--- /dev/null
+# Copyright (c) 2006-2007 The Regents of The University of Michigan
+# Copyright (c) 2009,2015 Advanced Micro Devices, Inc.
+# Copyright (c) 2013 Mark D. Hill and David A. Wood
+# Copyright (c) 2020 ARM Limited
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import math
+import m5
+from m5.objects import *
+from m5.defines import buildEnv
+from .Ruby import create_topology, create_directories
+from .Ruby import send_evicts
+from common import FileSystemConfig
+
+#
+# Declare caches used by the protocol
+#
+class L0Cache(RubyCache): pass
+class L1Cache(RubyCache): pass
+class L2Cache(RubyCache): pass
+
+def define_options(parser):
+ parser.add_option("--num-clusters", type = "int", default = 1,
+ help = "number of clusters in a design in which there are shared\
+ caches private to clusters")
+ parser.add_option("--l0i_size", type="string", default="4096B")
+ parser.add_option("--l0d_size", type="string", default="4096B")
+ parser.add_option("--l0i_assoc", type="int", default=1)
+ parser.add_option("--l0d_assoc", type="int", default=1)
+ parser.add_option("--l0_transitions_per_cycle", type="int", default=32)
+ parser.add_option("--l1_transitions_per_cycle", type="int", default=32)
+ parser.add_option("--l2_transitions_per_cycle", type="int", default=4)
+ parser.add_option("--enable-prefetch", action="store_true", default=False,\
+ help="Enable Ruby hardware prefetcher")
+ return
+
+def create_system(options, full_system, system, dma_ports, bootmem,
+ ruby_system):
+
+ if buildEnv['PROTOCOL'] != 'MESI_Three_Level_HTM':
+ fatal("This script requires the MESI_Three_Level protocol to be\
+ built.")
+
+ cpu_sequencers = []
+
+ #
+ # The ruby network creation expects the list of nodes in the system to be
+ # consistent with the NetDest list. Therefore the l1 controller nodes
+ # must be listed before the directory nodes and directory nodes before
+ # dma nodes, etc.
+ #
+ l0_cntrl_nodes = []
+ l1_cntrl_nodes = []
+ l2_cntrl_nodes = []
+ dma_cntrl_nodes = []
+
+ assert (options.num_cpus % options.num_clusters == 0)
+ num_cpus_per_cluster = options.num_cpus / options.num_clusters
+
+ assert (options.num_l2caches % options.num_clusters == 0)
+ num_l2caches_per_cluster = options.num_l2caches / options.num_clusters
+
+ l2_bits = int(math.log(num_l2caches_per_cluster, 2))
+ block_size_bits = int(math.log(options.cacheline_size, 2))
+ l2_index_start = block_size_bits + l2_bits
+
+ #
+ # Must create the individual controllers before the network to ensure the
+ # controller constructors are called before the network constructor
+ #
+ for i in range(options.num_clusters):
+ for j in range(num_cpus_per_cluster):
+ #
+ # First create the Ruby objects associated with this cpu
+ #
+ l0i_cache = L0Cache(size = options.l0i_size,
+ assoc = options.l0i_assoc,
+ is_icache = True,
+ start_index_bit = block_size_bits,
+ replacement_policy = LRURP())
+
+ l0d_cache = L0Cache(size = options.l0d_size,
+ assoc = options.l0d_assoc,
+ is_icache = False,
+ start_index_bit = block_size_bits,
+ replacement_policy = LRURP())
+
+ # the ruby random tester reuses num_cpus to specify the
+ # number of cpu ports connected to the tester object, which
+ # is stored in system.cpu. because there is only ever one
+ # tester object, num_cpus is not necessarily equal to the
+ # size of system.cpu; therefore if len(system.cpu) == 1
+ # we use system.cpu[0] to set the clk_domain, thereby ensuring
+ # we don't index off the end of the cpu list.
+ if len(system.cpu) == 1:
+ clk_domain = system.cpu[0].clk_domain
+ else:
+ clk_domain = system.cpu[i].clk_domain
+
+ # Ruby prefetcher
+ prefetcher = RubyPrefetcher(
+ num_streams=16,
+ unit_filter = 256,
+ nonunit_filter = 256,
+ train_misses = 5,
+ num_startup_pfs = 4,
+ cross_page = True
+ )
+
+ l0_cntrl = L0Cache_Controller(
+ version = i * num_cpus_per_cluster + j,
+ Icache = l0i_cache, Dcache = l0d_cache,
+ transitions_per_cycle = options.l0_transitions_per_cycle,
+ prefetcher = prefetcher,
+ enable_prefetch = options.enable_prefetch,
+ send_evictions = send_evicts(options),
+ clk_domain = clk_domain,
+ ruby_system = ruby_system)
+
+ cpu_seq = RubyHTMSequencer(version = i * num_cpus_per_cluster + j,
+ icache = l0i_cache,
+ clk_domain = clk_domain,
+ dcache = l0d_cache,
+ ruby_system = ruby_system)
+
+ l0_cntrl.sequencer = cpu_seq
+
+ l1_cache = L1Cache(size = options.l1d_size,
+ assoc = options.l1d_assoc,
+ start_index_bit = block_size_bits,
+ is_icache = False)
+
+ l1_cntrl = L1Cache_Controller(
+ version = i * num_cpus_per_cluster + j,
+ cache = l1_cache, l2_select_num_bits = l2_bits,
+ cluster_id = i,
+ transitions_per_cycle = options.l1_transitions_per_cycle,
+ ruby_system = ruby_system)
+
+ exec("ruby_system.l0_cntrl%d = l0_cntrl"
+ % ( i * num_cpus_per_cluster + j))
+ exec("ruby_system.l1_cntrl%d = l1_cntrl"
+ % ( i * num_cpus_per_cluster + j))
+
+ #
+ # Add controllers and sequencers to the appropriate lists
+ #
+ cpu_sequencers.append(cpu_seq)
+ l0_cntrl_nodes.append(l0_cntrl)
+ l1_cntrl_nodes.append(l1_cntrl)
+
+ # Connect the L0 and L1 controllers
+ l0_cntrl.prefetchQueue = MessageBuffer()
+ l0_cntrl.mandatoryQueue = MessageBuffer()
+ l0_cntrl.bufferToL1 = MessageBuffer(ordered = True)
+ l1_cntrl.bufferFromL0 = l0_cntrl.bufferToL1
+ l0_cntrl.bufferFromL1 = MessageBuffer(ordered = True)
+ l1_cntrl.bufferToL0 = l0_cntrl.bufferFromL1
+
+ # Connect the L1 controllers and the network
+ l1_cntrl.requestToL2 = MessageBuffer()
+ l1_cntrl.requestToL2.master = ruby_system.network.slave
+ l1_cntrl.responseToL2 = MessageBuffer()
+ l1_cntrl.responseToL2.master = ruby_system.network.slave
+ l1_cntrl.unblockToL2 = MessageBuffer()
+ l1_cntrl.unblockToL2.master = ruby_system.network.slave
+
+ l1_cntrl.requestFromL2 = MessageBuffer()
+ l1_cntrl.requestFromL2.slave = ruby_system.network.master
+ l1_cntrl.responseFromL2 = MessageBuffer()
+ l1_cntrl.responseFromL2.slave = ruby_system.network.master
+
+
+ for j in range(num_l2caches_per_cluster):
+ l2_cache = L2Cache(size = options.l2_size,
+ assoc = options.l2_assoc,
+ start_index_bit = l2_index_start)
+
+ l2_cntrl = L2Cache_Controller(
+ version = i * num_l2caches_per_cluster + j,
+ L2cache = l2_cache, cluster_id = i,
+ transitions_per_cycle =\
+ options.l2_transitions_per_cycle,
+ ruby_system = ruby_system)
+
+ exec("ruby_system.l2_cntrl%d = l2_cntrl"
+ % (i * num_l2caches_per_cluster + j))
+ l2_cntrl_nodes.append(l2_cntrl)
+
+ # Connect the L2 controllers and the network
+ l2_cntrl.DirRequestFromL2Cache = MessageBuffer()
+ l2_cntrl.DirRequestFromL2Cache.master = ruby_system.network.slave
+ l2_cntrl.L1RequestFromL2Cache = MessageBuffer()
+ l2_cntrl.L1RequestFromL2Cache.master = ruby_system.network.slave
+ l2_cntrl.responseFromL2Cache = MessageBuffer()
+ l2_cntrl.responseFromL2Cache.master = ruby_system.network.slave
+
+ l2_cntrl.unblockToL2Cache = MessageBuffer()
+ l2_cntrl.unblockToL2Cache.slave = ruby_system.network.master
+ l2_cntrl.L1RequestToL2Cache = MessageBuffer()
+ l2_cntrl.L1RequestToL2Cache.slave = ruby_system.network.master
+ l2_cntrl.responseToL2Cache = MessageBuffer()
+ l2_cntrl.responseToL2Cache.slave = ruby_system.network.master
+
+ # Run each of the ruby memory controllers at a ratio of the frequency of
+ # the ruby system
+ # clk_divider value is a fix to pass regression.
+ ruby_system.memctrl_clk_domain = DerivedClockDomain(
+ clk_domain = ruby_system.clk_domain, clk_divider = 3)
+
+ mem_dir_cntrl_nodes, rom_dir_cntrl_node = create_directories(
+ options, bootmem, ruby_system, system)
+ dir_cntrl_nodes = mem_dir_cntrl_nodes[:]
+ if rom_dir_cntrl_node is not None:
+ dir_cntrl_nodes.append(rom_dir_cntrl_node)
+ for dir_cntrl in dir_cntrl_nodes:
+ # Connect the directory controllers and the network
+ dir_cntrl.requestToDir = MessageBuffer()
+ dir_cntrl.requestToDir.slave = ruby_system.network.master
+ dir_cntrl.responseToDir = MessageBuffer()
+ dir_cntrl.responseToDir.slave = ruby_system.network.master
+ dir_cntrl.responseFromDir = MessageBuffer()
+ dir_cntrl.responseFromDir.master = ruby_system.network.slave
+ dir_cntrl.requestToMemory = MessageBuffer()
+ dir_cntrl.responseFromMemory = MessageBuffer()
+
+ for i, dma_port in enumerate(dma_ports):
+ #
+ # Create the Ruby objects associated with the dma controller
+ #
+ dma_seq = DMASequencer(version = i, ruby_system = ruby_system)
+
+ dma_cntrl = DMA_Controller(version = i,
+ dma_sequencer = dma_seq,
+ transitions_per_cycle = options.ports,
+ ruby_system = ruby_system)
+
+ exec("ruby_system.dma_cntrl%d = dma_cntrl" % i)
+ exec("ruby_system.dma_cntrl%d.dma_sequencer.slave = dma_port" % i)
+ dma_cntrl_nodes.append(dma_cntrl)
+
+ # Connect the dma controller to the network
+ dma_cntrl.mandatoryQueue = MessageBuffer()
+ dma_cntrl.responseFromDir = MessageBuffer(ordered = True)
+ dma_cntrl.responseFromDir.slave = ruby_system.network.master
+ dma_cntrl.requestToDir = MessageBuffer()
+ dma_cntrl.requestToDir.master = ruby_system.network.slave
+
+ all_cntrls = l0_cntrl_nodes + \
+ l1_cntrl_nodes + \
+ l2_cntrl_nodes + \
+ dir_cntrl_nodes + \
+ dma_cntrl_nodes
+
+ # Create the io controller and the sequencer
+ if full_system:
+ io_seq = DMASequencer(version=len(dma_ports), ruby_system=ruby_system)
+ ruby_system._io_port = io_seq
+ io_controller = DMA_Controller(version = len(dma_ports),
+ dma_sequencer = io_seq,
+ ruby_system = ruby_system)
+ ruby_system.io_controller = io_controller
+
+ # Connect the dma controller to the network
+ io_controller.mandatoryQueue = MessageBuffer()
+ io_controller.responseFromDir = MessageBuffer(ordered = True)
+ io_controller.responseFromDir.slave = ruby_system.network.master
+ io_controller.requestToDir = MessageBuffer()
+ io_controller.requestToDir.master = ruby_system.network.slave
+
+ all_cntrls = all_cntrls + [io_controller]
+ # Register configuration with filesystem
+ else:
+ for i in range(options.num_clusters):
+ for j in range(num_cpus_per_cluster):
+ FileSystemConfig.register_cpu(physical_package_id = 0,
+ core_siblings = range(options.num_cpus),
+ core_id = i*num_cpus_per_cluster+j,
+ thread_siblings = [])
+
+ FileSystemConfig.register_cache(level = 0,
+ idu_type = 'Instruction',
+ size = options.l0i_size,
+ line_size =\
+ options.cacheline_size,
+ assoc = 1,
+ cpus = [i*num_cpus_per_cluster+j])
+ FileSystemConfig.register_cache(level = 0,
+ idu_type = 'Data',
+ size = options.l0d_size,
+ line_size =\
+ options.cacheline_size,
+ assoc = 1,
+ cpus = [i*num_cpus_per_cluster+j])
+
+ FileSystemConfig.register_cache(level = 1,
+ idu_type = 'Unified',
+ size = options.l1d_size,
+ line_size = options.cacheline_size,
+ assoc = options.l1d_assoc,
+ cpus = [i*num_cpus_per_cluster+j])
+
+ FileSystemConfig.register_cache(level = 2,
+ idu_type = 'Unified',
+ size = str(MemorySize(options.l2_size) * \
+ num_l2caches_per_cluster)+'B',
+ line_size = options.cacheline_size,
+ assoc = options.l2_assoc,
+ cpus = [n for n in range(i*num_cpus_per_cluster, \
+ (i+1)*num_cpus_per_cluster)])
+
+ ruby_system.network.number_of_virtual_networks = 3
+ topology = create_topology(all_cntrls, options)
+ return (cpu_sequencers, mem_dir_cntrl_nodes, topology)
--- /dev/null
+/*
+ * Copyright (c) 2020 ARM Limited
+ * All rights reserved
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Copyright (c) 2013 Mark D. Hill and David A. Wood
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+machine(MachineType:L0Cache, "MESI Directory L0 Cache")
+ : HTMSequencer * sequencer;
+ CacheMemory * Icache;
+ CacheMemory * Dcache;
+ Cycles request_latency := 2;
+ Cycles response_latency := 2;
+ bool send_evictions;
+
+ RubyPrefetcher * prefetcher;
+ bool enable_prefetch := "False";
+
+ // From this node's L0 cache to the network
+ MessageBuffer * bufferToL1, network="To";
+
+ // To this node's L0 cache FROM the network
+ MessageBuffer * bufferFromL1, network="From";
+
+ // Message queue between this controller and the processor
+ MessageBuffer * mandatoryQueue;
+
+ // Request Buffer for prefetches
+ MessageBuffer * prefetchQueue;
+{
+ // hardware transactional memory
+ bool htmTransactionalState, default="false";
+ bool htmFailed, default="false";
+ int htmUid, default=0;
+ HtmFailedInCacheReason htmFailedRc, default=HtmFailedInCacheReason_NO_FAIL;
+
+ // STATES
+ state_declaration(State, desc="Cache states", default="L0Cache_State_I") {
+ // Base states
+
+ // The cache entry has not been allocated.
+ I, AccessPermission:Invalid, desc="Invalid";
+
+ // The cache entry is in shared mode. The processor can read this entry
+ // but it cannot write to it.
+ S, AccessPermission:Read_Only, desc="Shared";
+
+ // The cache entry is in exclusive mode. The processor can read this
+ // entry. It can write to this entry without informing the directory.
+ // On writing, the entry moves to M state.
+ E, AccessPermission:Read_Only, desc="Exclusive";
+
+ // The processor has read and write permissions on this entry.
+ M, AccessPermission:Read_Write, desc="Modified";
+
+ // Transient States
+
+ // The cache controller has requested an instruction. It will be stored
+ // in the shared state so that the processor can read it.
+ Inst_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet";
+
+ // The cache controller has requested that this entry be fetched in
+ // shared state so that the processor can read it.
+ IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet";
+
+ // The cache controller has requested that this entry be fetched in
+ // modify state so that the processor can read/write it.
+ IM, AccessPermission:Busy, desc="Issued GETX, have not seen response yet";
+
+ // The cache controller had read permission over the entry. But now the
+ // processor needs to write to it. So, the controller has requested for
+ // write permission.
+ SM, AccessPermission:Read_Only, desc="Issued GETX, have not seen response yet";
+
+ // Transient states in which block is being prefetched
+ PF_Inst_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet";
+ PF_IS, AccessPermission:Busy, desc="Issued GETS, have not seen response yet";
+ PF_IE, AccessPermission:Busy, desc="Issued GETX, have not seen response yet";
+ }
+
+ // EVENTS
+ enumeration(Event, desc="Cache events") {
+ // Events from core
+ Load, desc="Load request from the home processor";
+ Ifetch, desc="I-fetch request from the home processor";
+ Store, desc="Store request from the home processor";
+
+ // invalidations from L1 (due to self or other core)
+ InvOwn, desc="Invalidate request from L1 (own)";
+ InvElse, desc="Invalidate request from L1 (else)";
+
+ // internal generated request
+ L0_Replacement, desc="L0 Replacement", format="!r";
+
+ // requests forwarded from other processors
+ Fwd_GETX, desc="GETX from other processor";
+ Fwd_GETS, desc="GETS from other processor";
+ Fwd_GET_INSTR, desc="GET_INSTR from other processor";
+
+ // data arrives from L1 cache
+ Data, desc="Data for processor";
+ Data_Exclusive, desc="Data for processor";
+ Data_Stale, desc="Data for processor, but not for storage";
+
+ Ack, desc="Ack for processor";
+
+ WB_Ack, desc="Ack for replacement";
+
+ Failed_SC, desc="Store conditional request that will fail";
+
+ // Prefetch events (generated by prefetcher)
+ PF_L0_Replacement, desc="L0 Replacement caused by pretcher", format="!pr";
+ PF_Load, desc="Load request from prefetcher";
+ PF_Ifetch, desc="Instruction fetch request from prefetcher";
+ PF_Store, desc="Exclusive load request from prefetcher";
+ PF_Bad_Addr, desc="Throw away prefetch request due to bad address generation";
+
+ // hardware transactional memory
+ HTM_Abort, desc="Abort HTM transaction and rollback cache to pre-transactional state";
+ HTM_Start, desc="Place cache in HTM transactional state";
+ HTM_Commit, desc="Commit speculative loads/stores and place cache in normal state";
+ HTM_Cancel, desc="Fail HTM transaction explicitely without aborting";
+ HTM_notifyCMD, desc="Notify core via HTM CMD that HTM transaction has failed";
+ HTM_notifyLD, desc="Notify core via LD that HTM transaction has failed";
+ HTM_notifyST, desc="Notify core via ST that HTM transaction has failed";
+ }
+
+ // TYPES
+
+ // CacheEntry
+ structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
+ State CacheState, desc="cache state";
+ DataBlock DataBlk, desc="data for the block";
+ bool Dirty, default="false", desc="data is dirty";
+ bool isPrefetched, default="false", desc="Set if this block was prefetched";
+
+ // hardware transactional memory
+ // read/write set state
+ void setInHtmReadSet(bool), external="yes";
+ void setInHtmWriteSet(bool), external="yes";
+ bool getInHtmReadSet(), external="yes";
+ bool getInHtmWriteSet(), external="yes";
+
+ // override invalidateEntry
+ void invalidateEntry() {
+ CacheState := State:I;
+ Dirty := false;
+ }
+ }
+
+ // TBE fields
+ structure(TBE, desc="...") {
+ Addr addr, desc="Physical address for this TBE";
+ State TBEState, desc="Transient state";
+ DataBlock DataBlk, desc="Buffer for the data block";
+ bool Dirty, default="false", desc="data is dirty";
+ int pendingAcks, default="0", desc="number of pending acks";
+ }
+
+ structure(TBETable, external="yes") {
+ TBE lookup(Addr);
+ void allocate(Addr);
+ void deallocate(Addr);
+ bool isPresent(Addr);
+ TBE getNullEntry();
+ }
+
+ TBETable TBEs, template="<L0Cache_TBE>", constructor="m_number_of_TBEs";
+
+ Tick clockEdge();
+ Cycles ticksToCycles(Tick t);
+ void set_cache_entry(AbstractCacheEntry a);
+ void unset_cache_entry();
+ void set_tbe(TBE a);
+ void unset_tbe();
+ void wakeUpBuffers(Addr a);
+ void wakeUpAllBuffers(Addr a);
+ void profileMsgDelay(int virtualNetworkType, Cycles c);
+ MachineID mapAddressToMachine(Addr addr, MachineType mtype);
+
+ // inclusive cache returns L0 entries only
+ Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
+ Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]);
+ if(is_valid(Dcache_entry)) {
+ return Dcache_entry;
+ }
+
+ Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]);
+ return Icache_entry;
+ }
+
+ Entry getDCacheEntry(Addr addr), return_by_pointer="yes" {
+ Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]);
+ return Dcache_entry;
+ }
+
+ Entry getICacheEntry(Addr addr), return_by_pointer="yes" {
+ Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]);
+ return Icache_entry;
+ }
+
+ State getState(TBE tbe, Entry cache_entry, Addr addr) {
+ assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false);
+
+ if(is_valid(tbe)) {
+ return tbe.TBEState;
+ } else if (is_valid(cache_entry)) {
+ return cache_entry.CacheState;
+ }
+ return State:I;
+ }
+
+ void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
+ assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false);
+
+ // MUST CHANGE
+ if(is_valid(tbe)) {
+ tbe.TBEState := state;
+ }
+
+ if (is_valid(cache_entry)) {
+ cache_entry.CacheState := state;
+ }
+ }
+
+ AccessPermission getAccessPermission(Addr addr) {
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(tbe.TBEState));
+ return L0Cache_State_to_permission(tbe.TBEState);
+ }
+
+ Entry cache_entry := getCacheEntry(addr);
+ if(is_valid(cache_entry)) {
+ DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(cache_entry.CacheState));
+ return L0Cache_State_to_permission(cache_entry.CacheState);
+ }
+
+ DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
+ return AccessPermission:NotPresent;
+ }
+
+ void functionalRead(Addr addr, Packet *pkt) {
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ testAndRead(addr, tbe.DataBlk, pkt);
+ } else {
+ testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
+ }
+ }
+
+ int functionalWrite(Addr addr, Packet *pkt) {
+ int num_functional_writes := 0;
+
+ TBE tbe := TBEs[addr];
+ if(is_valid(tbe)) {
+ num_functional_writes := num_functional_writes +
+ testAndWrite(addr, tbe.DataBlk, pkt);
+ return num_functional_writes;
+ }
+
+ num_functional_writes := num_functional_writes +
+ testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt);
+ return num_functional_writes;
+ }
+
+ void setAccessPermission(Entry cache_entry, Addr addr, State state) {
+ if (is_valid(cache_entry)) {
+ cache_entry.changePermission(L0Cache_State_to_permission(state));
+ }
+ }
+
+ Event mandatory_request_type_to_event(RubyRequestType type) {
+ if (type == RubyRequestType:LD) {
+ return Event:Load;
+ } else if (type == RubyRequestType:IFETCH) {
+ return Event:Ifetch;
+ } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)
+ || (type == RubyRequestType:Store_Conditional)) {
+ return Event:Store;
+ } else {
+ error("Invalid RubyRequestType");
+ }
+ }
+
+ Event prefetch_request_type_to_event(RubyRequestType type) {
+ if (type == RubyRequestType:LD) {
+ return Event:PF_Load;
+ } else if (type == RubyRequestType:IFETCH) {
+ return Event:PF_Ifetch;
+ } else if (type == RubyRequestType:ST) {
+ return Event:PF_Store;
+ } else {
+ error("Invalid RubyRequestType");
+ }
+ }
+
+ int getPendingAcks(TBE tbe) {
+ return tbe.pendingAcks;
+ }
+
+ out_port(requestNetwork_out, CoherenceMsg, bufferToL1);
+ out_port(optionalQueue_out, RubyRequest, prefetchQueue);
+
+ void enqueuePrefetch(Addr address, RubyRequestType type) {
+ enqueue(optionalQueue_out, RubyRequest, 1) {
+ out_msg.LineAddress := address;
+ out_msg.Type := type;
+ out_msg.Prefetch := PrefetchBit:Yes;
+ out_msg.AccessMode := RubyAccessMode:Supervisor;
+ }
+ }
+
+ // Prefetch queue between the controller and the prefetcher
+ // As per Spracklen et al. (HPCA 2005), the prefetch queue should be
+ // implemented as a LIFO structure. The structure would allow for fast
+ // searches of all entries in the queue, not just the head msg. All
+ // msgs in the structure can be invalidated if a demand miss matches.
+ in_port(optionalQueue_in, RubyRequest, prefetchQueue, desc="...", rank = 2) {
+ if (optionalQueue_in.isReady(clockEdge())) {
+ peek(optionalQueue_in, RubyRequest) {
+ // first check for valid address
+ MachineID mid := mapAddressToMachine(in_msg.LineAddress, MachineType:Directory);
+ NodeID nid := machineIDToNodeID(mid);
+ int nidint := IDToInt(nid);
+ int numDirs := machineCount(MachineType:Directory);
+ if (nidint >= numDirs) {
+ Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry());
+ TBE tbe := TBEs.getNullEntry();
+ trigger(Event:PF_Bad_Addr, in_msg.LineAddress, cache_entry, tbe);
+ } else if (in_msg.Type == RubyRequestType:IFETCH) {
+ // Instruction Prefetch
+ Entry icache_entry := getICacheEntry(in_msg.LineAddress);
+ if (is_valid(icache_entry)) {
+ // The block to be prefetched is already present in the
+ // cache. This request will be made benign and cause the
+ // prefetch queue to be popped.
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ icache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ // Check to see if it is in the L0-D
+ Entry cache_entry := getDCacheEntry(in_msg.LineAddress);
+ if (is_valid(cache_entry)) {
+ // The block is in the wrong L0 cache. We should drop
+ // this request.
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ cache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ if (Icache.cacheAvail(in_msg.LineAddress)) {
+ // L0-I does't have the line, but we have space for it
+ // in the L0-I so let's see if the L1 has it
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ icache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // No room in the L0-I, so we need to make room in the L0-I
+ Addr addr := Icache.cacheProbe(in_msg.LineAddress);
+ check_on_cache_probe(optionalQueue_in, addr);
+
+ trigger(Event:PF_L0_Replacement, addr,
+ getICacheEntry(addr),
+ TBEs[addr]);
+ }
+ } else {
+ // Data prefetch
+ Entry cache_entry := getDCacheEntry(in_msg.LineAddress);
+ if (is_valid(cache_entry)) {
+ // The block to be prefetched is already present in the
+ // cache. This request will be made benign and cause the
+ // prefetch queue to be popped.
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ cache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ // Check to see if it is in the L0-I
+ Entry icache_entry := getICacheEntry(in_msg.LineAddress);
+ if (is_valid(icache_entry)) {
+ // The block is in the wrong L0. Just drop the prefetch
+ // request.
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ icache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ if (Dcache.cacheAvail(in_msg.LineAddress)) {
+ // L0-D does't have the line, but we have space for it in
+ // the L0-D let's see if the L1 has it
+ trigger(prefetch_request_type_to_event(in_msg.Type),
+ in_msg.LineAddress,
+ cache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // No room in the L0-D, so we need to make room in the L0-D
+ Addr addr := Dcache.cacheProbe(in_msg.LineAddress);
+ check_on_cache_probe(optionalQueue_in, addr);
+
+ trigger(Event:PF_L0_Replacement, addr,
+ getDCacheEntry(addr),
+ TBEs[addr]);
+ }
+ }
+ }
+ }
+ }
+
+ // Messages for this L0 cache from the L1 cache
+ in_port(messgeBuffer_in, CoherenceMsg, bufferFromL1, rank = 1) {
+ if (messgeBuffer_in.isReady(clockEdge())) {
+ peek(messgeBuffer_in, CoherenceMsg, block_on="addr") {
+ assert(in_msg.Dest == machineID);
+
+ Entry cache_entry := getCacheEntry(in_msg.addr);
+ TBE tbe := TBEs[in_msg.addr];
+
+ if(in_msg.Class == CoherenceClass:DATA_EXCLUSIVE) {
+ trigger(Event:Data_Exclusive, in_msg.addr, cache_entry, tbe);
+ } else if(in_msg.Class == CoherenceClass:DATA) {
+ trigger(Event:Data, in_msg.addr, cache_entry, tbe);
+ } else if(in_msg.Class == CoherenceClass:STALE_DATA) {
+ trigger(Event:Data_Stale, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:ACK) {
+ trigger(Event:Ack, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:WB_ACK) {
+ trigger(Event:WB_Ack, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:INV_OWN) {
+ trigger(Event:InvOwn, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:INV_ELSE) {
+ trigger(Event:InvElse, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:GETX ||
+ in_msg.Class == CoherenceClass:UPGRADE) {
+ // upgrade transforms to GETX due to race
+ trigger(Event:Fwd_GETX, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:GETS) {
+ trigger(Event:Fwd_GETS, in_msg.addr, cache_entry, tbe);
+ } else if (in_msg.Class == CoherenceClass:GET_INSTR) {
+ trigger(Event:Fwd_GET_INSTR, in_msg.addr, cache_entry, tbe);
+ } else {
+ error("Invalid forwarded request type");
+ }
+ }
+ }
+ }
+
+ // Mandatory Queue betweens Node's CPU and it's L0 caches
+ in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) {
+ if (mandatoryQueue_in.isReady(clockEdge())) {
+ peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
+
+ // hardware transactional memory support begins here
+
+ // If this cache controller is in a transactional state/mode,
+ // ensure that its failure status is something recognisable.
+ if (htmFailed) {
+ assert(htmFailedRc == HtmFailedInCacheReason:FAIL_SELF ||
+ htmFailedRc == HtmFailedInCacheReason:FAIL_REMOTE ||
+ htmFailedRc == HtmFailedInCacheReason:FAIL_OTHER);
+ }
+
+ // HTM_Start commands set a new htmUid
+ // This is used for debugging and sanity checks
+ if (in_msg.Type == RubyRequestType:HTM_Start) {
+ assert (htmUid != in_msg.htmTransactionUid);
+ htmUid := in_msg.htmTransactionUid;
+ }
+
+ // If the incoming memory request was generated within a transaction,
+ // ensure that the request's htmUid matches the htmUid of this
+ // cache controller. A mismatch here is fatal and implies there was
+ // a reordering that should never have taken place.
+ if (in_msg.htmFromTransaction &&
+ (htmUid != in_msg.htmTransactionUid)) {
+ DPRINTF(HtmMem,
+ "mandatoryQueue_in: (%u) 0x%lx mismatch between cache htmUid=%u and message htmUid=%u\n",
+ in_msg.Type, in_msg.LineAddress, htmUid, in_msg.htmTransactionUid);
+ }
+
+ // special/rare case which hopefully won't occur
+ if (htmFailed && in_msg.Type == RubyRequestType:HTM_Start) {
+ error("cannot handle this special HTM case yet");
+ }
+
+ // The transaction is to be aborted--
+ // Aborting a transaction returns the cache to a non-transactional
+ // state/mode, resets the read/write sets, and invalidates any
+ // speculatively written lines.
+ if (in_msg.Type == RubyRequestType:HTM_Abort) {
+ Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry());
+ TBE tbe := TBEs.getNullEntry();
+ trigger(Event:HTM_Abort, in_msg.LineAddress, cache_entry, tbe);
+ }
+ // The transaction has failed but not yet aborted--
+ // case 1:
+ // If memory request is transactional but the transaction has failed,
+ // it is necessary to inform the CPU of the failure.
+ // case 2:
+ // If load/store memory request is transactional and cache is not
+ // in transactional state, it's likely that the transaction aborted
+ // and Ruby is still receiving scheduled memory operations.
+ // The solution is to make these requests benign.
+ else if ((in_msg.htmFromTransaction && htmFailed) || (in_msg.htmFromTransaction && !isHtmCmdRequest(in_msg.Type) && !htmTransactionalState)) {
+ if (isHtmCmdRequest(in_msg.Type)) {
+ Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry());
+ TBE tbe := TBEs.getNullEntry();
+ trigger(Event:HTM_notifyCMD, in_msg.LineAddress, cache_entry, tbe);
+ } else if (isDataReadRequest(in_msg.Type)) {
+ Entry cache_entry := getDCacheEntry(in_msg.LineAddress);
+ TBE tbe := TBEs[in_msg.LineAddress];
+ trigger(Event:HTM_notifyLD, in_msg.LineAddress, cache_entry, tbe);
+ } else if (isWriteRequest(in_msg.Type)) {
+ Entry cache_entry := getDCacheEntry(in_msg.LineAddress);
+ TBE tbe := TBEs[in_msg.LineAddress];
+ trigger(Event:HTM_notifyST, in_msg.LineAddress, cache_entry, tbe);
+ } else {
+ error("unknown message type");
+ }
+ }
+ // The transaction has not failed and this is
+ // one of three HTM commands--
+ // (1) start a transaction
+ // (2) commit a transaction
+ // (3) cancel/fail a transaction (but don't yet abort it)
+ else if (isHtmCmdRequest(in_msg.Type) && in_msg.Type != RubyRequestType:HTM_Abort) {
+ Entry cache_entry := static_cast(Entry, "pointer", Dcache.getNullEntry());
+ TBE tbe := TBEs.getNullEntry();
+ if (in_msg.Type == RubyRequestType:HTM_Start) {
+ DPRINTF(HtmMem,
+ "mandatoryQueue_in: Starting htm transaction htmUid=%u\n",
+ htmUid);
+ trigger(Event:HTM_Start, in_msg.LineAddress, cache_entry, tbe);
+ } else if (in_msg.Type == RubyRequestType:HTM_Commit) {
+ DPRINTF(HtmMem,
+ "mandatoryQueue_in: Committing transaction htmUid=%d\n",
+ htmUid);
+ trigger(Event:HTM_Commit, in_msg.LineAddress, cache_entry, tbe);
+ } else if (in_msg.Type == RubyRequestType:HTM_Cancel) {
+ DPRINTF(HtmMem,
+ "mandatoryQueue_in: Cancelling transaction htmUid=%d\n",
+ htmUid);
+ trigger(Event:HTM_Cancel, in_msg.LineAddress, cache_entry, tbe);
+ }
+ }
+ // end: hardware transactional memory
+ else if (in_msg.Type == RubyRequestType:IFETCH) {
+ // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
+ // ** INSTRUCTION ACCESS ***
+
+ Entry Icache_entry := getICacheEntry(in_msg.LineAddress);
+ if (is_valid(Icache_entry)) {
+ // The tag matches for the L0, so the L0 asks the L2 for it.
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
+ Icache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+
+ // Check to see if it is in the OTHER L0
+ Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress);
+ if (is_valid(Dcache_entry)) {
+ // The block is in the wrong L0, put the request on the queue to the shared L2
+ trigger(Event:L0_Replacement, in_msg.LineAddress,
+ Dcache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ if (Icache.cacheAvail(in_msg.LineAddress)) {
+ // L0 does't have the line, but we have space for it
+ // in the L0 so let's see if the L2 has it
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
+ Icache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // No room in the L0, so we need to make room in the L0
+ // Check if the line we want to evict is not locked
+ Addr addr := Icache.cacheProbe(in_msg.LineAddress);
+ check_on_cache_probe(mandatoryQueue_in, addr);
+ trigger(Event:L0_Replacement, addr,
+ getICacheEntry(addr),
+ TBEs[addr]);
+ }
+ }
+ } else {
+ // *** DATA ACCESS ***
+ Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress);
+
+ // early out for failed store conditionals
+
+ if (in_msg.Type == RubyRequestType:Store_Conditional) {
+ if (!sequencer.llscCheckMonitor(in_msg.LineAddress)) {
+ trigger(Event:Failed_SC, in_msg.LineAddress,
+ Dcache_entry, TBEs[in_msg.LineAddress]);
+ }
+ }
+
+ if (is_valid(Dcache_entry)) {
+ // The tag matches for the L0, so the L0 ask the L1 for it
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
+ Dcache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // if the request is not valid, the store conditional will fail
+ if (in_msg.Type == RubyRequestType:Store_Conditional) {
+ // if the line is not valid, it can't be locked
+ trigger(Event:Failed_SC, in_msg.LineAddress,
+ Dcache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // Check to see if it is in the OTHER L0
+ Entry Icache_entry := getICacheEntry(in_msg.LineAddress);
+ if (is_valid(Icache_entry)) {
+ // The block is in the wrong L0, put the request on the queue to the private L1
+ trigger(Event:L0_Replacement, in_msg.LineAddress,
+ Icache_entry, TBEs[in_msg.LineAddress]);
+ }
+
+ if (Dcache.cacheAvail(in_msg.LineAddress)) {
+ // L1 does't have the line, but we have space for it
+ // in the L0 let's see if the L1 has it
+ trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
+ Dcache_entry, TBEs[in_msg.LineAddress]);
+ } else {
+ // No room in the L1, so we need to make room in the L0
+ // Check if the line we want to evict is not locked
+ Addr addr := Dcache.cacheProbe(in_msg.LineAddress);
+ check_on_cache_probe(mandatoryQueue_in, addr);
+ trigger(Event:L0_Replacement, addr,
+ getDCacheEntry(addr),
+ TBEs[addr]);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // ACTIONS
+ action(a_issueGETS, "a", desc="Issue GETS") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:GETS;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
+ address, out_msg.Dest);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.AccessMode := in_msg.AccessMode;
+ }
+ }
+ }
+
+ action(b_issueGETX, "b", desc="Issue GETX") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:GETX;
+ out_msg.Sender := machineID;
+ DPRINTF(RubySlicc, "%s\n", machineID);
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+
+ DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
+ address, out_msg.Dest);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.AccessMode := in_msg.AccessMode;
+ }
+ }
+ }
+
+ action(c_issueUPGRADE, "c", desc="Issue GETX") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:UPGRADE;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+
+ DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
+ address, out_msg.Dest);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.AccessMode := in_msg.AccessMode;
+ }
+ }
+ }
+
+ action(f_sendDataToL1, "f", desc="Send data to the L1 cache") {
+ // hardware transactional memory
+ // Cannot write speculative data to L1 cache
+ if (cache_entry.getInHtmWriteSet()) {
+ // If in HTM write set then send NAK to L1
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ assert(is_valid(cache_entry));
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:NAK;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ } else {
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ assert(is_valid(cache_entry));
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:INV_DATA;
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.Dirty := cache_entry.Dirty;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ }
+ cache_entry.Dirty := false;
+ }
+ }
+
+ action(fi_sendInvAck, "fi", desc="Send data to the L1 cache") {
+ peek(messgeBuffer_in, CoherenceMsg) {
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:INV_ACK;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Response_Control;
+ }
+ }
+ }
+
+ action(forward_eviction_to_cpu, "\cc", desc="Send eviction information to the processor") {
+ if (send_evictions) {
+ DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address);
+ sequencer.evictionCallback(address);
+ }
+ }
+
+ action(g_issuePUTE, "\ge", desc="Relinquish line to the L1 cache") {
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ assert(is_valid(cache_entry));
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:PUTX;
+ out_msg.Dirty := cache_entry.Dirty;
+ out_msg.Sender:= machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Writeback_Control;
+ }
+ }
+
+ action(g_issuePUTM, "\gm", desc="Send modified line to the L1 cache") {
+ if (!cache_entry.getInHtmWriteSet()) {
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ assert(is_valid(cache_entry));
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:PUTX;
+ out_msg.Dirty := cache_entry.Dirty;
+ out_msg.Sender:= machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ out_msg.DataBlk := cache_entry.DataBlk;
+ }
+ }
+ }
+
+ action(h_load_hit, "hd", desc="Notify sequencer the load completed (cache hit)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Dcache.setMRU(cache_entry);
+ sequencer.readCallback(address, cache_entry.DataBlk);
+ }
+
+ action(h_ifetch_hit, "hi", desc="Notify sequencer the ifetch completed (cache hit)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Icache.setMRU(cache_entry);
+ sequencer.readCallback(address, cache_entry.DataBlk);
+ }
+
+ // The action name uses a counterintuitive _hit prefix when it is only
+ // called due to a cache miss. It is technically now a hit after having
+ // serviced the miss.
+ action(hx_load_hit, "hxd", desc="Notify sequencer the load completed (cache miss)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Dcache.setMRU(cache_entry);
+ sequencer.readCallback(address, cache_entry.DataBlk, true);
+ }
+
+ // The action name uses a counterintuitive _hit prefix when it is only
+ // called due to a cache miss. It is technically now a hit after having
+ // serviced the miss.
+ action(hx_ifetch_hit, "hxi", desc="Notify sequencer the ifetch completed (cache miss)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Icache.setMRU(cache_entry);
+ sequencer.readCallback(address, cache_entry.DataBlk, true);
+ }
+
+ action(hh_store_hit, "\h", desc="Notify sequencer that store completed (cache hit)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Dcache.setMRU(cache_entry);
+ sequencer.writeCallback(address, cache_entry.DataBlk);
+ cache_entry.Dirty := true;
+ }
+
+ // The action name uses a counterintuitive _hit prefix when it is only
+ // called due to a cache miss. It is technically now a hit after having
+ // serviced the miss.
+ action(hhx_store_hit, "\hx", desc="Notify sequencer that store completed (cache miss)") {
+ assert(is_valid(cache_entry));
+ DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
+ Dcache.setMRU(cache_entry);
+ sequencer.writeCallback(address, cache_entry.DataBlk, true);
+ cache_entry.Dirty := true;
+ }
+
+ action(i_allocateTBE, "i", desc="Allocate TBE (number of invalidates=0)") {
+ check_allocate(TBEs);
+ assert(is_valid(cache_entry));
+ TBEs.allocate(address);
+ set_tbe(TBEs[address]);
+ tbe.Dirty := cache_entry.Dirty;
+ tbe.DataBlk := cache_entry.DataBlk;
+ }
+
+ action(k_popMandatoryQueue, "k", desc="Pop mandatory queue") {
+ mandatoryQueue_in.dequeue(clockEdge());
+ }
+
+ action(l_popRequestQueue, "l",
+ desc="Pop incoming request queue and profile the delay within this virtual network") {
+ Tick delay := messgeBuffer_in.dequeue(clockEdge());
+ profileMsgDelay(2, ticksToCycles(delay));
+ }
+
+ action(o_popIncomingResponseQueue, "o",
+ desc="Pop Incoming Response queue and profile the delay within this virtual network") {
+ Tick delay := messgeBuffer_in.dequeue(clockEdge());
+ profileMsgDelay(1, ticksToCycles(delay));
+ }
+
+ action(s_deallocateTBE, "s", desc="Deallocate TBE") {
+ TBEs.deallocate(address);
+ unset_tbe();
+ }
+
+ action(u_writeDataToCache, "u", desc="Write data to cache") {
+ peek(messgeBuffer_in, CoherenceMsg) {
+ assert(is_valid(cache_entry));
+ cache_entry.DataBlk := in_msg.DataBlk;
+ }
+ }
+
+ action(u_writeInstToCache, "ui", desc="Write data to cache") {
+ peek(messgeBuffer_in, CoherenceMsg) {
+ assert(is_valid(cache_entry));
+ cache_entry.DataBlk := in_msg.DataBlk;
+ }
+ }
+
+ action(ff_deallocateCacheBlock, "\f",
+ desc="Deallocate L1 cache block.") {
+ if (Dcache.isTagPresent(address)) {
+ Dcache.deallocate(address);
+ } else {
+ Icache.deallocate(address);
+ }
+ unset_cache_entry();
+ }
+
+ action(oo_allocateDCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B") {
+ if (is_invalid(cache_entry)) {
+ set_cache_entry(Dcache.allocate(address, new Entry));
+ }
+ }
+
+ action(pp_allocateICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B") {
+ if (is_invalid(cache_entry)) {
+ set_cache_entry(Icache.allocate(address, new Entry));
+ }
+ }
+
+ action(z_stallAndWaitMandatoryQueue, "\z", desc="Stall cpu request queue") {
+ stall_and_wait(mandatoryQueue_in, address);
+ }
+
+ action(kd_wakeUpDependents, "kd", desc="Wake-up dependents") {
+ wakeUpAllBuffers(address);
+ }
+
+ action(uu_profileInstMiss, "\ui", desc="Profile the demand miss") {
+ ++Icache.demand_misses;
+ }
+
+ action(uu_profileInstHit, "\uih", desc="Profile the demand hit") {
+ ++Icache.demand_hits;
+ }
+
+ action(uu_profileDataMiss, "\ud", desc="Profile the demand miss") {
+ ++Dcache.demand_misses;
+ }
+
+ action(uu_profileDataHit, "\udh", desc="Profile the demand hit") {
+ ++Dcache.demand_hits;
+ }
+
+ // store conditionals
+
+ action(hhc_storec_fail, "\hc",
+ desc="Notify sequencer that store conditional failed") {
+ sequencer.writeCallbackScFail(address, cache_entry.DataBlk);
+ }
+
+ // prefetching
+
+ action(pa_issuePfGETS, "pa", desc="Issue prefetch GETS") {
+ peek(optionalQueue_in, RubyRequest) {
+ enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:GETS;
+ out_msg.Sender := machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
+ address, out_msg.Dest);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ }
+ }
+ }
+
+ action(pb_issuePfGETX, "pb", desc="Issue prefetch GETX") {
+ peek(optionalQueue_in, RubyRequest) {
+ enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:GETX;
+ out_msg.Sender := machineID;
+ DPRINTF(RubySlicc, "%s\n", machineID);
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+
+ DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
+ address, out_msg.Dest);
+ out_msg.MessageSize := MessageSizeType:Control;
+ out_msg.Prefetch := in_msg.Prefetch;
+ out_msg.AccessMode := in_msg.AccessMode;
+ }
+ }
+ }
+
+ action(pq_popPrefetchQueue, "\pq", desc="Pop the prefetch request queue") {
+ optionalQueue_in.dequeue(clockEdge());
+ }
+
+ action(mp_markPrefetched, "mp", desc="Write data from response queue to cache") {
+ assert(is_valid(cache_entry));
+ cache_entry.isPrefetched := true;
+ }
+
+ action(po_observeMiss, "\po", desc="Inform the prefetcher about a cache miss") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ if (enable_prefetch) {
+ prefetcher.observeMiss(in_msg.LineAddress, in_msg.Type);
+ }
+ }
+ }
+
+ action(ppm_observePfMiss, "\ppm",
+ desc="Inform the prefetcher about a cache miss with in-flight prefetch") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ prefetcher.observePfMiss(in_msg.LineAddress);
+ }
+ }
+
+ action(pph_observePfHit, "\pph",
+ desc="Inform the prefetcher if a cache hit was the result of a prefetch") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ if (cache_entry.isPrefetched) {
+ prefetcher.observePfHit(in_msg.LineAddress);
+ cache_entry.isPrefetched := false;
+ }
+ }
+ }
+
+ action(z_stallAndWaitOptionalQueue, "\pz", desc="recycle prefetch request queue") {
+ stall_and_wait(optionalQueue_in, address);
+ }
+
+ // hardware transactional memory
+
+ action(hars_htmAddToReadSet, "\hars", desc="add to HTM read set") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ if (htmTransactionalState && in_msg.htmFromTransaction) {
+ assert(!htmFailed);
+ if (!cache_entry.getInHtmReadSet()) {
+ DPRINTF(HtmMem,
+ "Adding 0x%lx to transactional read set htmUid=%u.\n",
+ address, htmUid);
+ cache_entry.setInHtmReadSet(true);
+ }
+ }
+ }
+ }
+
+ action(haws_htmAddToWriteSet, "\haws", desc="add to HTM write set") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ if (htmTransactionalState && in_msg.htmFromTransaction) {
+ assert(!htmFailed);
+ assert(!((cache_entry.getInHtmWriteSet() == false) &&
+ (cache_entry.CacheState == State:IM)));
+ assert(!((cache_entry.getInHtmWriteSet() == false) &&
+ (cache_entry.CacheState == State:SM)));
+ // ON DEMAND write-back
+ // if modified and not in write set,
+ // write back and retain M state
+ if((cache_entry.CacheState == State:M) &&
+ !cache_entry.getInHtmWriteSet()) {
+ // code copied from issuePUTX
+ enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
+ assert(is_valid(cache_entry));
+ out_msg.addr := address;
+ out_msg.Class := CoherenceClass:PUTX_COPY;
+ out_msg.DataBlk := cache_entry.DataBlk;
+ out_msg.Dirty := cache_entry.Dirty;
+ out_msg.Sender:= machineID;
+ out_msg.Dest := createMachineID(MachineType:L1Cache, version);
+ out_msg.MessageSize := MessageSizeType:Writeback_Data;
+ }
+ }
+ if (!cache_entry.getInHtmWriteSet()) {
+ DPRINTF(HtmMem,
+ "Adding 0x%lx to transactional write set htmUid=%u.\n",
+ address, htmUid);
+ cache_entry.setInHtmWriteSet(true);
+ }
+ }
+ }
+ }
+
+ action(hfts_htmFailTransactionSize, "\hfts^",
+ desc="Fail transaction due to cache associativity/capacity conflict") {
+ if (htmTransactionalState &&
+ (cache_entry.getInHtmReadSet() || cache_entry.getInHtmWriteSet())) {
+ DPRINTF(HtmMem,
+ "Failure of a transaction due to cache associativity/capacity: rs=%s, ws=%s, addr=0x%lx, htmUid=%u\n",
+ cache_entry.getInHtmReadSet(), cache_entry.getInHtmWriteSet(),
+ address, htmUid);
+ htmFailed := true;
+ htmFailedRc := HtmFailedInCacheReason:FAIL_SELF;
+ }
+ }
+
+ action(hftm_htmFailTransactionMem, "\hftm^",
+ desc="Fail transaction due to memory conflict") {
+ if (htmTransactionalState &&
+ (cache_entry.getInHtmReadSet() || cache_entry.getInHtmWriteSet())) {
+ DPRINTF(HtmMem,
+ "Failure of a transaction due to memory conflict: rs=%s, ws=%s, addr=0x%lx, htmUid=%u\n",
+ cache_entry.getInHtmReadSet(), cache_entry.getInHtmWriteSet(),
+ address, htmUid);
+ htmFailed := true;
+ htmFailedRc := HtmFailedInCacheReason:FAIL_REMOTE;
+ }
+ }
+
+ action(hvu_htmVerifyUid, "\hvu",
+ desc="Ensure cache htmUid is equivalent to message htmUid") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ if (htmUid != in_msg.htmTransactionUid) {
+ DPRINTF(HtmMem, "cache's htmUid=%u and request's htmUid=%u\n",
+ htmUid, in_msg.htmTransactionUid);
+ error("mismatch between cache's htmUid and request's htmUid");
+ }
+ }
+ }
+
+ action(hcs_htmCommandSucceed, "\hcs",
+ desc="Notify sequencer HTM command succeeded") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ DPRINTF(RubySlicc, "htm command successful\n");
+ sequencer.htmCallback(in_msg.LineAddress,
+ HtmCallbackMode:HTM_CMD, HtmFailedInCacheReason:NO_FAIL);
+ }
+ }
+
+ action(hcs_htmCommandFail, "\hcf",
+ desc="Notify sequencer HTM command failed") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ DPRINTF(RubySlicc, "htm command failure\n");
+ sequencer.htmCallback(in_msg.LineAddress,
+ HtmCallbackMode:HTM_CMD, htmFailedRc);
+ }
+ }
+
+ action(hcs_htmLoadFail, "\hlf",
+ desc="Notify sequencer HTM transactional load failed") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ DPRINTF(RubySlicc, "htm transactional load failure\n");
+ sequencer.htmCallback(in_msg.LineAddress,
+ HtmCallbackMode:LD_FAIL, htmFailedRc);
+ }
+ }
+
+ action(hcs_htmStoreFail, "\hsf",
+ desc="Notify sequencer HTM transactional store failed") {
+ peek(mandatoryQueue_in, RubyRequest) {
+ DPRINTF(RubySlicc, "htm transactional store failure\n");
+ sequencer.htmCallback(in_msg.LineAddress,
+ HtmCallbackMode:ST_FAIL, htmFailedRc);
+ }
+ }
+
+ action(hat_htmAbortTransaction, "\hat",
+ desc="Abort HTM transaction and rollback cache to pre-transactional state") {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ assert (htmTransactionalState);
+ Dcache.htmAbortTransaction();
+ htmTransactionalState := false;
+ htmFailed := false;
+ sequencer.llscClearLocalMonitor();
+ DPRINTF(RubySlicc, "Aborted htm transaction\n");
+ }
+
+ action(hst_htmStartTransaction, "\hst",
+ desc="Place cache in HTM transactional state") {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ assert (!htmTransactionalState);
+ htmTransactionalState := true;
+ htmFailedRc := HtmFailedInCacheReason:NO_FAIL;
+ sequencer.llscClearLocalMonitor();
+ DPRINTF(RubySlicc, "Started htm transaction\n");
+ }
+
+ action(hct_htmCommitTransaction, "\hct",
+ desc="Commit speculative loads/stores and place cache in normal state") {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ assert (htmTransactionalState);
+ assert (!htmFailed);
+ Dcache.htmCommitTransaction();
+ sequencer.llscClearLocalMonitor();
+ htmTransactionalState := false;
+ DPRINTF(RubySlicc, "Committed htm transaction\n");
+ }
+
+ action(hcnt_htmCancelTransaction, "\hcnt",
+ desc="Fail HTM transaction explicitely without aborting") {
+ assert(is_invalid(cache_entry) && is_invalid(tbe));
+ assert (htmTransactionalState);
+ htmFailed := true;
+ htmFailedRc := HtmFailedInCacheReason:FAIL_OTHER;
+ DPRINTF(RubySlicc, "Cancelled htm transaction\n");
+ }
+
+ //*****************************************************
+ // TRANSITIONS
+ //*****************************************************
+
+ // Transitions for Load/Store/Replacement/WriteBack from transient states
+ transition({Inst_IS, IS, IM, SM}, {Load, Ifetch, Store, L0_Replacement}) {
+ z_stallAndWaitMandatoryQueue;
+ }
+
+ // Transitions from Idle
+ transition(I, Load, IS) {
+ oo_allocateDCacheBlock;
+ i_allocateTBE;
+ hars_htmAddToReadSet;
+ a_issueGETS;
+ uu_profileDataMiss;
+ po_observeMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, Ifetch, Inst_IS) {
+ pp_allocateICacheBlock;
+ i_allocateTBE;
+ a_issueGETS;
+ uu_profileInstMiss;
+ po_observeMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, Store, IM) {
+ oo_allocateDCacheBlock;
+ i_allocateTBE;
+ haws_htmAddToWriteSet;
+ b_issueGETX;
+ uu_profileDataMiss;
+ po_observeMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition({I, Inst_IS}, {InvOwn, InvElse}) {
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition({IS, IM}, InvOwn) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition({IS, IM}, InvElse) {
+ hftm_htmFailTransactionMem;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(SM, InvOwn, IM) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(SM, InvElse, IM) {
+ hftm_htmFailTransactionMem;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Shared
+ transition({S,E,M}, Load) {
+ hars_htmAddToReadSet;
+ h_load_hit;
+ uu_profileDataHit;
+ pph_observePfHit;
+ k_popMandatoryQueue;
+ }
+
+ transition({S,E,M}, Ifetch) {
+ h_ifetch_hit;
+ uu_profileInstHit;
+ pph_observePfHit;
+ k_popMandatoryQueue;
+ }
+
+ transition(S, Store, SM) {
+ i_allocateTBE;
+ haws_htmAddToWriteSet;
+ c_issueUPGRADE;
+ uu_profileDataMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(S, {L0_Replacement,PF_L0_Replacement}, I) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ ff_deallocateCacheBlock;
+ }
+
+ transition(S, InvOwn, I) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ transition(S, InvElse, I) {
+ hftm_htmFailTransactionMem;
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Exclusive
+ transition({E,M}, Store, M) {
+ haws_htmAddToWriteSet;
+ hh_store_hit;
+ uu_profileDataHit;
+ pph_observePfHit;
+ k_popMandatoryQueue;
+ }
+
+ transition(E, {L0_Replacement,PF_L0_Replacement}, I) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ g_issuePUTE;
+ ff_deallocateCacheBlock;
+ }
+
+ transition(E, {InvElse, Fwd_GETX}, I) {
+ hftm_htmFailTransactionMem;
+ // don't send data
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ transition(E, InvOwn, I) {
+ hfts_htmFailTransactionSize;
+ // don't send data
+ forward_eviction_to_cpu;
+ fi_sendInvAck;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
+ f_sendDataToL1;
+ l_popRequestQueue;
+ }
+
+ // Transitions from Modified
+ transition(M, {L0_Replacement,PF_L0_Replacement}, I) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ g_issuePUTM;
+ ff_deallocateCacheBlock;
+ }
+
+ transition(M, InvOwn, I) {
+ hfts_htmFailTransactionSize;
+ forward_eviction_to_cpu;
+ f_sendDataToL1;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ transition(M, {InvElse, Fwd_GETX}, I) {
+ hftm_htmFailTransactionMem;
+ forward_eviction_to_cpu;
+ f_sendDataToL1;
+ ff_deallocateCacheBlock;
+ l_popRequestQueue;
+ }
+
+ transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
+ hftm_htmFailTransactionMem;
+ f_sendDataToL1;
+ l_popRequestQueue;
+ }
+
+ transition(IS, Data, S) {
+ u_writeDataToCache;
+ hx_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(IS, Data_Exclusive, E) {
+ u_writeDataToCache;
+ hx_load_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(IS, Data_Stale, I) {
+ hftm_htmFailTransactionMem;
+ u_writeDataToCache;
+ forward_eviction_to_cpu;
+ hx_load_hit;
+ s_deallocateTBE;
+ ff_deallocateCacheBlock;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(Inst_IS, Data, S) {
+ u_writeInstToCache;
+ hx_ifetch_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(Inst_IS, Data_Exclusive, E) {
+ u_writeInstToCache;
+ hx_ifetch_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(Inst_IS, Data_Stale, I) {
+ u_writeInstToCache;
+ hx_ifetch_hit;
+ s_deallocateTBE;
+ ff_deallocateCacheBlock;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition({IM,SM}, Data_Exclusive, M) {
+ u_writeDataToCache;
+ hhx_store_hit;
+ s_deallocateTBE;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ // store conditionals
+
+ transition({I,S,E,M}, Failed_SC) {
+ // IS,IM,SM don't handle store conditionals
+ hhc_storec_fail;
+ k_popMandatoryQueue;
+ }
+
+ // prefetcher
+
+ transition({Inst_IS, IS, IM, SM, PF_Inst_IS, PF_IS, PF_IE}, PF_L0_Replacement) {
+ z_stallAndWaitOptionalQueue;
+ }
+
+ transition({PF_Inst_IS, PF_IS}, {Store, L0_Replacement}) {
+ z_stallAndWaitMandatoryQueue;
+ }
+
+ transition({PF_IE}, {Load, Ifetch, L0_Replacement}) {
+ z_stallAndWaitMandatoryQueue;
+ }
+
+ transition({S,E,M,Inst_IS,IS,IM,SM,PF_Inst_IS,PF_IS,PF_IE},
+ {PF_Load, PF_Store, PF_Ifetch}) {
+ pq_popPrefetchQueue;
+ }
+
+ transition(I, PF_Load, PF_IS) {
+ oo_allocateDCacheBlock;
+ i_allocateTBE;
+ pa_issuePfGETS;
+ pq_popPrefetchQueue;
+ }
+
+ transition(PF_IS, Load, IS) {
+ hars_htmAddToReadSet;
+ uu_profileDataMiss;
+ ppm_observePfMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, PF_Ifetch, PF_Inst_IS) {
+ pp_allocateICacheBlock;
+ i_allocateTBE;
+ pa_issuePfGETS;
+ pq_popPrefetchQueue;
+ }
+
+ transition(PF_Inst_IS, Ifetch, Inst_IS) {
+ uu_profileInstMiss;
+ ppm_observePfMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, PF_Store, PF_IE) {
+ oo_allocateDCacheBlock;
+ i_allocateTBE;
+ pb_issuePfGETX;
+ pq_popPrefetchQueue;
+ }
+
+ transition(PF_IE, Store, IM) {
+ haws_htmAddToWriteSet;
+ uu_profileDataMiss;
+ ppm_observePfMiss;
+ k_popMandatoryQueue;
+ }
+
+ transition({PF_Inst_IS, PF_IS, PF_IE}, {InvOwn, InvElse}) {
+ fi_sendInvAck;
+ l_popRequestQueue;
+ }
+
+ transition(PF_IS, Data, S) {
+ u_writeDataToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(PF_IS, Data_Exclusive, E) {
+ u_writeDataToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(PF_IS, Data_Stale, I) {
+ u_writeDataToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ ff_deallocateCacheBlock;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(PF_Inst_IS, Data, S) {
+ u_writeInstToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(PF_Inst_IS, Data_Exclusive, E) {
+ u_writeInstToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(PF_IE, Data_Exclusive, E) {
+ u_writeDataToCache;
+ s_deallocateTBE;
+ mp_markPrefetched;
+ o_popIncomingResponseQueue;
+ kd_wakeUpDependents;
+ }
+
+ transition(I, PF_Bad_Addr) {
+ pq_popPrefetchQueue;
+ }
+
+ // hardware transactional memory
+
+ transition(I, HTM_Abort) {
+ hvu_htmVerifyUid;
+ hat_htmAbortTransaction;
+ hcs_htmCommandSucceed;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, HTM_Start) {
+ hvu_htmVerifyUid;
+ hst_htmStartTransaction;
+ hcs_htmCommandSucceed;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, HTM_Commit) {
+ hvu_htmVerifyUid;
+ hct_htmCommitTransaction;
+ hcs_htmCommandSucceed;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, HTM_Cancel) {
+ hvu_htmVerifyUid;
+ hcnt_htmCancelTransaction;
+ hcs_htmCommandSucceed;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, HTM_notifyCMD) {
+ hvu_htmVerifyUid;
+ hcs_htmCommandFail;
+ k_popMandatoryQueue;
+ }
+
+ transition({I,S,E,M,IS,IM,SM,PF_IS,PF_IE}, HTM_notifyLD) {
+ hvu_htmVerifyUid;
+ hcs_htmLoadFail;
+ k_popMandatoryQueue;
+ }
+
+ transition({I,S,E,M,IS,IM,SM,PF_IS,PF_IE}, HTM_notifyST) {
+ hvu_htmVerifyUid;
+ hcs_htmStoreFail;
+ k_popMandatoryQueue;
+ }
+
+ transition(I, {L0_Replacement,PF_L0_Replacement}) {
+ ff_deallocateCacheBlock;
+ }
+}