32[iy][ix] = colors[QUAD_TOP_LEFT];
* this is pretty nasty... may need to rework flush_spans again to
* fix it, if possible.
*/
-static unsigned calculate_mask( struct setup_stage *setup, int x )
+static unsigned calculate_mask( int x )
{
unsigned mask = 0x0;
- if (x >= setup->span.left[0] && x < setup->span.right[0])
+ if (x >= setup.span.left[0] && x < setup.span.right[0])
mask |= MASK_TOP_LEFT;
- if (x >= setup->span.left[1] && x < setup->span.right[1])
+ if (x >= setup.span.left[1] && x < setup.span.right[1])
mask |= MASK_BOTTOM_LEFT;
- if (x+1 >= setup->span.left[0] && x+1 < setup->span.right[0])
+ if (x+1 >= setup.span.left[0] && x+1 < setup.span.right[0])
mask |= MASK_TOP_RIGHT;
- if (x+1 >= setup->span.left[1] && x+1 < setup->span.right[1])
+ if (x+1 >= setup.span.left[1] && x+1 < setup.span.right[1])
mask |= MASK_BOTTOM_RIGHT;
return mask;
/**
* Render a horizontal span of quads
*/
-static void flush_spans( struct setup_stage *setup )
+static void flush_spans( void )
{
int minleft, maxright;
int x;
- switch (setup->span.y_flags) {
+ switch (setup.span.y_flags) {
case 0x3:
/* both odd and even lines written (both quad rows) */
- minleft = MIN2(setup->span.left[0], setup->span.left[1]);
- maxright = MAX2(setup->span.right[0], setup->span.right[1]);
+ minleft = MIN2(setup.span.left[0], setup.span.left[1]);
+ maxright = MAX2(setup.span.right[0], setup.span.right[1]);
break;
case 0x1:
/* only even line written (quad top row) */
- minleft = setup->span.left[0];
- maxright = setup->span.right[0];
+ minleft = setup.span.left[0];
+ maxright = setup.span.right[0];
break;
case 0x2:
/* only odd line written (quad bottom row) */
- minleft = setup->span.left[1];
- maxright = setup->span.right[1];
+ minleft = setup.span.left[1];
+ maxright = setup.span.right[1];
break;
default:
* calculate_mask() could be simplified a bit...
*/
for (x = block(minleft); x <= block(maxright); x += 2) {
- emit_quad( setup, x, setup->span.y,
- calculate_mask( setup, x ) );
+ emit_quad( x, setup.span.y,
+ calculate_mask( x ) );
}
- setup->span.y = 0;
- setup->span.y_flags = 0;
- setup->span.right[0] = 0;
- setup->span.right[1] = 0;
+ setup.span.y = 0;
+ setup.span.y_flags = 0;
+ setup.span.right[0] = 0;
+ setup.span.right[1] = 0;
}
#if DEBUG_VERTS
-static void print_vertex(const struct setup_stage *setup,
- const struct vertex_header *v)
+static void print_vertex(const struct vertex_header *v)
{
int i;
fprintf(stderr, "Vertex: (%p)\n", v);
- for (i = 0; i < setup->quad.nr_attrs; i++) {
+ for (i = 0; i < setup.quad.nr_attrs; i++) {
fprintf(stderr, " %d: %f %f %f %f\n", i,
v->data[i][0], v->data[i][1], v->data[i][2], v->data[i][3]);
}
}
#endif
-static boolean setup_sort_vertices( struct setup_stage *setup,
- const struct prim_header *prim )
+static boolean setup_sort_vertices(const struct prim_header *prim )
{
const struct vertex_header *v0 = prim->v[0];
const struct vertex_header *v1 = prim->v[1];
#if DEBUG_VERTS
fprintf(stderr, "Triangle:\n");
- print_vertex(setup, v0);
- print_vertex(setup, v1);
- print_vertex(setup, v2);
+ print_vertex(v0);
+ print_vertex(v1);
+ print_vertex(v2);
#endif
- setup->vprovoke = v2;
+ setup.vprovoke = v2;
/* determine bottom to top order of vertices */
{
if (y0 <= y1) {
if (y1 <= y2) {
/* y0<=y1<=y2 */
- setup->vmin = v0;
- setup->vmid = v1;
- setup->vmax = v2;
+ setup.vmin = v0;
+ setup.vmid = v1;
+ setup.vmax = v2;
}
else if (y2 <= y0) {
/* y2<=y0<=y1 */
- setup->vmin = v2;
- setup->vmid = v0;
- setup->vmax = v1;
+ setup.vmin = v2;
+ setup.vmid = v0;
+ setup.vmax = v1;
}
else {
/* y0<=y2<=y1 */
- setup->vmin = v0;
- setup->vmid = v2;
- setup->vmax = v1;
+ setup.vmin = v0;
+ setup.vmid = v2;
+ setup.vmax = v1;
}
}
else {
if (y0 <= y2) {
/* y1<=y0<=y2 */
- setup->vmin = v1;
- setup->vmid = v0;
- setup->vmax = v2;
+ setup.vmin = v1;
+ setup.vmid = v0;
+ setup.vmax = v2;
}
else if (y2 <= y1) {
/* y2<=y1<=y0 */
- setup->vmin = v2;
- setup->vmid = v1;
- setup->vmax = v0;
+ setup.vmin = v2;
+ setup.vmid = v1;
+ setup.vmax = v0;
}
else {
/* y1<=y2<=y0 */
- setup->vmin = v1;
- setup->vmid = v2;
- setup->vmax = v0;
+ setup.vmin = v1;
+ setup.vmid = v2;
+ setup.vmax = v0;
}
}
}
/* Check if triangle is completely outside the tile bounds */
- if (setup->vmin->data[0][1] > setup->cliprect_maxy)
+ if (setup.vmin->data[0][1] > setup.cliprect_maxy)
return FALSE;
- if (setup->vmax->data[0][1] < setup->cliprect_miny)
+ if (setup.vmax->data[0][1] < setup.cliprect_miny)
return FALSE;
- if (setup->vmin->data[0][0] < setup->cliprect_minx &&
- setup->vmid->data[0][0] < setup->cliprect_minx &&
- setup->vmax->data[0][0] < setup->cliprect_minx)
+ if (setup.vmin->data[0][0] < setup.cliprect_minx &&
+ setup.vmid->data[0][0] < setup.cliprect_minx &&
+ setup.vmax->data[0][0] < setup.cliprect_minx)
return FALSE;
- if (setup->vmin->data[0][0] > setup->cliprect_maxx &&
- setup->vmid->data[0][0] > setup->cliprect_maxx &&
- setup->vmax->data[0][0] > setup->cliprect_maxx)
+ if (setup.vmin->data[0][0] > setup.cliprect_maxx &&
+ setup.vmid->data[0][0] > setup.cliprect_maxx &&
+ setup.vmax->data[0][0] > setup.cliprect_maxx)
return FALSE;
- setup->ebot.dx = setup->vmid->data[0][0] - setup->vmin->data[0][0];
- setup->ebot.dy = setup->vmid->data[0][1] - setup->vmin->data[0][1];
- setup->emaj.dx = setup->vmax->data[0][0] - setup->vmin->data[0][0];
- setup->emaj.dy = setup->vmax->data[0][1] - setup->vmin->data[0][1];
- setup->etop.dx = setup->vmax->data[0][0] - setup->vmid->data[0][0];
- setup->etop.dy = setup->vmax->data[0][1] - setup->vmid->data[0][1];
+ setup.ebot.dx = setup.vmid->data[0][0] - setup.vmin->data[0][0];
+ setup.ebot.dy = setup.vmid->data[0][1] - setup.vmin->data[0][1];
+ setup.emaj.dx = setup.vmax->data[0][0] - setup.vmin->data[0][0];
+ setup.emaj.dy = setup.vmax->data[0][1] - setup.vmin->data[0][1];
+ setup.etop.dx = setup.vmax->data[0][0] - setup.vmid->data[0][0];
+ setup.etop.dy = setup.vmax->data[0][1] - setup.vmid->data[0][1];
/*
* Compute triangle's area. Use 1/area to compute partial
* use the prim->det value because its sign is correct.
*/
{
- const float area = (setup->emaj.dx * setup->ebot.dy -
- setup->ebot.dx * setup->emaj.dy);
+ const float area = (setup.emaj.dx * setup.ebot.dy -
+ setup.ebot.dx * setup.emaj.dy);
- setup->oneoverarea = 1.0f / area;
+ setup.oneoverarea = 1.0f / area;
/*
_mesa_printf("%s one-over-area %f area %f det %f\n",
- __FUNCTION__, setup->oneoverarea, area, prim->det );
+ __FUNCTION__, setup.oneoverarea, area, prim->det );
*/
}
* - the GLSL gl_FrontFacing fragment attribute (bool)
* - two-sided stencil test
*/
- setup->quad.facing = (prim->det > 0.0) ^ (setup->softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
+ setup.quad.facing = (prim->det > 0.0) ^ (setup.softpipe->rasterizer->front_winding == PIPE_WINDING_CW);
#endif
return TRUE;
/**
* Compute a0 for a constant-valued coefficient (GL_FLAT shading).
* The value value comes from vertex->data[slot][i].
- * The result will be put into setup->coef[slot].a0[i].
+ * The result will be put into setup.coef[slot].a0[i].
* \param slot which attribute slot
* \param i which component of the slot (0..3)
*/
-static void const_coeff(struct setup_stage *setup, uint slot)
+static void const_coeff(uint slot)
{
uint i;
ASSERT(slot < PIPE_MAX_SHADER_INPUTS);
for (i = 0; i < 4; i++) {
- setup->coef[slot].dadx[i] = 0;
- setup->coef[slot].dady[i] = 0;
+ setup.coef[slot].dadx[i] = 0;
+ setup.coef[slot].dady[i] = 0;
/* need provoking vertex info!
*/
- setup->coef[slot].a0[i] = setup->vprovoke->data[slot][i];
+ setup.coef[slot].a0[i] = setup.vprovoke->data[slot][i];
}
}
* Compute a0, dadx and dady for a linearly interpolated coefficient,
* for a triangle.
*/
-static void tri_linear_coeff( struct setup_stage *setup,
- uint slot, uint firstComp, uint lastComp )
+static void tri_linear_coeff( uint slot, uint firstComp, uint lastComp )
{
uint i;
for (i = firstComp; i < lastComp; i++) {
- float botda = setup->vmid->data[slot][i] - setup->vmin->data[slot][i];
- float majda = setup->vmax->data[slot][i] - setup->vmin->data[slot][i];
- float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
- float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
+ float botda = setup.vmid->data[slot][i] - setup.vmin->data[slot][i];
+ float majda = setup.vmax->data[slot][i] - setup.vmin->data[slot][i];
+ float a = setup.ebot.dy * majda - botda * setup.emaj.dy;
+ float b = setup.emaj.dx * botda - majda * setup.ebot.dx;
ASSERT(slot < PIPE_MAX_SHADER_INPUTS);
- setup->coef[slot].dadx[i] = a * setup->oneoverarea;
- setup->coef[slot].dady[i] = b * setup->oneoverarea;
+ setup.coef[slot].dadx[i] = a * setup.oneoverarea;
+ setup.coef[slot].dady[i] = b * setup.oneoverarea;
/* calculate a0 as the value which would be sampled for the
* fragment at (0,0), taking into account that we want to sample at
* to define a0 as the sample at a pixel center somewhere near vmin
* instead - i'll switch to this later.
*/
- setup->coef[slot].a0[i] = (setup->vmin->data[slot][i] -
- (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5f) +
- setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5f)));
+ setup.coef[slot].a0[i] = (setup.vmin->data[slot][i] -
+ (setup.coef[slot].dadx[i] * (setup.vmin->data[0][0] - 0.5f) +
+ setup.coef[slot].dady[i] * (setup.vmin->data[0][1] - 0.5f)));
}
/*
_mesa_printf("attr[%d].%c: %f dx:%f dy:%f\n",
slot, "xyzw"[i],
- setup->coef[slot].a0[i],
- setup->coef[slot].dadx[i],
- setup->coef[slot].dady[i]);
+ setup.coef[slot].a0[i],
+ setup.coef[slot].dadx[i],
+ setup.coef[slot].dady[i]);
*/
}
* Later, when we compute the value at a particular fragment position we'll
* divide the interpolated value by the interpolated W at that fragment.
*/
-static void tri_persp_coeff( struct setup_stage *setup,
- unsigned slot,
+static void tri_persp_coeff( unsigned slot,
unsigned i )
{
/* premultiply by 1/w:
*/
- float mina = setup->vmin->data[slot][i] * setup->vmin->data[0][3];
- float mida = setup->vmid->data[slot][i] * setup->vmid->data[0][3];
- float maxa = setup->vmax->data[slot][i] * setup->vmax->data[0][3];
+ float mina = setup.vmin->data[slot][i] * setup.vmin->data[0][3];
+ float mida = setup.vmid->data[slot][i] * setup.vmid->data[0][3];
+ float maxa = setup.vmax->data[slot][i] * setup.vmax->data[0][3];
float botda = mida - mina;
float majda = maxa - mina;
- float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
- float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
+ float a = setup.ebot.dy * majda - botda * setup.emaj.dy;
+ float b = setup.emaj.dx * botda - majda * setup.ebot.dx;
/*
printf("tri persp %d,%d: %f %f %f\n", slot, i,
- setup->vmin->data[slot][i],
- setup->vmid->data[slot][i],
- setup->vmax->data[slot][i]
+ setup.vmin->data[slot][i],
+ setup.vmid->data[slot][i],
+ setup.vmax->data[slot][i]
);
*/
assert(slot < PIPE_MAX_SHADER_INPUTS);
assert(i <= 3);
- setup->coef[slot].dadx[i] = a * setup->oneoverarea;
- setup->coef[slot].dady[i] = b * setup->oneoverarea;
- setup->coef[slot].a0[i] = (mina -
- (setup->coef[slot].dadx[i] * (setup->vmin->data[0][0] - 0.5f) +
- setup->coef[slot].dady[i] * (setup->vmin->data[0][1] - 0.5f)));
+ setup.coef[slot].dadx[i] = a * setup.oneoverarea;
+ setup.coef[slot].dady[i] = b * setup.oneoverarea;
+ setup.coef[slot].a0[i] = (mina -
+ (setup.coef[slot].dadx[i] * (setup.vmin->data[0][0] - 0.5f) +
+ setup.coef[slot].dady[i] * (setup.vmin->data[0][1] - 0.5f)));
}
#endif
/**
- * Compute the setup->coef[] array dadx, dady, a0 values.
- * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
+ * Compute the setup.coef[] array dadx, dady, a0 values.
+ * Must be called after setup.vmin,vmid,vmax,vprovoke are initialized.
*/
-static void setup_tri_coefficients( struct setup_stage *setup )
+static void setup_tri_coefficients(void)
{
#if 1
uint i;
case INTERP_NONE:
break;
case INTERP_POS:
- tri_linear_coeff(setup, i, 2, 3);
+ tri_linear_coeff(i, 2, 3);
/* XXX interp W if PERSPECTIVE... */
break;
case INTERP_CONSTANT:
- const_coeff(setup, i);
+ const_coeff(i);
break;
case INTERP_LINEAR:
- tri_linear_coeff(setup, i, 0, 4);
+ tri_linear_coeff(i, 0, 4);
break;
case INTERP_PERSPECTIVE:
- tri_linear_coeff(setup, i, 0, 4); /* XXX temporary */
+ tri_linear_coeff(i, 0, 4); /* XXX temporary */
break;
default:
ASSERT(0);
ASSERT(spu.vertex_info.interp_mode[0] == INTERP_POS);
ASSERT(spu.vertex_info.interp_mode[1] == INTERP_LINEAR ||
spu.vertex_info.interp_mode[1] == INTERP_CONSTANT);
- tri_linear_coeff(setup, 0, 2, 3); /* slot 0, z */
- tri_linear_coeff(setup, 1, 0, 4); /* slot 1, color */
+ tri_linear_coeff(0, 2, 3); /* slot 0, z */
+ tri_linear_coeff(1, 0, 4); /* slot 1, color */
#endif
}
-static void setup_tri_edges( struct setup_stage *setup )
+static void setup_tri_edges(void)
{
- float vmin_x = setup->vmin->data[0][0] + 0.5f;
- float vmid_x = setup->vmid->data[0][0] + 0.5f;
-
- float vmin_y = setup->vmin->data[0][1] - 0.5f;
- float vmid_y = setup->vmid->data[0][1] - 0.5f;
- float vmax_y = setup->vmax->data[0][1] - 0.5f;
-
- setup->emaj.sy = CEILF(vmin_y);
- setup->emaj.lines = (int) CEILF(vmax_y - setup->emaj.sy);
- setup->emaj.dxdy = setup->emaj.dx / setup->emaj.dy;
- setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
-
- setup->etop.sy = CEILF(vmid_y);
- setup->etop.lines = (int) CEILF(vmax_y - setup->etop.sy);
- setup->etop.dxdy = setup->etop.dx / setup->etop.dy;
- setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
-
- setup->ebot.sy = CEILF(vmin_y);
- setup->ebot.lines = (int) CEILF(vmid_y - setup->ebot.sy);
- setup->ebot.dxdy = setup->ebot.dx / setup->ebot.dy;
- setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
+ float vmin_x = setup.vmin->data[0][0] + 0.5f;
+ float vmid_x = setup.vmid->data[0][0] + 0.5f;
+
+ float vmin_y = setup.vmin->data[0][1] - 0.5f;
+ float vmid_y = setup.vmid->data[0][1] - 0.5f;
+ float vmax_y = setup.vmax->data[0][1] - 0.5f;
+
+ setup.emaj.sy = CEILF(vmin_y);
+ setup.emaj.lines = (int) CEILF(vmax_y - setup.emaj.sy);
+ setup.emaj.dxdy = setup.emaj.dx / setup.emaj.dy;
+ setup.emaj.sx = vmin_x + (setup.emaj.sy - vmin_y) * setup.emaj.dxdy;
+
+ setup.etop.sy = CEILF(vmid_y);
+ setup.etop.lines = (int) CEILF(vmax_y - setup.etop.sy);
+ setup.etop.dxdy = setup.etop.dx / setup.etop.dy;
+ setup.etop.sx = vmid_x + (setup.etop.sy - vmid_y) * setup.etop.dxdy;
+
+ setup.ebot.sy = CEILF(vmin_y);
+ setup.ebot.lines = (int) CEILF(vmid_y - setup.ebot.sy);
+ setup.ebot.dxdy = setup.ebot.dx / setup.ebot.dy;
+ setup.ebot.sx = vmin_x + (setup.ebot.sy - vmin_y) * setup.ebot.dxdy;
}
* Render the upper or lower half of a triangle.
* Scissoring/cliprect is applied here too.
*/
-static void subtriangle( struct setup_stage *setup,
- struct edge *eleft,
+static void subtriangle( struct edge *eleft,
struct edge *eright,
unsigned lines )
{
- const int minx = setup->cliprect_minx;
- const int maxx = setup->cliprect_maxx;
- const int miny = setup->cliprect_miny;
- const int maxy = setup->cliprect_maxy;
+ const int minx = setup.cliprect_minx;
+ const int maxx = setup.cliprect_maxx;
+ const int miny = setup.cliprect_miny;
+ const int maxy = setup.cliprect_maxy;
int y, start_y, finish_y;
int sy = (int)eleft->sy;
if (left < right) {
int _y = sy + y;
- if (block(_y) != setup->span.y) {
- flush_spans(setup);
- setup->span.y = block(_y);
+ if (block(_y) != setup.span.y) {
+ flush_spans();
+ setup.span.y = block(_y);
}
- setup->span.left[_y&1] = left;
- setup->span.right[_y&1] = right;
- setup->span.y_flags |= 1<<(_y&1);
+ setup.span.left[_y&1] = left;
+ setup.span.right[_y&1] = right;
+ setup.span.y_flags |= 1<<(_y&1);
}
}
* Do setup for triangle rasterization, then render the triangle.
*/
static void
-setup_tri(struct setup_stage *setup, struct prim_header *prim)
+setup_tri(struct prim_header *prim)
{
- if (!setup_sort_vertices( setup, prim )) {
+ if (!setup_sort_vertices( prim )) {
return; /* totally clipped */
}
- setup_tri_coefficients( setup );
- setup_tri_edges( setup );
+ setup_tri_coefficients();
+ setup_tri_edges();
#if 0
- setup->quad.prim = PRIM_TRI;
+ setup.quad.prim = PRIM_TRI;
#endif
- setup->span.y = 0;
- setup->span.y_flags = 0;
- setup->span.right[0] = 0;
- setup->span.right[1] = 0;
- /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
+ setup.span.y = 0;
+ setup.span.y_flags = 0;
+ setup.span.right[0] = 0;
+ setup.span.right[1] = 0;
+ /* setup.span.z_mode = tri_z_mode( setup.ctx ); */
/* init_constant_attribs( setup ); */
- if (setup->oneoverarea < 0.0) {
+ if (setup.oneoverarea < 0.0) {
/* emaj on left:
*/
- subtriangle( setup, &setup->emaj, &setup->ebot, setup->ebot.lines );
- subtriangle( setup, &setup->emaj, &setup->etop, setup->etop.lines );
+ subtriangle( &setup.emaj, &setup.ebot, setup.ebot.lines );
+ subtriangle( &setup.emaj, &setup.etop, setup.etop.lines );
}
else {
/* emaj on right:
*/
- subtriangle( setup, &setup->ebot, &setup->emaj, setup->ebot.lines );
- subtriangle( setup, &setup->etop, &setup->emaj, setup->etop.lines );
+ subtriangle( &setup.ebot, &setup.emaj, setup.ebot.lines );
+ subtriangle( &setup.etop, &setup.emaj, setup.etop.lines );
}
- flush_spans( setup );
+ flush_spans();
}
tri_draw(const float *v0, const float *v1, const float *v2, uint tx, uint ty)
{
struct prim_header tri;
- struct setup_stage setup;
+ /*struct setup_stage setup;*/
tri.v[0] = (struct vertex_header *) v0;
tri.v[1] = (struct vertex_header *) v1;
setup.cliprect_maxx = (tx + 1) * TILE_SIZE;
setup.cliprect_maxy = (ty + 1) * TILE_SIZE;
- setup_tri(&setup, &tri);
+ setup_tri(&tri);
}