wire \$nextQ , \$currQ ;
\$__ABC_FDCE #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR));
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
- \$__ABC_MUX_ abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
+ \$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
endmodule
module FDCE_1 (output reg Q, input C, CE, D, CLR);
parameter [0:0] INIT = 1'b0;
wire \$nextQ , \$currQ ;
\$__ABC_FDCE_1 #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .CLR(CLR));
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(\$currQ ));
- \$__ABC_MUX_ abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
+ \$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b0), .S(CLR), .Y(Q));
endmodule
module FDPE (output reg Q, input C, CE, D, PRE);
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
generate
if (IS_PRE_INVERTED)
- \$__ABC_MUX_ abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
+ \$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
else
- \$__ABC_MUX_ abc_async_mux (.A(1'b1), .B(\$currQ ), .S(PRE), .Y(Q));
+ \$__ABC_FD_ASYNC_MUX abc_async_mux (.A(1'b1), .B(\$currQ ), .S(PRE), .Y(Q));
endgenerate
endmodule
module FDPE_1 (output reg Q, input C, CE, D, CLR);
wire \$nextQ , \$currQ ;
\$__ABC_FDCE_1 #(.INIT(|0)) _TECHMAP_REPLACE_ (.D(D), .Q(\$nextQ ), .\$pastQ (Q), .C(C), .CE(CE), .PRE(PRE));
\$__ABC_FF_ abc_dff (.D(\$nextQ ), .Q(Q));
- \$__ABC_MUX_ abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
+ \$__ABC_FD_ASYNC_MUX abc_async_mux (.A(\$currQ ), .B(1'b1), .S(PRE), .Y(Q));
endmodule
`ifndef _ABC
endmodule
(* abc_box_id = 1000 *)
-module \$__ABC_FD_ASYNC_MUX_ (input A, B, S, output Q);
+module \$__ABC_FD_ASYNC_MUX (input A, B, S, output Q);
// assign Q = S ? B : A;
endmodule
parameter [0:0] INIT = 1'b0;
//parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
- //parameter [0:0] IS_CLR_INVERTED = 1'b0;
- assign Q = CE ? (D ^ IS_D_INVERTED) : \$pastQ ;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id = 1004, lib_whitebox, abc_flop = "FDCE_1,D,Q,\\$pastQ" *)
parameter [0:0] INIT = 1'b0;
//parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
- //parameter [0:0] IS_CLR_INVERTED = 1'b0;
- assign Q = CE ? (D ^ IS_D_INVERTED) : \$pastQ ;
+ parameter [0:0] IS_CLR_INVERTED = 1'b0;
+ assign Q = (CE && !(CLR ^ IS_CLR_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id = 1005, lib_whitebox, abc_flop = "FDPE,D,Q,\\$pastQ" *)
parameter [0:0] INIT = 1'b0;
//parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
- //parameter [0:0] IS_PRE_INVERTED = 1'b0;
- assign Q = CE ? (D ^ IS_D_INVERTED) : \$pastQ ;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
(* abc_box_id = 1006, lib_whitebox, abc_flop = "FDPE_1,D,Q,\\$pastQ" *)
parameter [0:0] INIT = 1'b0;
//parameter [0:0] IS_C_INVERTED = 1'b0;
parameter [0:0] IS_D_INVERTED = 1'b0;
- //parameter [0:0] IS_PRE_INVERTED = 1'b0;
- assign Q = CE ? (D ^ IS_D_INVERTED) : \$pastQ ;
+ parameter [0:0] IS_PRE_INVERTED = 1'b0;
+ assign Q = (CE && !(PRE ^ IS_PRE_INVERTED)) ? (D ^ IS_D_INVERTED) : \$pastQ ;
endmodule
`endif