log_error("Unsupported AIGER file!\n");
}
-static void parse_aiger_ascii(RTLIL::Design *design, std::istream &f, std::string clk_name)
+static void parse_aiger_header(std::istream &f, unsigned &M, unsigned &I, unsigned &L, unsigned &O, unsigned &A, unsigned &B, unsigned &C, unsigned &J, unsigned &F)
{
- int M, I, L, O, A;
- int B=0, C=0, J=0, F=0; // Optional in AIGER 1.9
if (!(f >> M >> I >> L >> O >> A))
log_error("Invalid AIGER header\n");
- for (auto &i : std::array<std::reference_wrapper<int>,4>{B, C, J, F}) {
+ for (auto &i : std::array<std::reference_wrapper<unsigned>,4>{B, C, J, F}) {
if (f.peek() != ' ') break;
if (!(f >> i))
log_error("Invalid AIGER header\n");
// says anything that follows could be used for
// optional sections
- log_debug("M=%d I=%d L=%d O=%d A=%d B=%d C=%d J=%d F=%d\n", M, I, L, O, A, B, C, J, F);
+ log_debug("M=%u I=%u L=%u O=%u A=%u B=%u C=%u J=%u F=%u\n", M, I, L, O, A, B, C, J, F);
+}
+
+static void parse_aiger_ascii(RTLIL::Design *design, std::istream &f, std::string clk_name)
+{
+ unsigned M, I, L, O, A;
+ unsigned B=0, C=0, J=0, F=0; // Optional in AIGER 1.9
+ parse_aiger_header(f, M, I, L, O, A, B, C, J, F);
- int line_count = 1;
+ unsigned line_count = 1;
+ std::string line;
std::stringstream ss;
auto module = new RTLIL::Module;
module->name = RTLIL::escape_id("aig"); // TODO: Name?
if (design->module(module->name))
- log_error("Duplicate definition of module %s in line %d!\n", log_id(module->name), line_count);
+ log_error("Duplicate definition of module %s in line %u!\n", log_id(module->name), line_count);
design->add(module);
- auto createWireIfNotExists = [module](int literal) {
- const int variable = literal >> 1;
+ auto createWireIfNotExists = [module](unsigned literal) {
+ const unsigned variable = literal >> 1;
const bool invert = literal & 1;
RTLIL::IdString wire_name(stringf("\\n%d%s", variable, invert ? "_inv" : "")); // FIXME: is "_inv" the right suffix?
RTLIL::Wire *wire = module->wire(wire_name);
// Parse inputs
std::vector<RTLIL::Wire*> inputs;
- for (int i = 0; i < I; ++i, ++line_count) {
+ for (unsigned i = 0; i < I; ++i, ++line_count) {
if (!(f >> l1))
- log_error("Line %d cannot be interpreted as an input!\n", line_count);
+ log_error("Line %u cannot be interpreted as an input!\n", line_count);
log_debug("%d is an input\n", l1);
log_assert(!(l1 & 1)); // TODO: Inputs can't be inverted?
RTLIL::Wire *wire = createWireIfNotExists(l1);
clk_wire = module->addWire(clk_id);
clk_wire->port_input = true;
}
- for (int i = 0; i < L; ++i, ++line_count) {
+ for (unsigned i = 0; i < L; ++i, ++line_count) {
if (!(f >> l1 >> l2))
- log_error("Line %d cannot be interpreted as a latch!\n", line_count);
+ log_error("Line %u cannot be interpreted as a latch!\n", line_count);
log_debug("%d %d is a latch\n", l1, l2);
log_assert(!(l1 & 1)); // TODO: Latch outputs can't be inverted?
RTLIL::Wire *q_wire = createWireIfNotExists(l1);
// Reset logic is optional in AIGER 1.9
if (f.peek() == ' ') {
if (!(f >> l3))
- log_error("Line %d cannot be interpreted as a latch!\n", line_count);
+ log_error("Line %u cannot be interpreted as a latch!\n", line_count);
if (l3 == 0 || l3 == 1)
q_wire->attributes["\\init"] = RTLIL::Const(0);
//q_wire->attributes["\\init"] = RTLIL::Const(RTLIL::State::Sx);
}
else
- log_error("Line %d has invalid reset literal for latch!\n", line_count);
+ log_error("Line %u has invalid reset literal for latch!\n", line_count);
}
else {
// AIGER latches are assumed to be initialized to zero
// Parse outputs
std::vector<RTLIL::Wire*> outputs;
- for (int i = 0; i < O; ++i, ++line_count) {
+ for (unsigned i = 0; i < O; ++i, ++line_count) {
if (!(f >> l1))
- log_error("Line %d cannot be interpreted as an output!\n", line_count);
+ log_error("Line %u cannot be interpreted as an output!\n", line_count);
log_debug("%d is an output\n", l1);
RTLIL::Wire *wire = createWireIfNotExists(l1);
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse bad state properties
- for (int i = 0; i < B; ++i, ++line_count)
+ for (unsigned i = 0; i < B; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse invariant constraints
- for (int i = 0; i < C; ++i, ++line_count)
+ for (unsigned i = 0; i < C; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse justice properties
- for (int i = 0; i < J; ++i, ++line_count)
+ for (unsigned i = 0; i < J; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// TODO: Parse fairness constraints
- for (int i = 0; i < F; ++i, ++line_count)
+ for (unsigned i = 0; i < F; ++i, ++line_count)
std::getline(f, line); // Ignore up to start of next line
// Parse AND
- for (int i = 0; i < A; ++i, ++line_count) {
+ for (unsigned i = 0; i < A; ++i, ++line_count) {
if (!(f >> l1 >> l2 >> l3))
- log_error("Line %d cannot be interpreted as an AND!\n", line_count);
+ log_error("Line %u cannot be interpreted as an AND!\n", line_count);
log_debug("%d %d %d is an AND\n", l1, l2, l3);
log_assert(!(l1 & 1)); // TODO: Output of ANDs can't be inverted?
if (c == 'i' || c == 'l' || c == 'o') {
f.ignore(1);
if (!(f >> l1 >> s))
- log_error("Line %d cannot be interpreted as a symbol entry!\n", line_count);
+ log_error("Line %u cannot be interpreted as a symbol entry!\n", line_count);
if ((c == 'i' && l1 > inputs.size()) || (c == 'l' && l1 > latches.size()) || (c == 'o' && l1 > outputs.size()))
- log_error("Line %d has invalid symbol position!\n", line_count);
+ log_error("Line %u has invalid symbol position!\n", line_count);
RTLIL::Wire* wire;
if (c == 'i') wire = inputs[l1];
break;
}
else
- log_error("Line %d: cannot interpret first character '%c'!\n", line_count, c);
+ log_error("Line %u: cannot interpret first character '%c'!\n", line_count, c);
std::getline(f, line); // Ignore up to start of next line
}