+2017-11-01 Richard Sandiford <richard.sandiford@linaro.org>
+ Alan Hayward <alan.hayward@arm.com>
+ David Sherwood <david.sherwood@arm.com>
+
+ * doc/rtl.texi (const): Update description of address constants.
+ Say that vector constants are allowed too.
+ * common.md (E, F): Use CONSTANT_P instead of checking for
+ CONST_VECTOR.
+ * emit-rtl.c (gen_lowpart_common): Use const_vec_p instead of
+ checking for CONST_VECTOR.
+ * expmed.c (make_tree): Use build_vector_from_val for a CONST
+ VEC_DUPLICATE.
+ * expr.c (expand_expr_real_2): Check for vector modes instead
+ of checking for CONST_VECTOR.
+ * rtl.h (const_vec_p): New function.
+ (const_vec_duplicate_p): Check for a CONST VEC_DUPLICATE.
+ (unwrap_const_vec_duplicate): Handle them here too.
+
2017-11-01 Richard Sandiford <richard.sandiford@linaro.org>
David Malcolm <dmalcolm@redhat.com>
Alan Hayward <alan.hayward@arm.com>
(define_constraint "E"
"Matches a floating-point constant."
(ior (match_test "CONST_DOUBLE_AS_FLOAT_P (op)")
- (match_test "GET_CODE (op) == CONST_VECTOR
+ (match_test "CONSTANT_P (op)
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT")))
;; There is no longer a distinction between "E" and "F".
(define_constraint "F"
"Matches a floating-point constant."
(ior (match_test "CONST_DOUBLE_AS_FLOAT_P (op)")
- (match_test "GET_CODE (op) == CONST_VECTOR
+ (match_test "CONSTANT_P (op)
&& GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT")))
(define_constraint "X"
@findex const
@item (const:@var{m} @var{exp})
-Represents a constant that is the result of an assembly-time
-arithmetic computation. The operand, @var{exp}, is an expression that
-contains only constants (@code{const_int}, @code{symbol_ref} and
-@code{label_ref} expressions) combined with @code{plus} and
-@code{minus}. However, not all combinations are valid, since the
-assembler cannot do arbitrary arithmetic on relocatable symbols.
-
-@var{m} should be @code{Pmode}.
+Wraps an rtx computation @var{exp} whose inputs and result do not
+change during the execution of a thread. There are two valid uses.
+The first is to represent a global or thread-local address calculation.
+In this case @var{exp} should contain @code{const_int},
+@code{symbol_ref}, @code{label_ref} or @code{unspec} expressions,
+combined with @code{plus} and @code{minus}. Any such @code{unspec}s
+are target-specific and typically represent some form of relocation
+operator. @var{m} should be a valid address mode.
+
+The second use of @code{const} is to wrap a vector operation.
+In this case @var{exp} must be a @code{vec_duplicate} expression.
@findex high
@item (high:@var{m} @var{exp})
return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
}
else if (GET_CODE (x) == SUBREG || REG_P (x)
- || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
+ || GET_CODE (x) == CONCAT || const_vec_p (x)
|| CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
return lowpart_subreg (mode, x, innermode);
return fold_convert (type, make_tree (t, XEXP (x, 0)));
case CONST:
- return make_tree (type, XEXP (x, 0));
+ {
+ rtx op = XEXP (x, 0);
+ if (GET_CODE (op) == VEC_DUPLICATE)
+ {
+ tree elt_tree = make_tree (TREE_TYPE (type), XEXP (op, 0));
+ return build_vector_from_val (type, elt_tree);
+ }
+ return make_tree (type, op);
+ }
case SYMBOL_REF:
t = SYMBOL_REF_DECL (x);
/* Careful here: if the target doesn't support integral vector modes,
a constant selection vector could wind up smooshed into a normal
integral constant. */
- if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
+ if (CONSTANT_P (op2) && !VECTOR_MODE_P (GET_MODE (op2)))
{
tree sel_type = TREE_TYPE (treeop2);
machine_mode vmode
extern int rtx_equal_p (const_rtx, const_rtx);
extern bool rtvec_all_equal_p (const_rtvec);
+/* Return true if X is some form of vector constant. */
+
+inline bool
+const_vec_p (const_rtx x)
+{
+ return VECTOR_MODE_P (GET_MODE (x)) && CONSTANT_P (x);
+}
+
/* Return true if X is a vector constant with a duplicated element value. */
inline bool
const_vec_duplicate_p (const_rtx x)
{
- return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
+ return ((GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
+ || (GET_CODE (x) == CONST
+ && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE));
}
/* Return true if X is a vector constant with a duplicated element value.
inline bool
const_vec_duplicate_p (T x, T *elt)
{
- if (const_vec_duplicate_p (x))
+ if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
{
*elt = CONST_VECTOR_ELT (x, 0);
return true;
}
+ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
+ {
+ *elt = XEXP (XEXP (x, 0), 0);
+ return true;
+ }
return false;
}
inline T
unwrap_const_vec_duplicate (T x)
{
- if (const_vec_duplicate_p (x))
- x = CONST_VECTOR_ELT (x, 0);
+ if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
+ return CONST_VECTOR_ELT (x, 0);
+ if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
+ return XEXP (XEXP (x, 0), 0);
return x;
}