: d_td(td),
d_tds(tds),
d_testers(c),
- d_is_const(c),
d_testers_exp(c),
d_active_terms(c),
d_currTermSize(c) {
}
void SygusSymBreakNew::assertFact( Node n, bool polarity, std::vector< Node >& lemmas ) {
- if( n.getKind()==kind::DT_SYGUS_TERM_ORDER ){
- if( polarity ){
- Trace("sygus-sb-torder") << "Sygus term order : " << n[0] << " < " << n[1] << std::endl;
- Node comm_sb = getTermOrderPredicate( n[0], n[1] );
- Node comm_lem = NodeManager::currentNM()->mkNode( kind::OR, n.negate(), comm_sb );
- lemmas.push_back( comm_lem );
- }
- }else if( n.getKind()==kind::DT_SYGUS_BOUND ){
+ if (n.getKind() == kind::DT_SYGUS_BOUND)
+ {
Node m = n[0];
Trace("sygus-fair") << "Have sygus bound : " << n << ", polarity=" << polarity << " on measure " << m << std::endl;
registerMeasureTerm( m );
if( options::sygusFair()==SYGUS_FAIR_DT_SIZE ){
std::map< Node, SearchSizeInfo * >::iterator its = d_szinfo.find( m );
Assert( its!=d_szinfo.end() );
- Node mt = its->second->getOrMkSygusMeasureTerm( lemmas );
+ Node mt = its->second->getOrMkMeasureValue(lemmas);
//it relates the measure term to arithmetic
Node blem = n.eqNode( NodeManager::currentNM()->mkNode( kind::LEQ, mt, n[1] ) );
lemmas.push_back( blem );
unsigned s = n[1].getConst<Rational>().getNumerator().toUnsignedInt();
notifySearchSize( m, s, n, lemmas );
}
- }else if( n.getKind() == kind::DT_SYGUS_IS_CONST ){
- assertIsConst( n[0], polarity, lemmas );
}else if( n.getKind() == kind::DT_HEIGHT_BOUND || n.getKind()==DT_SIZE_BOUND ){
//reduce to arithmetic TODO ?
}
}
-void SygusSymBreakNew::assertIsConst( Node n, bool polarity, std::vector< Node >& lemmas ) {
- if( d_active_terms.find( n )!=d_active_terms.end() ) {
- // what kind of constructor is n?
- IntMap::const_iterator itt = d_testers.find( n );
- Assert( itt!=d_testers.end() );
- int tindex = (*itt).second;
- TypeNode tn = n.getType();
- const Datatype& dt = ((DatatypeType)tn.toType()).getDatatype();
- Node lem;
- if( dt[tindex].getNumArgs()==0 ){
- // is this a constant?
- Node sygus_op = Node::fromExpr( dt[tindex].getSygusOp() );
- if( sygus_op.isConst()!=polarity ){
- lem = NodeManager::currentNM()->mkNode( kind::DT_SYGUS_IS_CONST, n );
- if( polarity ){
- lem.negate();
- }
- }
- }else{
- // reduce
- std::vector< Node > child_conj;
- for( unsigned j=0; j<dt[tindex].getNumArgs(); j++ ){
- Node sel = NodeManager::currentNM()->mkNode( APPLY_SELECTOR_TOTAL, Node::fromExpr( dt[tindex].getSelectorInternal( tn.toType(), j ) ), n );
- child_conj.push_back( NodeManager::currentNM()->mkNode( kind::DT_SYGUS_IS_CONST, sel ) );
- }
- lem = child_conj.size()==1 ? child_conj[0] : NodeManager::currentNM()->mkNode( kind::AND, child_conj );
- // only an implication (TODO : strengthen?)
- lem = NodeManager::currentNM()->mkNode( kind::OR, lem.negate(), NodeManager::currentNM()->mkNode( kind::DT_SYGUS_IS_CONST, n ) );
- }
- if( !lem.isNull() ){
- Trace("sygus-isc") << "Sygus is-const lemma : " << lem << std::endl;
- Node rlv = getRelevancyCondition( n );
- if( !rlv.isNull() ){
- lem = NodeManager::currentNM()->mkNode( kind::OR, rlv.negate(), lem );
- }
- lemmas.push_back( lem );
- }
- }else{
- // lazy
- d_is_const[n] = polarity ? 1 : -1;
- }
-}
-
Node SygusSymBreakNew::getTermOrderPredicate( Node n1, Node n2 ) {
NodeManager* nm = NodeManager::currentNM();
std::vector< Node > comm_disj;
d_active_terms.insert( n );
Trace("sygus-sb-debug2") << "Sygus : activate term : " << n << " : " << exp << std::endl;
- /* TODO
- IntMap::const_iterator itisc = d_is_const.find( n );
- if( itisc != d_is_const.end() ){
- assertIsConst( n, (*itisc).second==1, lemmas );
- }
- */
-
TypeNode ntn = n.getType();
const Datatype& dt = ((DatatypeType)ntn.toType()).getDatatype();
if( quantifiers::TermUtil::isComm( nk ) ){
if( children.size()==2 ){
if( children[0].getType()==children[1].getType() ){
- #if 0
- Node order_pred = NodeManager::currentNM()->mkNode( DT_SYGUS_TERM_ORDER, children[0], children[1] );
- sbp_conj.push_back( order_pred );
- Node child11 = NodeManager::currentNM()->mkNode( APPLY_SELECTOR_TOTAL, Node::fromExpr( dt[tindex].getSelectorInternal( tn.toType(), 1 ) ), children[0] );
- Assert( child11.getType()==children[1].getType() );
- //chainable
- if( children[0].getType()==tn ){
- Node order_pred_trans = NodeManager::currentNM()->mkNode( OR, DatatypesRewriter::mkTester( children[0], tindex, dt ).negate(),
- NodeManager::currentNM()->mkNode( DT_SYGUS_TERM_ORDER, child11, children[1] ) );
- sbp_conj.push_back( order_pred_trans );
- }
- #else
Node order_pred = getTermOrderPredicate( children[0], children[1] );
sbp_conj.push_back( order_pred );
- #endif
}
}
}
return d_tds->getFreeVar(tn, 0);
}
-unsigned SygusSymBreakNew::processSelectorChain( Node n, std::map< TypeNode, Node >& top_level, std::map< Node, unsigned >& tdepth, std::vector< Node >& lemmas ) {
- unsigned ret = 0;
- if( n.getKind()==APPLY_SELECTOR_TOTAL ){
- ret = processSelectorChain( n[0], top_level, tdepth, lemmas );
- }
- TypeNode tn = n.getType();
- if( top_level.find( tn )==top_level.end() ){
- top_level[tn] = n;
- //tdepth[n] = ret;
- registerSearchTerm( tn, ret, n, true, lemmas );
- }else{
- registerSearchTerm( tn, ret, n, false, lemmas );
- }
- tdepth[n] = ret;
- return ret+1;
-}
-
void SygusSymBreakNew::registerSearchTerm( TypeNode tn, unsigned d, Node n, bool topLevel, std::vector< Node >& lemmas ) {
//register this term
std::unordered_map<Node, Node, NodeHashFunction>::iterator ita =
if( options::sygusFair()==SYGUS_FAIR_DT_SIZE ){
// update constraints on the measure term
if( options::sygusFairMax() ){
- if( options::sygusFair()==SYGUS_FAIR_DT_SIZE ){
- Node ds = NodeManager::currentNM()->mkNode( kind::DT_SIZE, e );
- Node slem = NodeManager::currentNM()->mkNode( kind::LEQ, ds, d_szinfo[m]->getOrMkSygusMeasureTerm( lemmas ) );
- lemmas.push_back( slem );
- }
+ Node ds = NodeManager::currentNM()->mkNode(kind::DT_SIZE, e);
+ Node slem = NodeManager::currentNM()->mkNode(
+ kind::LEQ, ds, d_szinfo[m]->getOrMkMeasureValue(lemmas));
+ lemmas.push_back(slem);
}else{
- Node mt = d_szinfo[m]->getOrMkSygusActiveMeasureTerm( lemmas );
- Node new_mt = NodeManager::currentNM()->mkSkolem( "mt", NodeManager::currentNM()->integerType() );
- lemmas.push_back( NodeManager::currentNM()->mkNode( kind::GEQ, new_mt, d_zero ) );
- if( options::sygusFair()==SYGUS_FAIR_DT_SIZE ){
- Node ds = NodeManager::currentNM()->mkNode( kind::DT_SIZE, e );
- lemmas.push_back( mt.eqNode( NodeManager::currentNM()->mkNode( kind::PLUS, new_mt, ds ) ) );
- //lemmas.push_back( NodeManager::currentNM()->mkNode( kind::GEQ, ds, d_zero ) );
- }
- d_szinfo[m]->d_sygus_measure_term_active = new_mt;
+ Node mt = d_szinfo[m]->getOrMkActiveMeasureValue(lemmas);
+ Node new_mt =
+ d_szinfo[m]->getOrMkActiveMeasureValue(lemmas, true);
+ Node ds = NodeManager::currentNM()->mkNode(kind::DT_SIZE, e);
+ lemmas.push_back(mt.eqNode(
+ NodeManager::currentNM()->mkNode(kind::PLUS, new_mt, ds)));
}
}
}else{
Trace("dt-sygus") << ss.str() << std::endl;
}
// TODO : remove this step (ensure there is no way a sygus term cannot be assigned a tester before this point)
- if( !debugTesters( prog, progv, 0, lemmas ) ){
+ if (!checkTesters(prog, progv, 0, lemmas))
+ {
Trace("sygus-sb") << " SygusSymBreakNew::check: ...WARNING: considered missing split for " << prog << "." << std::endl;
// this should not happen generally, it is caused by a sygus term not being assigned a tester
//Assert( false );
}
}
-bool SygusSymBreakNew::debugTesters( Node n, Node vn, int ind, std::vector< Node >& lemmas ) {
+bool SygusSymBreakNew::checkTesters(Node n,
+ Node vn,
+ int ind,
+ std::vector<Node>& lemmas)
+{
Assert( vn.getKind()==kind::APPLY_CONSTRUCTOR );
if( Trace.isOn("sygus-sb-warn") ){
Node prog_sz = NodeManager::currentNM()->mkNode( kind::DT_SIZE, n );
}
for( unsigned i=0; i<vn.getNumChildren(); i++ ){
Node sel = NodeManager::currentNM()->mkNode( kind::APPLY_SELECTOR_TOTAL, Node::fromExpr( dt[cindex].getSelectorInternal( tn.toType(), i ) ), n );
- if( !debugTesters( sel, vn[i], ind+1, lemmas ) ){
+ if (!checkTesters(sel, vn[i], ind + 1, lemmas))
+ {
return false;
}
}
}
}
-Node SygusSymBreakNew::SearchSizeInfo::getOrMkSygusMeasureTerm( std::vector< Node >& lemmas ) {
- if( d_sygus_measure_term.isNull() ){
- d_sygus_measure_term = NodeManager::currentNM()->mkSkolem( "mt", NodeManager::currentNM()->integerType() );
- lemmas.push_back( NodeManager::currentNM()->mkNode( kind::GEQ, d_sygus_measure_term, NodeManager::currentNM()->mkConst( Rational(0) ) ) );
+Node SygusSymBreakNew::SearchSizeInfo::getOrMkMeasureValue(
+ std::vector<Node>& lemmas)
+{
+ if (d_measure_value.isNull())
+ {
+ d_measure_value = NodeManager::currentNM()->mkSkolem(
+ "mt", NodeManager::currentNM()->integerType());
+ lemmas.push_back(NodeManager::currentNM()->mkNode(
+ kind::GEQ,
+ d_measure_value,
+ NodeManager::currentNM()->mkConst(Rational(0))));
}
- return d_sygus_measure_term;
+ return d_measure_value;
}
-Node SygusSymBreakNew::SearchSizeInfo::getOrMkSygusActiveMeasureTerm( std::vector< Node >& lemmas ) {
- if( d_sygus_measure_term_active.isNull() ){
- d_sygus_measure_term_active = getOrMkSygusMeasureTerm( lemmas );
+Node SygusSymBreakNew::SearchSizeInfo::getOrMkActiveMeasureValue(
+ std::vector<Node>& lemmas, bool mkNew)
+{
+ if (mkNew)
+ {
+ Node new_mt = NodeManager::currentNM()->mkSkolem(
+ "mt", NodeManager::currentNM()->integerType());
+ lemmas.push_back(NodeManager::currentNM()->mkNode(
+ kind::GEQ, new_mt, NodeManager::currentNM()->mkConst(Rational(0))));
+ d_measure_value_active = new_mt;
+ }
+ else if (d_measure_value_active.isNull())
+ {
+ d_measure_value_active = getOrMkMeasureValue(lemmas);
}
- return d_sygus_measure_term_active;
+ return d_measure_value_active;
}
Node SygusSymBreakNew::SearchSizeInfo::getFairnessLiteral( unsigned s, TheoryDatatypes * d, std::vector< Node >& lemmas ) {
class TheoryDatatypes;
+/**
+ * This is the sygus extension of the decision procedure for quantifier-free
+ * inductive datatypes. At a high level, this class takes as input a
+ * set of asserted testers is-C1( x ), is-C2( x.1 ), is-C3( x.2 ), and
+ * generates lemmas that restrict the models of x, if x is a "sygus enumerator"
+ * (see TermDbSygus::registerEnumerator).
+ *
+ * Some of these techniques are described in these papers:
+ * "Refutation-Based Synthesis in SMT", Reynolds et al 2017.
+ * "Sygus Techniques in the Core of an SMT Solver", Reynolds et al 2017.
+ */
class SygusSymBreakNew
{
typedef context::CDHashMap< Node, int, NodeHashFunction > IntMap;
quantifiers::TermDbSygus* tds,
context::Context* c);
~SygusSymBreakNew();
- /** add tester */
+ /**
+ * Notify this class that tester for constructor tindex has been asserted for
+ * n. Exp is the literal corresponding to this tester. This method may add
+ * lemmas to the vector lemmas, for details see assertTesterInternal below.
+ * These lemmas are sent out on the output channel of datatypes by the caller.
+ */
void assertTester(int tindex, TNode n, Node exp, std::vector<Node>& lemmas);
+ /**
+ * Notify this class that literal n has been asserted with the given
+ * polarity. This method may add lemmas to the vector lemmas, for instance
+ * based on inferring consequences of (not) n. One example is if n is
+ * (DT_SIZE_BOUND x n), we add the lemma:
+ * (DT_SIZE_BOUND x n) <=> ((DT_SIZE x) <= n )
+ */
void assertFact(Node n, bool polarity, std::vector<Node>& lemmas);
+ /** pre-register term n
+ *
+ * This is called when n is pre-registered with the theory of datatypes.
+ * If n is a sygus enumerator, then we may add lemmas to the vector lemmas
+ * that are used to enforce fairness regarding the size of n.
+ */
void preRegisterTerm(TNode n, std::vector<Node>& lemmas);
+ /** check
+ *
+ * This is called at last call effort, when the current model assignment is
+ * satisfiable according to the quantifier-free decision procedures and a
+ * model is built. This method may add lemmas to the vector lemmas based
+ * on dynamic symmetry breaking techniques, based on the model values of
+ * all preregistered enumerators.
+ */
void check(std::vector<Node>& lemmas);
+ /** get next decision request
+ *
+ * This function has the same interface as Theory::getNextDecisionRequest.
+ *
+ * The decisions returned by this method are of one of two forms:
+ * (1) Positive decisions on the active guards G of enumerators e registered
+ * to this class. These assert "there are more values to enumerate for e".
+ * (2) Positive bounds (DT_SYGUS_BOUND m n) for "measure terms" m (see below),
+ * where n is a non-negative integer. This asserts "the measure of terms
+ * we are enumerating for enumerators whose measure term m is at most n",
+ * where measure is commonly term size, but can also be height.
+ *
+ * We prioritize decisions of form (1) before (2). For both decisions,
+ * we set the priority argument to "1", indicating that the decision is
+ * critical for solution completeness.
+ */
Node getNextDecisionRequest(unsigned& priority, std::vector<Node>& lemmas);
private:
TheoryDatatypes* d_td;
/** Pointer to the sygus term database */
quantifiers::TermDbSygus* d_tds;
+ /**
+ * Map from terms to the index of the tester that is asserted for them in
+ * the current SAT context. In other words, if d_testers[n] = 2, then the
+ * tester is-C_2(n) is asserted in this SAT context.
+ */
IntMap d_testers;
- IntMap d_is_const;
+ /**
+ * Map from terms to the tester asserted for them. In the example above,
+ * d_testers[n] = is-C_2(n).
+ */
NodeMap d_testers_exp;
+ /**
+ * The set of (selector chain) terms that are active in the current SAT
+ * context. A selector chain term S_n( ... S_1( x )... ) is active if either:
+ * (1) n=0 and x is a sygus enumerator,
+ * or:
+ * (2.1) S_{n-1}( ... S_1( x )) is active,
+ * (2.2) is-C( S_{n-1}( ... S_1( x )) ) is asserted in this SAT context, and
+ * (2.3) S_n is a selector for constructor C.
+ */
NodeSet d_active_terms;
+ /**
+ * Map from enumerators to a lower bound on their size in the current SAT
+ * context.
+ */
IntMap d_currTermSize;
+ /** zero */
Node d_zero;
/**
* Map from terms (selector chains) to their anchors. The anchor of a
* S4 : T1 -> T3
* Then, x, S1( x ), and S4( S3( S2( S1( x ) ) ) ) are top-level terms,
* whereas S2( S1( x ) ) and S3( S2( S1( x ) ) ) are not.
- *
*/
std::unordered_map<Node, bool, NodeHashFunction> d_is_top_level;
/**
/** Get the canonical free variable for type tn */
TNode getFreeVar( TypeNode tn );
+ /** get term order predicate
+ *
+ * Assuming that n1 and n2 are children of a commutative operator, this
+ * returns a symmetry breaking predicate that can be instantiated for n1 and
+ * n2 while preserving satisfiability. By default, this is the predicate
+ * ( DT_SIZE n1 ) >= ( DT_SIZE n2 )
+ */
Node getTermOrderPredicate( Node n1, Node n2 );
-private:
- /**
- * Map from registered variables to whether they are a sygus enumerator.
- *
- * This should be user context-dependent if sygus is updated to work in
- * incremental mode.
- */
- std::map<Node, bool> d_register_st;
- void registerSizeTerm(Node e, std::vector<Node>& lemmas);
- class SearchSizeInfo
- {
- public:
+
+ private:
+ /**
+ * Map from registered variables to whether they are a sygus enumerator.
+ *
+ * This should be user context-dependent if sygus is updated to work in
+ * incremental mode.
+ */
+ std::map<Node, bool> d_register_st;
+ //----------------------search size information
+ /**
+ * Checks whether e is a sygus enumerator, that is, a term for which this
+ * class will track size for.
+ *
+ * We associate each sygus enumerator e with a "measure term", which is used
+ * for bounding the size of terms for the models of e. The measure term for a
+ * sygus enumerator may be e itself (if e has an active guard), or an
+ * arbitrary sygus variable otherwise. A measure term m is one for which our
+ * decision strategy decides on literals of the form (DT_SYGUS_BOUND m n).
+ *
+ * After determining the measure term m for e, if applicable, we initialize
+ * SearchSizeInfo for m below. This may result in lemmas
+ */
+ void registerSizeTerm(Node e, std::vector<Node>& lemmas);
+ /** information for each measure term allocated by this class */
+ class SearchSizeInfo
+ {
+ public:
SearchSizeInfo( Node t, context::Context* c ) : d_this( t ), d_curr_search_size(0), d_curr_lit( c, 0 ) {}
+ /** the measure term */
Node d_this;
+ /**
+ * For each size n, an explanation for why this measure term has size at
+ * most n. This is typically the literal (DT_SYGUS_BOUND m n), which
+ * we call the (n^th) "fairness literal" for m.
+ */
std::map< unsigned, Node > d_search_size_exp;
+ /**
+ * For each size, whether we have called SygusSymBreakNew::notifySearchSize.
+ */
std::map< unsigned, bool > d_search_size;
+ /**
+ * The current search size. This corresponds to the number of times
+ * incrementCurrentSearchSize has been called for this measure term.
+ */
unsigned d_curr_search_size;
- Node d_sygus_measure_term;
- Node d_sygus_measure_term_active;
+ /** the list of all enumerators whose measure term is this */
std::vector< Node > d_anchors;
- Node getOrMkSygusMeasureTerm( std::vector< Node >& lemmas );
- Node getOrMkSygusActiveMeasureTerm( std::vector< Node >& lemmas );
- public:
- /** current cardinality */
+ /** get or make the measure value
+ *
+ * The measure value is an integer variable v that is a (symbolic) integer
+ * value that is constrained to be less than or equal to the current search
+ * size. For example, if we are using the fairness strategy
+ * SYGUS_FAIR_DT_SIZE (see options/datatype_options.h), then we constrain:
+ * (DT_SYGUS_BOUND m n) <=> (v <= n)
+ * for all asserted fairness literals. Then, if we are enforcing fairness
+ * based on the maximum size, we assert:
+ * (DT_SIZE e) <= v
+ * for all enumerators e.
+ */
+ Node getOrMkMeasureValue(std::vector<Node>& lemmas);
+ /** get or make the active measure value
+ *
+ * The active measure value av is an integer variable that corresponds to
+ * the (symbolic) value of the sum of enumerators that are yet to be
+ * registered. This is to enforce the "sum of measures" strategy. For
+ * example, if we are using the fairness strategy SYGUS_FAIR_DT_SIZE,
+ * then initially av is equal to the measure value v, and the constraints
+ * (DT_SYGUS_BOUND m n) <=> (v <= n)
+ * are added as before. When an enumerator e is registered, we add the
+ * lemma:
+ * av = (DT_SIZE e) + av'
+ * and update the active measure value to av'. This ensures that the sum
+ * of sizes of active enumerators is at most n.
+ *
+ * If the flag mkNew is set to true, then we return a fresh variable and
+ * update the active measure value.
+ */
+ Node getOrMkActiveMeasureValue(std::vector<Node>& lemmas,
+ bool mkNew = false);
+ /**
+ * The current search size literal for this measure term. This corresponds
+ * to the minimial n such that (DT_SYGUS_BOUND d_this n) is asserted in
+ * this SAT context.
+ */
context::CDO< unsigned > d_curr_lit;
+ /**
+ * Map from integers n to the fairness literal, for each n such that this
+ * literal has been allocated (by getFairnessLiteral below).
+ */
std::map< unsigned, Node > d_lits;
+ /**
+ * Returns the s^th fairness literal for this measure term. This adds a
+ * split on this literal to lemmas.
+ */
Node getFairnessLiteral( unsigned s, TheoryDatatypes * d, std::vector< Node >& lemmas );
+ /** get the current fairness literal */
Node getCurrentFairnessLiteral( TheoryDatatypes * d, std::vector< Node >& lemmas ) {
return getFairnessLiteral( d_curr_lit.get(), d, lemmas );
}
/** increment current term size */
void incrementCurrentLiteral() { d_curr_lit.set( d_curr_lit.get() + 1 ); }
+
+ private:
+ /** the measure value */
+ Node d_measure_value;
+ /** the sygus measure value */
+ Node d_measure_value_active;
};
+ /** the above information for each registered measure term */
std::map< Node, SearchSizeInfo * > d_szinfo;
+ /** map from enumerators (anchors) to their associated measure term */
std::map< Node, Node > d_anchor_to_measure_term;
+ /** map from enumerators (anchors) to their active guard*/
std::map< Node, Node > d_anchor_to_active_guard;
+ /** generic measure term
+ *
+ * This is a global term that is used as the measure term for all sygus
+ * enumerators that do not have active guards. This class enforces that
+ * all enumerators have size at most n, where n is the minimal integer
+ * such that (DT_SYGUS_BOUND d_generic_measure_term n) is asserted.
+ */
Node d_generic_measure_term;
+ /**
+ * This increments the current search size for measure term m. This may
+ * cause lemmas to be added to lemmas based on the fact that symmetry
+ * breaking lemmas are now relevant for new search terms, see discussion
+ * of how search size affects which lemmas are relevant above
+ * addSymBreakLemmasFor.
+ */
void incrementCurrentSearchSize( Node m, std::vector< Node >& lemmas );
+ /**
+ * Notify this class that we are currently searching for terms of size at
+ * most s as model values for measure term m. Literal exp corresponds to the
+ * explanation of why the measure term has size at most n. This calls
+ * incrementSearchSize above, until the total number of times we have called
+ * incrementSearchSize so far is at least s.
+ */
void notifySearchSize( Node m, unsigned s, Node exp, std::vector< Node >& lemmas );
+ /** Allocates a SearchSizeInfo object in d_szinfo. */
void registerMeasureTerm( Node m );
+ /**
+ * Return the current search size for arbitrary term n. This is the current
+ * search size of the anchor of n.
+ */
unsigned getSearchSizeFor( Node n );
- unsigned getSearchSizeForAnchor( Node n );
+ /** return the current search size for enumerator (anchor) e */
+ unsigned getSearchSizeForAnchor(Node e);
+ /** Get the current search size for measure term m in this SAT context. */
unsigned getSearchSizeForMeasureTerm(Node m);
-
- private:
- unsigned processSelectorChain( Node n, std::map< TypeNode, Node >& top_level,
- std::map< Node, unsigned >& tdepth, std::vector< Node >& lemmas );
- bool debugTesters( Node n, Node vn, int ind, std::vector< Node >& lemmas );
+ /** get current template
+ *
+ * For debugging. This returns a term that corresponds to the current
+ * inferred shape of n. For example, if the testers
+ * is-C1( n ) and is-C2( n.1 )
+ * have been asserted where C1 and C2 are binary constructors, then this
+ * method may return a term of the form:
+ * C1( C2( x1, x2 ), x3 )
+ * for fresh variables x1, x2, x3. The map var_count maintains the variable
+ * count for generating these fresh variables.
+ */
Node getCurrentTemplate( Node n, std::map< TypeNode, int >& var_count );
+ //----------------------end search size information
+ /** check testers
+ *
+ * This is called when we have a model assignment vn for n, where n is
+ * a selector chain applied to an enumerator (a search term). This function
+ * ensures that testers have been asserted for each subterm of vn. This is
+ * critical for ensuring that the proper steps have been taken by this class
+ * regarding whether or not vn is a legal value for n (not greater than the
+ * current search size and not a value that can be blocked by symmetry
+ * breaking).
+ *
+ * For example, if vn = +( x(), x() ), then we ensure that the testers
+ * is-+( n ), is-x( n.1 ), is-x( n.2 )
+ * have been asserted to this class. If a tester is not asserted for some
+ * relevant selector chain S( n ) of n, then we add a lemma L for that
+ * selector chain to lemmas, where L is the "splitting lemma" for S( n ), that
+ * states that the top symbol of S( n ) must be one of the constructors of
+ * its type.
+ *
+ * Notice that this function is a sanity check. Typically, it should be the
+ * case that testers are asserted for all subterms of vn, and hence this
+ * method should not ever add anything to lemmas. However, due to its
+ * importance, we check this regardless.
+ */
+ bool checkTesters(Node n, Node vn, int ind, std::vector<Node>& lemmas);
+ /**
+ * Get the current SAT status of the guard g.
+ * In particular, this returns 1 if g is asserted true, -1 if it is asserted
+ * false, and 0 if it is not asserted.
+ */
int getGuardStatus( Node g );
-private:
- void assertIsConst( Node n, bool polarity, std::vector< Node >& lemmas );
};
}