intrinsic("ssbo_atomic_exchange_ir3", src_comp=[1, 1, 1, 1], dest_comp=1)
intrinsic("ssbo_atomic_comp_swap_ir3", src_comp=[1, 1, 1, 1, 1], dest_comp=1)
+# IR3-specific load/store intrinsics. These access a buffer used to pass data
+# between geometry stages - perhaps it's explicit access to the vertex cache.
+
+# src[] = { value, offset }.
+store("shared_ir3", 2, [BASE, WRMASK, ALIGN_MUL, ALIGN_OFFSET])
+# src[] = { offset }.
+load("shared_ir3", 1, [BASE, ALIGN_MUL, ALIGN_OFFSET], [CAN_ELIMINATE])
+
# Intrinsics used by the Midgard/Bifrost blend pipeline. These are defined
# within a blend shader to read/write the raw value from the tile buffer,
# without applying any format conversion in the process. If the shader needs
}
}
+/* src[] = { offset }. const_index[] = { base } */
+static void
+emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
+ struct ir3_instruction **dst)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *load, *offset;
+ unsigned base;
+
+ offset = ir3_get_src(ctx, &intr->src[0])[0];
+ base = nir_intrinsic_base(intr);
+
+ load = ir3_LDLW(b, offset, 0,
+ create_immed(b, intr->num_components), 0,
+ create_immed(b, base), 0);
+
+ load->cat6.type = utype_dst(intr->dest);
+ load->regs[0]->wrmask = MASK(intr->num_components);
+
+ load->barrier_class = IR3_BARRIER_SHARED_R;
+ load->barrier_conflict = IR3_BARRIER_SHARED_W;
+
+ ir3_split_dest(b, dst, load, 0, intr->num_components);
+}
+
+/* src[] = { value, offset }. const_index[] = { base, write_mask } */
+static void
+emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
+{
+ struct ir3_block *b = ctx->block;
+ struct ir3_instruction *store, *offset;
+ struct ir3_instruction * const *value;
+ unsigned base, wrmask;
+
+ value = ir3_get_src(ctx, &intr->src[0]);
+ offset = ir3_get_src(ctx, &intr->src[1])[0];
+
+ base = nir_intrinsic_base(intr);
+ wrmask = nir_intrinsic_write_mask(intr);
+
+ /* Combine groups of consecutive enabled channels in one write
+ * message. We use ffs to find the first enabled channel and then ffs on
+ * the bit-inverse, down-shifted writemask to determine the length of
+ * the block of enabled bits.
+ *
+ * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
+ */
+ while (wrmask) {
+ unsigned first_component = ffs(wrmask) - 1;
+ unsigned length = ffs(~(wrmask >> first_component)) - 1;
+
+ store = ir3_STLW(b, offset, 0,
+ ir3_create_collect(ctx, &value[first_component], length), 0,
+ create_immed(b, length), 0);
+
+ store->cat6.dst_offset = first_component + base;
+ store->cat6.type = utype_src(intr->src[0]);
+ store->barrier_class = IR3_BARRIER_SHARED_W;
+ store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
+
+ array_insert(b, b->keeps, store);
+
+ /* Clear the bits in the writemask that we just wrote, then try
+ * again to see if more channels are left.
+ */
+ wrmask &= (15 << (first_component + length));
+ }
+}
+
/*
* CS shared variable atomic intrinsics
*
break;
}
+ case nir_intrinsic_load_shared_ir3:
+ emit_intrinsic_load_shared_ir3(ctx, intr, dst);
+ break;
+ case nir_intrinsic_store_shared_ir3:
+ emit_intrinsic_store_shared_ir3(ctx, intr);
+ break;
default:
ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
nir_intrinsic_infos[intr->intrinsic].name);