parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_R_INVERTED = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R == !IS_R_INVERTED) $nextQ = 1'b0; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, R, IS_R_INVERTED};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= $nextQ;
- 1'b1: always @(negedge C) Q <= $nextQ;
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (R) Q <= 1'b0; else if (CE) Q <= D; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, R, 1'b0 /* IS_R_INVERTED */};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
- always @(negedge C) Q <= $nextQ;
+ always @(negedge C) Q <= \$nextQ ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_CLR_INVERTED = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, CLR, IS_CLR_INVERTED};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_CLR_INVERTED})
- 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
- 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
- 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= $nextQ;
- 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= $nextQ;
+ 2'b00: always @(posedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge CLR) if ( CLR) Q <= 1'b0; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge CLR) if (!CLR) Q <= 1'b0; else Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (CE) Q <= D; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, CLR, 1'b0 /* IS_CLR_INVERTED */};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
- always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= $nextQ;
+ always @(negedge C, posedge CLR) if (CLR) Q <= 1'b0; else Q <= \$nextQ ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_PRE_INVERTED = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, PRE, IS_PRE_INVERTED};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
generate case ({|IS_C_INVERTED, |IS_PRE_INVERTED})
- 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
- 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
- 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= $nextQ;
- 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= $nextQ;
+ 2'b00: always @(posedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b01: always @(posedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b10: always @(negedge C, posedge PRE) if ( PRE) Q <= 1'b1; else Q <= \$nextQ ;
+ 2'b11: always @(negedge C, negedge PRE) if (!PRE) Q <= 1'b1; else Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (CE) Q <= D; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (CE) Q <= D; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, PRE, 1'b0 /* IS_PRE_INVERTED */};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
- always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= $nextQ;
+ always @(negedge C, posedge PRE) if (PRE) Q <= 1'b1; else Q <= \$nextQ ;
`endif
endmodule
parameter [0:0] IS_D_INVERTED = 1'b0;
parameter [0:0] IS_S_INVERTED = 1'b0;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S == !IS_S_INVERTED) $nextQ = 1'b1; else if (CE) $nextQ = D ^ IS_D_INVERTED; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, IS_D_INVERTED, S, IS_S_INVERTED};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
generate case (|IS_C_INVERTED)
- 1'b0: always @(posedge C) Q <= $nextQ;
- 1'b1: always @(negedge C) Q <= $nextQ;
+ 1'b0: always @(posedge C) Q <= \$nextQ ;
+ 1'b1: always @(negedge C) Q <= \$nextQ ;
endcase endgenerate
`endif
endmodule
);
parameter [0:0] INIT = 1'b1;
initial Q <= INIT;
- wire $currQ;
- reg $nextQ;
- always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = $currQ;
+ wire \$currQ ;
+ reg \$nextQ ;
+ always @* if (S) $nextQ = 1'b1; else if (CE) $nextQ = D; else $nextQ = \$currQ ;
`ifdef _ABC
// `abc9' requires that complex flops be split into a combinatorial
// box (this module) feeding a simple flop ($_ABC_FF_ in abc_map.v)
// (which, combined with this spell type, encodes to `abc9'
// which flops may be merged together)
wire [3:0] $abc9_control = {CE, 1'b0 /* IS_D_INVERTED */, S, 1'b0 /* IS_S_INVERTED */};
- always @* Q = $nextQ;
+ always @* Q = \$nextQ ;
`else
assign $currQ = Q;
- always @(negedge C) Q <= $nextQ;
+ always @(negedge C) Q <= \$nextQ ;
`endif
endmodule