+++ /dev/null
-------------------------------------------------------------------------------
--- --
--- GNAT RUN-TIME COMPONENTS --
--- --
--- A D A . N U M E R I C S . A U X --
--- --
--- B o d y --
--- (Machine Version for x86) --
--- --
--- Copyright (C) 1998-2020, Free Software Foundation, Inc. --
--- --
--- GNAT is free software; you can redistribute it and/or modify it under --
--- terms of the GNU General Public License as published by the Free Soft- --
--- ware Foundation; either version 3, or (at your option) any later ver- --
--- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
--- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
--- or FITNESS FOR A PARTICULAR PURPOSE. --
--- --
--- As a special exception under Section 7 of GPL version 3, you are granted --
--- additional permissions described in the GCC Runtime Library Exception, --
--- version 3.1, as published by the Free Software Foundation. --
--- --
--- You should have received a copy of the GNU General Public License and --
--- a copy of the GCC Runtime Library Exception along with this program; --
--- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
--- <http://www.gnu.org/licenses/>. --
--- --
--- GNAT was originally developed by the GNAT team at New York University. --
--- Extensive contributions were provided by Ada Core Technologies Inc. --
--- --
-------------------------------------------------------------------------------
-
-with System.Machine_Code; use System.Machine_Code;
-
-package body Ada.Numerics.Aux is
-
- NL : constant String := ASCII.LF & ASCII.HT;
-
- -----------------------
- -- Local subprograms --
- -----------------------
-
- function Is_Nan (X : Double) return Boolean;
- -- Return True iff X is a IEEE NaN value
-
- function Logarithmic_Pow (X, Y : Double) return Double;
- -- Implementation of X**Y using Exp and Log functions (binary base)
- -- to calculate the exponentiation. This is used by Pow for values
- -- for values of Y in the open interval (-0.25, 0.25)
-
- procedure Reduce (X : in out Double; Q : out Natural);
- -- Implement reduction of X by Pi/2. Q is the quadrant of the final
- -- result in the range 0..3. The absolute value of X is at most Pi/4.
- -- It is needed to avoid a loss of accuracy for sin near Pi and cos
- -- near Pi/2 due to the use of an insufficiently precise value of Pi
- -- in the range reduction.
-
- pragma Inline (Is_Nan);
- pragma Inline (Reduce);
-
- --------------------------------
- -- Basic Elementary Functions --
- --------------------------------
-
- -- This section implements a few elementary functions that are used to
- -- build the more complex ones. This ordering enables better inlining.
-
- ----------
- -- Atan --
- ----------
-
- function Atan (X : Double) return Double is
- Result : Double;
-
- begin
- Asm (Template =>
- "fld1" & NL
- & "fpatan",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", X));
-
- -- The result value is NaN iff input was invalid
-
- if not (Result = Result) then
- raise Argument_Error;
- end if;
-
- return Result;
- end Atan;
-
- ---------
- -- Exp --
- ---------
-
- function Exp (X : Double) return Double is
- Result : Double;
- begin
- Asm (Template =>
- "fldl2e " & NL
- & "fmulp %%st, %%st(1)" & NL -- X * log2 (E)
- & "fld %%st(0) " & NL
- & "frndint " & NL -- Integer (X * Log2 (E))
- & "fsubr %%st, %%st(1)" & NL -- Fraction (X * Log2 (E))
- & "fxch " & NL
- & "f2xm1 " & NL -- 2**(...) - 1
- & "fld1 " & NL
- & "faddp %%st, %%st(1)" & NL -- 2**(Fraction (X * Log2 (E)))
- & "fscale " & NL -- E ** X
- & "fstp %%st(1) ",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", X));
- return Result;
- end Exp;
-
- ------------
- -- Is_Nan --
- ------------
-
- function Is_Nan (X : Double) return Boolean is
- begin
- -- The IEEE NaN values are the only ones that do not equal themselves
-
- return X /= X;
- end Is_Nan;
-
- ---------
- -- Log --
- ---------
-
- function Log (X : Double) return Double is
- Result : Double;
-
- begin
- Asm (Template =>
- "fldln2 " & NL
- & "fxch " & NL
- & "fyl2x " & NL,
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", X));
- return Result;
- end Log;
-
- ------------
- -- Reduce --
- ------------
-
- procedure Reduce (X : in out Double; Q : out Natural) is
- Half_Pi : constant := Pi / 2.0;
- Two_Over_Pi : constant := 2.0 / Pi;
-
- HM : constant := Integer'Min (Double'Machine_Mantissa / 2, Natural'Size);
- M : constant Double := 0.5 + 2.0**(1 - HM); -- Splitting constant
- P1 : constant Double := Double'Leading_Part (Half_Pi, HM);
- P2 : constant Double := Double'Leading_Part (Half_Pi - P1, HM);
- P3 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2, HM);
- P4 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3, HM);
- P5 : constant Double := Double'Leading_Part (Half_Pi - P1 - P2 - P3
- - P4, HM);
- P6 : constant Double := Double'Model (Half_Pi - P1 - P2 - P3 - P4 - P5);
- K : Double;
- R : Integer;
-
- begin
- -- For X < 2.0**HM, all products below are computed exactly.
- -- Due to cancellation effects all subtractions are exact as well.
- -- As no double extended floating-point number has more than 75
- -- zeros after the binary point, the result will be the correctly
- -- rounded result of X - K * (Pi / 2.0).
-
- K := X * Two_Over_Pi;
- while abs K >= 2.0**HM loop
- K := K * M - (K * M - K);
- X :=
- (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
- K := X * Two_Over_Pi;
- end loop;
-
- -- If K is not a number (because X was not finite) raise exception
-
- if Is_Nan (K) then
- raise Constraint_Error;
- end if;
-
- -- Go through an integer temporary so as to use machine instructions
-
- R := Integer (Double'Rounding (K));
- Q := R mod 4;
- K := Double (R);
- X := (((((X - K * P1) - K * P2) - K * P3) - K * P4) - K * P5) - K * P6;
- end Reduce;
-
- ----------
- -- Sqrt --
- ----------
-
- function Sqrt (X : Double) return Double is
- Result : Double;
-
- begin
- if X < 0.0 then
- raise Argument_Error;
- end if;
-
- Asm (Template => "fsqrt",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", X));
-
- return Result;
- end Sqrt;
-
- --------------------------------
- -- Other Elementary Functions --
- --------------------------------
-
- -- These are built using the previously implemented basic functions
-
- ----------
- -- Acos --
- ----------
-
- function Acos (X : Double) return Double is
- Result : Double;
-
- begin
- Result := 2.0 * Atan (Sqrt ((1.0 - X) / (1.0 + X)));
-
- -- The result value is NaN iff input was invalid
-
- if Is_Nan (Result) then
- raise Argument_Error;
- end if;
-
- return Result;
- end Acos;
-
- ----------
- -- Asin --
- ----------
-
- function Asin (X : Double) return Double is
- Result : Double;
-
- begin
- Result := Atan (X / Sqrt ((1.0 - X) * (1.0 + X)));
-
- -- The result value is NaN iff input was invalid
-
- if Is_Nan (Result) then
- raise Argument_Error;
- end if;
-
- return Result;
- end Asin;
-
- ---------
- -- Cos --
- ---------
-
- function Cos (X : Double) return Double is
- Reduced_X : Double := abs X;
- Result : Double;
- Quadrant : Natural range 0 .. 3;
-
- begin
- if Reduced_X > Pi / 4.0 then
- Reduce (Reduced_X, Quadrant);
-
- case Quadrant is
- when 0 =>
- Asm (Template => "fcos",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
-
- when 1 =>
- Asm (Template => "fsin",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", -Reduced_X));
-
- when 2 =>
- Asm (Template => "fcos ; fchs",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
-
- when 3 =>
- Asm (Template => "fsin",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end case;
-
- else
- Asm (Template => "fcos",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end if;
-
- return Result;
- end Cos;
-
- ---------------------
- -- Logarithmic_Pow --
- ---------------------
-
- function Logarithmic_Pow (X, Y : Double) return Double is
- Result : Double;
- begin
- Asm (Template => "" -- X : Y
- & "fyl2x " & NL -- Y * Log2 (X)
- & "fld %%st(0) " & NL -- Y * Log2 (X) : Y * Log2 (X)
- & "frndint " & NL -- Int (...) : Y * Log2 (X)
- & "fsubr %%st, %%st(1)" & NL -- Int (...) : Fract (...)
- & "fxch " & NL -- Fract (...) : Int (...)
- & "f2xm1 " & NL -- 2**Fract (...) - 1 : Int (...)
- & "fld1 " & NL -- 1 : 2**Fract (...) - 1 : Int (...)
- & "faddp %%st, %%st(1)" & NL -- 2**Fract (...) : Int (...)
- & "fscale ", -- 2**(Fract (...) + Int (...))
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs =>
- (Double'Asm_Input ("0", X),
- Double'Asm_Input ("u", Y)));
- return Result;
- end Logarithmic_Pow;
-
- ---------
- -- Pow --
- ---------
-
- function Pow (X, Y : Double) return Double is
- type Mantissa_Type is mod 2**Double'Machine_Mantissa;
- -- Modular type that can hold all bits of the mantissa of Double
-
- -- For negative exponents, do divide at the end of the processing
-
- Negative_Y : constant Boolean := Y < 0.0;
- Abs_Y : constant Double := abs Y;
-
- -- During this function the following invariant is kept:
- -- X ** (abs Y) = Base**(Exp_High + Exp_Mid + Exp_Low) * Factor
-
- Base : Double := X;
-
- Exp_High : Double := Double'Floor (Abs_Y);
- Exp_Mid : Double;
- Exp_Low : Double;
- Exp_Int : Mantissa_Type;
-
- Factor : Double := 1.0;
-
- begin
- -- Select algorithm for calculating Pow (integer cases fall through)
-
- if Exp_High >= 2.0**Double'Machine_Mantissa then
-
- -- In case of Y that is IEEE infinity, just raise constraint error
-
- if Exp_High > Double'Safe_Last then
- raise Constraint_Error;
- end if;
-
- -- Large values of Y are even integers and will stay integer
- -- after division by two.
-
- loop
- -- Exp_Mid and Exp_Low are zero, so
- -- X**(abs Y) = Base ** Exp_High = (Base**2) ** (Exp_High / 2)
-
- Exp_High := Exp_High / 2.0;
- Base := Base * Base;
- exit when Exp_High < 2.0**Double'Machine_Mantissa;
- end loop;
-
- elsif Exp_High /= Abs_Y then
- Exp_Low := Abs_Y - Exp_High;
- Factor := 1.0;
-
- if Exp_Low /= 0.0 then
-
- -- Exp_Low now is in interval (0.0, 1.0)
- -- Exp_Mid := Double'Floor (Exp_Low * 4.0) / 4.0;
-
- Exp_Mid := 0.0;
- Exp_Low := Exp_Low - Exp_Mid;
-
- if Exp_Low >= 0.5 then
- Factor := Sqrt (X);
- Exp_Low := Exp_Low - 0.5; -- exact
-
- if Exp_Low >= 0.25 then
- Factor := Factor * Sqrt (Factor);
- Exp_Low := Exp_Low - 0.25; -- exact
- end if;
-
- elsif Exp_Low >= 0.25 then
- Factor := Sqrt (Sqrt (X));
- Exp_Low := Exp_Low - 0.25; -- exact
- end if;
-
- -- Exp_Low now is in interval (0.0, 0.25)
-
- -- This means it is safe to call Logarithmic_Pow
- -- for the remaining part.
-
- Factor := Factor * Logarithmic_Pow (X, Exp_Low);
- end if;
-
- elsif X = 0.0 then
- return 0.0;
- end if;
-
- -- Exp_High is non-zero integer smaller than 2**Double'Machine_Mantissa
-
- Exp_Int := Mantissa_Type (Exp_High);
-
- -- Standard way for processing integer powers > 0
-
- while Exp_Int > 1 loop
- if (Exp_Int and 1) = 1 then
-
- -- Base**Y = Base**(Exp_Int - 1) * Exp_Int for Exp_Int > 0
-
- Factor := Factor * Base;
- end if;
-
- -- Exp_Int is even and Exp_Int > 0, so
- -- Base**Y = (Base**2)**(Exp_Int / 2)
-
- Base := Base * Base;
- Exp_Int := Exp_Int / 2;
- end loop;
-
- -- Exp_Int = 1 or Exp_Int = 0
-
- if Exp_Int = 1 then
- Factor := Base * Factor;
- end if;
-
- if Negative_Y then
- Factor := 1.0 / Factor;
- end if;
-
- return Factor;
- end Pow;
-
- ---------
- -- Sin --
- ---------
-
- function Sin (X : Double) return Double is
- Reduced_X : Double := X;
- Result : Double;
- Quadrant : Natural range 0 .. 3;
-
- begin
- if abs X > Pi / 4.0 then
- Reduce (Reduced_X, Quadrant);
-
- case Quadrant is
- when 0 =>
- Asm (Template => "fsin",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
-
- when 1 =>
- Asm (Template => "fcos",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
-
- when 2 =>
- Asm (Template => "fsin",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", -Reduced_X));
-
- when 3 =>
- Asm (Template => "fcos ; fchs",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end case;
-
- else
- Asm (Template => "fsin",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end if;
-
- return Result;
- end Sin;
-
- ---------
- -- Tan --
- ---------
-
- function Tan (X : Double) return Double is
- Reduced_X : Double := X;
- Result : Double;
- Quadrant : Natural range 0 .. 3;
-
- begin
- if abs X > Pi / 4.0 then
- Reduce (Reduced_X, Quadrant);
-
- if Quadrant mod 2 = 0 then
- Asm (Template => "fptan" & NL
- & "ffree %%st(0)" & NL
- & "fincstp",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- else
- Asm (Template => "fsincos" & NL
- & "fdivp %%st, %%st(1)" & NL
- & "fchs",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end if;
-
- else
- Asm (Template =>
- "fptan " & NL
- & "ffree %%st(0) " & NL
- & "fincstp ",
- Outputs => Double'Asm_Output ("=t", Result),
- Inputs => Double'Asm_Input ("0", Reduced_X));
- end if;
-
- return Result;
- end Tan;
-
- ----------
- -- Sinh --
- ----------
-
- function Sinh (X : Double) return Double is
- begin
- -- Mathematically Sinh (x) is defined to be (Exp (X) - Exp (-X)) / 2.0
-
- if abs X < 25.0 then
- return (Exp (X) - Exp (-X)) / 2.0;
- else
- return Exp (X) / 2.0;
- end if;
- end Sinh;
-
- ----------
- -- Cosh --
- ----------
-
- function Cosh (X : Double) return Double is
- begin
- -- Mathematically Cosh (X) is defined to be (Exp (X) + Exp (-X)) / 2.0
-
- if abs X < 22.0 then
- return (Exp (X) + Exp (-X)) / 2.0;
- else
- return Exp (X) / 2.0;
- end if;
- end Cosh;
-
- ----------
- -- Tanh --
- ----------
-
- function Tanh (X : Double) return Double is
- begin
- -- Return the Hyperbolic Tangent of x
-
- -- x -x
- -- e - e Sinh (X)
- -- Tanh (X) is defined to be ----------- = --------
- -- x -x Cosh (X)
- -- e + e
-
- if abs X > 23.0 then
- return Double'Copy_Sign (1.0, X);
- end if;
-
- return 1.0 / (1.0 + Exp (-(2.0 * X))) - 1.0 / (1.0 + Exp (2.0 * X));
- end Tanh;
-
-end Ada.Numerics.Aux;