gk110/ir: Add rcp f64 implementation
authorBoyan Ding <boyan.j.ding@gmail.com>
Thu, 9 Mar 2017 05:55:17 +0000 (13:55 +0800)
committerIlia Mirkin <imirkin@alum.mit.edu>
Thu, 7 Feb 2019 00:35:57 +0000 (19:35 -0500)
Signed-off-by: Boyan Ding <boyan.j.ding@gmail.com>
Acked-by: Ilia Mirkin <imirkin@alum.mit.edu>
Cc: 19.0 <mesa-stable@lists.freedesktop.org>
src/gallium/drivers/nouveau/codegen/lib/gk110.asm
src/gallium/drivers/nouveau/codegen/lib/gk110.asm.h

index b9c05a04b9a81fec1401b86589eca6373f72cba8..c33dd2158c9434e8d249c5cd66f295cf7590796f 100644 (file)
@@ -83,11 +83,161 @@ gk110_div_s32:
    $p0 sub b32 $r1 $r1 $r2
    $p0 add b32 $r0 $r0 0x1
    $p3 cvt s32 $r0 neg s32 $r0
-   sched 0x04 0x2e 0x04 0x28 0x04 0x20 0x2c
+   sched 0x04 0x2e 0x28 0x04 0x28 0x28 0x28
    $p2 cvt s32 $r1 neg s32 $r1
    ret
 
+// RCP F64
+//
+// INPUT:   $r0d
+// OUTPUT:  $r0d
+// CLOBBER: $r2 - $r9, $p0
+//
+// The core of RCP and RSQ implementation is Newton-Raphson step, which is
+// used to find successively better approximation from an imprecise initial
+// value (single precision rcp in RCP and rsqrt64h in RSQ).
+//
 gk110_rcp_f64:
+   // Step 1: classify input according to exponent and value, and calculate
+   // result for 0/inf/nan. $r2 holds the exponent value, which starts at
+   // bit 52 (bit 20 of the upper half) and is 11 bits in length
+   ext u32 $r2 $r1 0xb14
+   add b32 $r3 $r2 0xffffffff
+   joinat #rcp_rejoin
+   // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf,
+   // denorm, or 0). Do this by substracting 1 from the exponent, which will
+   // mean that it's > 0x7fd in those cases when doing unsigned comparison
+   set b32 $p0 0x1 gt u32 $r3 0x7fd
+   // $r3: 0 for norms, 0x36 for denorms, -1 for others
+   mov b32 $r3 0x0
+   sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28
+   join (not $p0) nop
+   // Process all special values: NaN, inf, denorm, 0
+   mov b32 $r3 0xffffffff
+   // A number is NaN if its abs value is greater than or unordered with inf
+   set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000
+   (not $p0) bra #rcp_inf_or_denorm_or_zero
+   // NaN -> NaN, the next line sets the "quiet" bit of the result. This
+   // behavior is both seen on the CPU and the blob
+   join or b32 $r1 $r1 0x80000
+rcp_inf_or_denorm_or_zero:
+   and b32 $r4 $r1 0x7ff00000
+   // Other values with nonzero in exponent field should be inf
+   set b32 $p0 0x1 eq s32 $r4 0x0
+   sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20
+   $p0 bra #rcp_denorm_or_zero
+   // +/-Inf -> +/-0
+   xor b32 $r1 $r1 0x7ff00000
+   join mov b32 $r0 0x0
+rcp_denorm_or_zero:
+   set $p0 0x1 gtu f64 abs $r0d 0x0
+   $p0 bra #rcp_denorm
+   // +/-0 -> +/-Inf
+   join or b32 $r1 $r1 0x7ff00000
+rcp_denorm:
+   // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms
+   mul rn f64 $r0d $r0d 0x4350000000000000
+   sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28
+   join mov b32 $r3 0x36
+rcp_rejoin:
+   // All numbers with -1 in $r3 have their result ready in $r0d, return them
+   // others need further calculation
+   set b32 $p0 0x1 lt s32 $r3 0x0
+   $p0 bra #rcp_end
+   // Step 2: Before the real calculation goes on, renormalize the values to
+   // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1)
+   // result in $r6d. The exponent will be recovered later.
+   ext u32 $r2 $r1 0xb14
+   and b32 $r7 $r1 0x800fffff
+   add b32 $r7 $r7 0x3ff00000
+   mov b32 $r6 $r0
+   sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e
+   // Step 3: Convert new value to float (no overflow will occur due to step
+   // 2), calculate rcp and do newton-raphson step once
+   cvt rz f32 $r5 f64 $r6d
+   rcp f32 $r4 $r5
+   mov b32 $r0 0xbf800000
+   fma rn f32 $r5 $r4 $r5 $r0
+   fma rn f32 $r0 neg $r4 $r5 $r4
+   // Step 4: convert result $r0 back to double, do newton-raphson steps
+   cvt f64 $r0d f32 $r0
+   cvt f64 $r6d f64 neg $r6d
+   sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29
+   cvt f64 $r8d f32 0x3f800000
+   // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d
+   // The formula used here (and above) is:
+   //     RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n}
+   // The following code uses 2 FMAs for each step, and it will basically
+   // looks like:
+   //     tmp = -src * RCP_{n} + 1
+   //     RCP_{n + 1} = RCP_{n} * tmp + RCP_{n}
+   fma rn f64 $r4d $r6d $r0d $r8d
+   fma rn f64 $r0d $r0d $r4d $r0d
+   fma rn f64 $r4d $r6d $r0d $r8d
+   fma rn f64 $r0d $r0d $r4d $r0d
+   fma rn f64 $r4d $r6d $r0d $r8d
+   fma rn f64 $r0d $r0d $r4d $r0d
+   sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28
+   fma rn f64 $r4d $r6d $r0d $r8d
+   fma rn f64 $r0d $r0d $r4d $r0d
+   // Step 5: Exponent recovery and final processing
+   // The exponent is recovered by adding what we added to the exponent.
+   // Suppose we want to calculate rcp(x), but we have rcp(cx), then
+   //     rcp(x) = c * rcp(cx)
+   // The delta in exponent comes from two sources:
+   //   1) The renormalization in step 2. The delta is:
+   //      0x3ff - $r2
+   //   2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored
+   //      in $r3
+   // These 2 sources are calculated in the first two lines below, and then
+   // added to the exponent extracted from the result above.
+   // Note that after processing, the new exponent may >= 0x7ff (inf)
+   // or <= 0 (denorm). Those cases will be handled respectively below
+   subr b32 $r2 $r2 0x3ff
+   add b32 $r4 $r2 $r3
+   ext u32 $r3 $r1 0xb14
+   // New exponent in $r3
+   add b32 $r3 $r3 $r4
+   add b32 $r2 $r3 0xffffffff
+   sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b
+   // (exponent-1) < 0x7fe (unsigned) means the result is in norm range
+   // (same logic as in step 1)
+   set b32 $p0 0x1 lt u32 $r2 0x7fe
+   (not $p0) bra #rcp_result_inf_or_denorm
+   // Norms: convert exponents back and return
+   shl b32 $r4 $r4 clamp 0x14
+   add b32 $r1 $r4 $r1
+   bra #rcp_end
+rcp_result_inf_or_denorm:
+   // New exponent >= 0x7ff means that result is inf
+   set b32 $p0 0x1 ge s32 $r3 0x7ff
+   (not $p0) bra #rcp_result_denorm
+   sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f
+   // Infinity
+   and b32 $r1 $r1 0x80000000
+   mov b32 $r0 0x0
+   add b32 $r1 $r1 0x7ff00000
+   bra #rcp_end
+rcp_result_denorm:
+   // Denorm result comes from huge input. The greatest possible fp64, i.e.
+   // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest
+   // normal value. Other rcp result should be greater than that. If we
+   // set the exponent field to 1, we can recover the result by multiplying
+   // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise
+   // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies
+   // the logic here.
+   set b32 $p0 0x1 ne u32 $r3 0x0
+   and b32 $r1 $r1 0x800fffff
+   // 0x3e800000: 1/4
+   $p0 cvt f64 $r6d f32 0x3e800000
+   sched 0x2f 0x28 0x2c 0x2e 0x2e 0x00 0x00
+   // 0x3f000000: 1/2
+   (not $p0) cvt f64 $r6d f32 0x3f000000
+   add b32 $r1 $r1 0x00100000
+   mul rn f64 $r0d $r0d $r6d
+rcp_end:
+   ret
+
 gk110_rsq_f64:
    ret
 
index 8d00e2a2245e5daa35e286c61d7c45e8e9b5af55..d41f135a26a21698b1d93929fa491ec63b1a08c2 100644 (file)
@@ -65,11 +65,92 @@ uint64_t gk110_builtin_code[] = {
        0xe088000001000406,
        0x4000000000800001,
        0xe6010000000ce802,
-       0x08b08010a010b810,
+       0x08a0a0a010a0b810,
        0xe60100000088e806,
        0x19000000001c003c,
 /* 0x0218: gk110_rcp_f64 */
-/* 0x0218: gk110_rsq_f64 */
+       0xc00000058a1c0409,
+       0x407fffffff9c080d,
+       0x1480000050000000,
+       0xb3401c03fe9c0c1d,
+       0xe4c03c007f9c000e,
+       0x08a0a0bcacb410bc,
+       0x8580000000603c02,
+       0x747fffffff9fc00e,
+       0xb4601fff801c021d,
+       0x120000000420003c,
+       0x21000400005c0404,
+/* 0x0270: rcp_inf_or_denorm_or_zero */
+       0x203ff800001c0410,
+       0xb3281c00001c101d,
+       0x0880bcacb4bc10ac,
+       0x120000000800003c,
+       0x223ff800001c0404,
+       0xe4c03c007fdc0002,
+/* 0x02a0: rcp_denorm_or_zero */
+       0xb4601c00001c021d,
+       0x120000000400003c,
+       0x213ff800005c0404,
+/* 0x02b8: rcp_denorm */
+       0xc400021a801c0001,
+       0x08a010a0a0aca0bc,
+       0x740000001b5fc00e,
+/* 0x02d0: rcp_rejoin */
+       0xb3181c00001c0c1d,
+       0x12000000c000003c,
+       0xc00000058a1c0409,
+       0x204007ffff9c041c,
+       0x401ff800001c1c1d,
+       0xe4c03c00001c001a,
+       0x08b8aca8a0a010ac,
+       0xe5400c00031c3816,
+       0x84000000021c1412,
+       0x745fc000001fc002,
+       0xcc000000029c1016,
+       0xcc081000029c1002,
+       0xe5400000001c2c02,
+       0xe5410000031c3c1a,
+       0x08a4a4a4a4a4a4b8,
+       0xc54001fc001c2c21,
+       0xdb802000001c1812,
+       0xdb800000021c0002,
+       0xdb802000001c1812,
+       0xdb800000021c0002,
+       0xdb802000001c1812,
+       0xdb800000021c0002,
+       0x08a0a0a0a0a080a4,
+       0xdb802000001c1812,
+       0xdb800000021c0002,
+       0x48000001ff9c0809,
+       0xe0800000019c0812,
+       0xc00000058a1c040d,
+       0xe0800000021c0c0e,
+       0x407fffffff9c0c09,
+       0x08aca0a0aca0aca0,
+       0xb3101c03ff1c081d,
+       0x120000000c20003c,
+       0xc24000000a1c1011,
+       0xe0800000009c1006,
+       0x12000000381c003c,
+/* 0x03f0: rcp_result_inf_or_denorm */
+       0xb3681c03ff9c0c1d,
+       0x120000001420003c,
+       0x08bc948caca09480,
+       0x20400000001c0404,
+       0xe4c03c007f9c0002,
+       0x403ff800001c0405,
+       0x120000001c1c003c,
+/* 0x0428: rcp_result_denorm */
+       0xb3501c00001c0c1d,
+       0x204007ffff9c0404,
+       0xc54001f400002c19,
+       0x080000b8b8b0a0bc,
+       0xc54001f800202c19,
+       0x40000800001c0405,
+       0xe4000000031c0002,
+/* 0x0460: rcp_end */
+       0x19000000001c003c,
+/* 0x0468: gk110_rsq_f64 */
        0x19000000001c003c,
 };
 
@@ -77,5 +158,5 @@ uint64_t gk110_builtin_offsets[] = {
        0x0000000000000000,
        0x00000000000000f0,
        0x0000000000000218,
-       0x0000000000000218,
+       0x0000000000000468,
 };