'lp_setup_line.c',
'lp_setup_point.c',
'lp_setup_tri.c',
+ 'lp_setup_coef.c',
+ 'lp_setup_coef_intrin.c',
'lp_setup_vbuf.c',
'lp_state_blend.c',
'lp_state_clip.c',
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2010, VMware.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/*
+ * Binning code for triangles
+ */
+
+#include "util/u_math.h"
+#include "util/u_memory.h"
+#include "lp_perf.h"
+#include "lp_setup_context.h"
+#include "lp_setup_coef.h"
+#include "lp_rast.h"
+#include "lp_state_fs.h"
+
+#if !defined(PIPE_ARCH_SSE)
+
+/**
+ * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
+ */
+static void constant_coef( struct lp_rast_shader_inputs *inputs,
+ unsigned slot,
+ const float value,
+ unsigned i )
+{
+ inputs->a0[slot][i] = value;
+ inputs->dadx[slot][i] = 0.0f;
+ inputs->dady[slot][i] = 0.0f;
+}
+
+
+
+static void linear_coef( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ unsigned vert_attr,
+ unsigned i)
+{
+ float a0 = info->v0[vert_attr][i];
+ float a1 = info->v1[vert_attr][i];
+ float a2 = info->v2[vert_attr][i];
+
+ float da01 = a0 - a1;
+ float da20 = a2 - a0;
+ float dadx = (da01 * info->dy20_ooa - info->dy01_ooa * da20);
+ float dady = (da20 * info->dx01_ooa - info->dx20_ooa * da01);
+
+ inputs->dadx[slot][i] = dadx;
+ inputs->dady[slot][i] = dady;
+
+ /* calculate a0 as the value which would be sampled for the
+ * fragment at (0,0), taking into account that we want to sample at
+ * pixel centers, in other words (0.5, 0.5).
+ *
+ * this is neat but unfortunately not a good way to do things for
+ * triangles with very large values of dadx or dady as it will
+ * result in the subtraction and re-addition from a0 of a very
+ * large number, which means we'll end up loosing a lot of the
+ * fractional bits and precision from a0. the way to fix this is
+ * to define a0 as the sample at a pixel center somewhere near vmin
+ * instead - i'll switch to this later.
+ */
+ inputs->a0[slot][i] = a0 - (dadx * info->x0_center +
+ dady * info->y0_center);
+}
+
+
+/**
+ * Compute a0, dadx and dady for a perspective-corrected interpolant,
+ * for a triangle.
+ * We basically multiply the vertex value by 1/w before computing
+ * the plane coefficients (a0, dadx, dady).
+ * Later, when we compute the value at a particular fragment position we'll
+ * divide the interpolated value by the interpolated W at that fragment.
+ */
+static void perspective_coef( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ unsigned vert_attr,
+ unsigned i)
+{
+ /* premultiply by 1/w (v[0][3] is always 1/w):
+ */
+ float a0 = info->v0[vert_attr][i] * info->v0[0][3];
+ float a1 = info->v1[vert_attr][i] * info->v1[0][3];
+ float a2 = info->v2[vert_attr][i] * info->v2[0][3];
+ float da01 = a0 - a1;
+ float da20 = a2 - a0;
+ float dadx = da01 * info->dy20_ooa - info->dy01_ooa * da20;
+ float dady = da20 * info->dx01_ooa - info->dx20_ooa * da01;
+
+ inputs->dadx[slot][i] = dadx;
+ inputs->dady[slot][i] = dady;
+ inputs->a0[slot][i] = a0 - (dadx * info->x0_center +
+ dady * info->y0_center);
+}
+
+
+/**
+ * Special coefficient setup for gl_FragCoord.
+ * X and Y are trivial
+ * Z and W are copied from position_coef which should have already been computed.
+ * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
+ */
+static void
+setup_fragcoord_coef(struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ unsigned usage_mask)
+{
+ /*X*/
+ if (usage_mask & TGSI_WRITEMASK_X) {
+ inputs->a0[slot][0] = 0.0;
+ inputs->dadx[slot][0] = 1.0;
+ inputs->dady[slot][0] = 0.0;
+ }
+
+ /*Y*/
+ if (usage_mask & TGSI_WRITEMASK_Y) {
+ inputs->a0[slot][1] = 0.0;
+ inputs->dadx[slot][1] = 0.0;
+ inputs->dady[slot][1] = 1.0;
+ }
+
+ /*Z*/
+ if (usage_mask & TGSI_WRITEMASK_Z) {
+ linear_coef(inputs, info, slot, 0, 2);
+ }
+
+ /*W*/
+ if (usage_mask & TGSI_WRITEMASK_W) {
+ linear_coef(inputs, info, slot, 0, 3);
+ }
+}
+
+
+/**
+ * Setup the fragment input attribute with the front-facing value.
+ * \param frontface is the triangle front facing?
+ */
+static void setup_facing_coef( struct lp_rast_shader_inputs *inputs,
+ unsigned slot,
+ boolean frontface,
+ unsigned usage_mask)
+{
+ /* convert TRUE to 1.0 and FALSE to -1.0 */
+ if (usage_mask & TGSI_WRITEMASK_X)
+ constant_coef( inputs, slot, 2.0f * frontface - 1.0f, 0 );
+
+ if (usage_mask & TGSI_WRITEMASK_Y)
+ constant_coef( inputs, slot, 0.0f, 1 ); /* wasted */
+
+ if (usage_mask & TGSI_WRITEMASK_Z)
+ constant_coef( inputs, slot, 0.0f, 2 ); /* wasted */
+
+ if (usage_mask & TGSI_WRITEMASK_W)
+ constant_coef( inputs, slot, 0.0f, 3 ); /* wasted */
+}
+
+
+/**
+ * Compute the tri->coef[] array dadx, dady, a0 values.
+ */
+void lp_setup_tri_coef( struct lp_setup_context *setup,
+ struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info)
+{
+ unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
+ unsigned slot;
+ unsigned i;
+
+ /* setup interpolation for all the remaining attributes:
+ */
+ for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
+ unsigned vert_attr = setup->fs.input[slot].src_index;
+ unsigned usage_mask = setup->fs.input[slot].usage_mask;
+
+ switch (setup->fs.input[slot].interp) {
+ case LP_INTERP_CONSTANT:
+ if (setup->flatshade_first) {
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ constant_coef(inputs, slot+1, info->v0[vert_attr][i], i);
+ }
+ else {
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ constant_coef(inputs, slot+1, info->v2[vert_attr][i], i);
+ }
+ break;
+
+ case LP_INTERP_LINEAR:
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ linear_coef(inputs, info, slot+1, vert_attr, i);
+ break;
+
+ case LP_INTERP_PERSPECTIVE:
+ for (i = 0; i < NUM_CHANNELS; i++)
+ if (usage_mask & (1 << i))
+ perspective_coef(inputs, info, slot+1, vert_attr, i);
+ fragcoord_usage_mask |= TGSI_WRITEMASK_W;
+ break;
+
+ case LP_INTERP_POSITION:
+ /*
+ * The generated pixel interpolators will pick up the coeffs from
+ * slot 0, so all need to ensure that the usage mask is covers all
+ * usages.
+ */
+ fragcoord_usage_mask |= usage_mask;
+ break;
+
+ case LP_INTERP_FACING:
+ setup_facing_coef(inputs, slot+1, info->frontfacing, usage_mask);
+ break;
+
+ default:
+ assert(0);
+ }
+ }
+
+ /* The internal position input is in slot zero:
+ */
+ setup_fragcoord_coef(inputs, info, 0, fragcoord_usage_mask);
+}
+
+#else
+extern void lp_setup_coef_dummy(void);
+void lp_setup_coef_dummy(void)
+{
+}
+
+#endif
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2010 VMware, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+
+/**
+ * The setup code is concerned with point/line/triangle setup and
+ * putting commands/data into the bins.
+ */
+
+
+#ifndef LP_SETUP_COEF_H
+#define LP_SETUP_COEF_H
+
+
+struct lp_tri_info {
+
+ float x0_center;
+ float y0_center;
+
+ /* turn these into an aligned float[4] */
+ float dy01_ooa;
+ float dy20_ooa;
+ float dx01_ooa;
+ float dx20_ooa;
+
+ const float (*v0)[4];
+ const float (*v1)[4];
+ const float (*v2)[4];
+
+ boolean frontfacing; /* remove eventually */
+};
+
+void lp_setup_tri_coef( struct lp_setup_context *setup,
+ struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info);
+
+#endif
--- /dev/null
+/**************************************************************************
+ *
+ * Copyright 2010 VMware.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sub license, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the
+ * next paragraph) shall be included in all copies or substantial portions
+ * of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
+ * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
+ * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
+ * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
+ * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ **************************************************************************/
+
+/*
+ * Binning code for triangles
+ */
+
+#include "util/u_math.h"
+#include "util/u_memory.h"
+#include "lp_perf.h"
+#include "lp_setup_context.h"
+#include "lp_setup_coef.h"
+#include "lp_rast.h"
+#include "lp_state_fs.h"
+
+#if defined(PIPE_ARCH_SSE)
+#include <emmintrin.h>
+
+
+static void constant_coef4( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ const float *attr)
+{
+ *(__m128 *)inputs->a0[slot] = *(__m128 *)attr;
+ *(__m128 *)inputs->dadx[slot] = _mm_set1_ps(0.0);
+ *(__m128 *)inputs->dady[slot] = _mm_set1_ps(0.0);
+}
+
+
+
+/**
+ * Setup the fragment input attribute with the front-facing value.
+ * \param frontface is the triangle front facing?
+ */
+static void setup_facing_coef( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot )
+{
+ /* XXX: just pass frontface directly to the shader, don't bother
+ * treating it as an input.
+ */
+ __m128 a0 = _mm_setr_ps(info->frontfacing ? 1.0 : -1.0,
+ 0, 0, 0);
+
+ *(__m128 *)inputs->a0[slot] = a0;
+ *(__m128 *)inputs->dadx[slot] = _mm_set1_ps(0.0);
+ *(__m128 *)inputs->dady[slot] = _mm_set1_ps(0.0);
+}
+
+
+
+static void calc_coef4( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ __m128 a0,
+ __m128 a1,
+ __m128 a2)
+{
+ __m128 da01 = _mm_sub_ps(a0, a1);
+ __m128 da20 = _mm_sub_ps(a2, a0);
+
+ __m128 da01_dy20_ooa = _mm_mul_ps(da01, _mm_set1_ps(info->dy20_ooa));
+ __m128 da20_dy01_ooa = _mm_mul_ps(da20, _mm_set1_ps(info->dy01_ooa));
+ __m128 dadx = _mm_sub_ps(da01_dy20_ooa, da20_dy01_ooa);
+
+ __m128 da01_dx20_ooa = _mm_mul_ps(da01, _mm_set1_ps(info->dx20_ooa));
+ __m128 da20_dx01_ooa = _mm_mul_ps(da20, _mm_set1_ps(info->dx01_ooa));
+ __m128 dady = _mm_sub_ps(da20_dx01_ooa, da01_dx20_ooa);
+
+ __m128 dadx_x0 = _mm_mul_ps(dadx, _mm_set1_ps(info->x0_center));
+ __m128 dady_y0 = _mm_mul_ps(dady, _mm_set1_ps(info->y0_center));
+ __m128 attr_v0 = _mm_add_ps(dadx_x0, dady_y0);
+ __m128 attr_0 = _mm_sub_ps(a0, attr_v0);
+
+ *(__m128 *)inputs->a0[slot] = attr_0;
+ *(__m128 *)inputs->dadx[slot] = dadx;
+ *(__m128 *)inputs->dady[slot] = dady;
+}
+
+
+static void linear_coef( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ unsigned vert_attr)
+{
+ __m128 a0 = *(const __m128 *)info->v0[vert_attr];
+ __m128 a1 = *(const __m128 *)info->v1[vert_attr];
+ __m128 a2 = *(const __m128 *)info->v2[vert_attr];
+
+ calc_coef4(inputs, info, slot, a0, a1, a2);
+}
+
+
+
+/**
+ * Compute a0, dadx and dady for a perspective-corrected interpolant,
+ * for a triangle.
+ * We basically multiply the vertex value by 1/w before computing
+ * the plane coefficients (a0, dadx, dady).
+ * Later, when we compute the value at a particular fragment position we'll
+ * divide the interpolated value by the interpolated W at that fragment.
+ */
+static void perspective_coef( struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info,
+ unsigned slot,
+ unsigned vert_attr)
+{
+ /* premultiply by 1/w (v[0][3] is always 1/w):
+ */
+ __m128 a0 = *(const __m128 *)info->v0[vert_attr];
+ __m128 a1 = *(const __m128 *)info->v1[vert_attr];
+ __m128 a2 = *(const __m128 *)info->v2[vert_attr];
+
+ __m128 a0_oow = _mm_mul_ps(a0, _mm_set1_ps(info->v0[0][3]));
+ __m128 a1_oow = _mm_mul_ps(a1, _mm_set1_ps(info->v1[0][3]));
+ __m128 a2_oow = _mm_mul_ps(a2, _mm_set1_ps(info->v2[0][3]));
+
+ calc_coef4(inputs, info, slot, a0_oow, a1_oow, a2_oow);
+}
+
+
+
+
+
+/**
+ * Compute the inputs-> dadx, dady, a0 values.
+ */
+void lp_setup_tri_coef( struct lp_setup_context *setup,
+ struct lp_rast_shader_inputs *inputs,
+ const struct lp_tri_info *info)
+{
+ unsigned slot;
+
+ /* The internal position input is in slot zero:
+ */
+ linear_coef(inputs, info, 0, 0);
+
+ /* setup interpolation for all the remaining attributes:
+ */
+ for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
+ unsigned vert_attr = setup->fs.input[slot].src_index;
+
+ switch (setup->fs.input[slot].interp) {
+ case LP_INTERP_CONSTANT:
+ if (setup->flatshade_first) {
+ constant_coef4(inputs, info, slot+1, info->v0[vert_attr]);
+ }
+ else {
+ constant_coef4(inputs, info, slot+1, info->v2[vert_attr]);
+ }
+ break;
+
+ case LP_INTERP_LINEAR:
+ linear_coef(inputs, info, slot+1, vert_attr);
+ break;
+
+ case LP_INTERP_PERSPECTIVE:
+ perspective_coef(inputs, info, slot+1, vert_attr);
+ break;
+
+ case LP_INTERP_POSITION:
+ /*
+ * The generated pixel interpolators will pick up the coeffs from
+ * slot 0.
+ */
+ break;
+
+ case LP_INTERP_FACING:
+ setup_facing_coef(inputs, info, slot+1);
+ break;
+
+ default:
+ assert(0);
+ }
+ }
+}
+
+#else
+extern void lp_setup_coef_dummy(void);
+void lp_setup_coef_dummy(void)
+{
+}
+#endif
#include "util/u_rect.h"
#include "lp_perf.h"
#include "lp_setup_context.h"
+#include "lp_setup_coef.h"
#include "lp_rast.h"
#include "lp_state_fs.h"
#define NUM_CHANNELS 4
-struct tri_info {
-
- float pixel_offset;
-
- /* fixed point vertex coordinates */
- int x[3];
- int y[3];
-
- /* float x,y deltas - all from the original coordinates
- */
- float dy01, dy20;
- float dx01, dx20;
- float oneoverarea;
-
- const float (*v0)[4];
- const float (*v1)[4];
- const float (*v2)[4];
-
- boolean frontfacing;
-};
-
-
static INLINE int
-/**
- * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
- */
-static void constant_coef( struct lp_rast_triangle *tri,
- unsigned slot,
- const float value,
- unsigned i )
-{
- tri->inputs.a0[slot][i] = value;
- tri->inputs.dadx[slot][i] = 0.0f;
- tri->inputs.dady[slot][i] = 0.0f;
-}
-
-
-
-static void linear_coef( struct lp_rast_triangle *tri,
- const struct tri_info *info,
- unsigned slot,
- unsigned vert_attr,
- unsigned i)
-{
- float a0 = info->v0[vert_attr][i];
- float a1 = info->v1[vert_attr][i];
- float a2 = info->v2[vert_attr][i];
-
- float da01 = a0 - a1;
- float da20 = a2 - a0;
- float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
- float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
-
- tri->inputs.dadx[slot][i] = dadx;
- tri->inputs.dady[slot][i] = dady;
-
- /* calculate a0 as the value which would be sampled for the
- * fragment at (0,0), taking into account that we want to sample at
- * pixel centers, in other words (0.5, 0.5).
- *
- * this is neat but unfortunately not a good way to do things for
- * triangles with very large values of dadx or dady as it will
- * result in the subtraction and re-addition from a0 of a very
- * large number, which means we'll end up loosing a lot of the
- * fractional bits and precision from a0. the way to fix this is
- * to define a0 as the sample at a pixel center somewhere near vmin
- * instead - i'll switch to this later.
- */
- tri->inputs.a0[slot][i] = (a0 -
- (dadx * (info->v0[0][0] - info->pixel_offset) +
- dady * (info->v0[0][1] - info->pixel_offset)));
-}
-
-
-/**
- * Compute a0, dadx and dady for a perspective-corrected interpolant,
- * for a triangle.
- * We basically multiply the vertex value by 1/w before computing
- * the plane coefficients (a0, dadx, dady).
- * Later, when we compute the value at a particular fragment position we'll
- * divide the interpolated value by the interpolated W at that fragment.
- */
-static void perspective_coef( struct lp_rast_triangle *tri,
- const struct tri_info *info,
- unsigned slot,
- unsigned vert_attr,
- unsigned i)
-{
- /* premultiply by 1/w (v[0][3] is always 1/w):
- */
- float a0 = info->v0[vert_attr][i] * info->v0[0][3];
- float a1 = info->v1[vert_attr][i] * info->v1[0][3];
- float a2 = info->v2[vert_attr][i] * info->v2[0][3];
- float da01 = a0 - a1;
- float da20 = a2 - a0;
- float dadx = (da01 * info->dy20 - info->dy01 * da20) * info->oneoverarea;
- float dady = (da20 * info->dx01 - info->dx20 * da01) * info->oneoverarea;
-
- tri->inputs.dadx[slot][i] = dadx;
- tri->inputs.dady[slot][i] = dady;
- tri->inputs.a0[slot][i] = (a0 -
- (dadx * (info->v0[0][0] - info->pixel_offset) +
- dady * (info->v0[0][1] - info->pixel_offset)));
-}
-
-
-/**
- * Special coefficient setup for gl_FragCoord.
- * X and Y are trivial
- * Z and W are copied from position_coef which should have already been computed.
- * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
- */
-static void
-setup_fragcoord_coef(struct lp_rast_triangle *tri,
- const struct tri_info *info,
- unsigned slot,
- unsigned usage_mask)
-{
- /*X*/
- if (usage_mask & TGSI_WRITEMASK_X) {
- tri->inputs.a0[slot][0] = 0.0;
- tri->inputs.dadx[slot][0] = 1.0;
- tri->inputs.dady[slot][0] = 0.0;
- }
-
- /*Y*/
- if (usage_mask & TGSI_WRITEMASK_Y) {
- tri->inputs.a0[slot][1] = 0.0;
- tri->inputs.dadx[slot][1] = 0.0;
- tri->inputs.dady[slot][1] = 1.0;
- }
-
- /*Z*/
- if (usage_mask & TGSI_WRITEMASK_Z) {
- linear_coef(tri, info, slot, 0, 2);
- }
-
- /*W*/
- if (usage_mask & TGSI_WRITEMASK_W) {
- linear_coef(tri, info, slot, 0, 3);
- }
-}
-
-
-/**
- * Setup the fragment input attribute with the front-facing value.
- * \param frontface is the triangle front facing?
- */
-static void setup_facing_coef( struct lp_rast_triangle *tri,
- unsigned slot,
- boolean frontface,
- unsigned usage_mask)
-{
- /* convert TRUE to 1.0 and FALSE to -1.0 */
- if (usage_mask & TGSI_WRITEMASK_X)
- constant_coef( tri, slot, 2.0f * frontface - 1.0f, 0 );
-
- if (usage_mask & TGSI_WRITEMASK_Y)
- constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
-
- if (usage_mask & TGSI_WRITEMASK_Z)
- constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
-
- if (usage_mask & TGSI_WRITEMASK_W)
- constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
-}
-
-
-/**
- * Compute the tri->coef[] array dadx, dady, a0 values.
- */
-static void setup_tri_coefficients( struct lp_setup_context *setup,
- struct lp_rast_triangle *tri,
- const struct tri_info *info)
-{
- unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
- unsigned slot;
- unsigned i;
-
- /* setup interpolation for all the remaining attributes:
- */
- for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
- unsigned vert_attr = setup->fs.input[slot].src_index;
- unsigned usage_mask = setup->fs.input[slot].usage_mask;
-
- switch (setup->fs.input[slot].interp) {
- case LP_INTERP_CONSTANT:
- if (setup->flatshade_first) {
- for (i = 0; i < NUM_CHANNELS; i++)
- if (usage_mask & (1 << i))
- constant_coef(tri, slot+1, info->v0[vert_attr][i], i);
- }
- else {
- for (i = 0; i < NUM_CHANNELS; i++)
- if (usage_mask & (1 << i))
- constant_coef(tri, slot+1, info->v2[vert_attr][i], i);
- }
- break;
-
- case LP_INTERP_LINEAR:
- for (i = 0; i < NUM_CHANNELS; i++)
- if (usage_mask & (1 << i))
- linear_coef(tri, info, slot+1, vert_attr, i);
- break;
-
- case LP_INTERP_PERSPECTIVE:
- for (i = 0; i < NUM_CHANNELS; i++)
- if (usage_mask & (1 << i))
- perspective_coef(tri, info, slot+1, vert_attr, i);
- fragcoord_usage_mask |= TGSI_WRITEMASK_W;
- break;
-
- case LP_INTERP_POSITION:
- /*
- * The generated pixel interpolators will pick up the coeffs from
- * slot 0, so all need to ensure that the usage mask is covers all
- * usages.
- */
- fragcoord_usage_mask |= usage_mask;
- break;
-
- case LP_INTERP_FACING:
- setup_facing_coef(tri, slot+1, info->frontfacing, usage_mask);
- break;
-
- default:
- assert(0);
- }
- }
-
- /* The internal position input is in slot zero:
- */
- setup_fragcoord_coef(tri, info, 0, fragcoord_usage_mask);
-
- if (0) {
- for (i = 0; i < NUM_CHANNELS; i++) {
- float a0 = tri->inputs.a0 [0][i];
- float dadx = tri->inputs.dadx[0][i];
- float dady = tri->inputs.dady[0][i];
-
- debug_printf("POS.%c: a0 = %f, dadx = %f, dady = %f\n",
- "xyzw"[i],
- a0, dadx, dady);
- }
-
- for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
- unsigned usage_mask = setup->fs.input[slot].usage_mask;
- for (i = 0; i < NUM_CHANNELS; i++) {
- if (usage_mask & (1 << i)) {
- float a0 = tri->inputs.a0 [1 + slot][i];
- float dadx = tri->inputs.dadx[1 + slot][i];
- float dady = tri->inputs.dady[1 + slot][i];
-
- debug_printf("IN[%u].%c: a0 = %f, dadx = %f, dady = %f\n",
- slot,
- "xyzw"[i],
- a0, dadx, dady);
- }
- }
- }
- }
-}
-
-
*/
static void
do_triangle_ccw(struct lp_setup_context *setup,
+ const float (*v0)[4],
const float (*v1)[4],
const float (*v2)[4],
- const float (*v3)[4],
boolean frontfacing )
{
struct lp_scene *scene = lp_setup_get_current_scene(setup);
struct lp_fragment_shader_variant *variant = setup->fs.current.variant;
struct lp_rast_triangle *tri;
- struct tri_info info;
+ int x[3];
+ int y[3];
+ float dy01, dy20;
+ float dx01, dx20;
+ float oneoverarea;
+ struct lp_tri_info info;
int area;
struct u_rect bbox;
int ix0, ix1, iy0, iy1;
int nr_planes = 3;
if (0)
- lp_setup_print_triangle(setup, v1, v2, v3);
+ lp_setup_print_triangle(setup, v0, v1, v2);
if (setup->scissor_test) {
nr_planes = 7;
}
/* x/y positions in fixed point */
- info.x[0] = subpixel_snap(v1[0][0] - setup->pixel_offset);
- info.x[1] = subpixel_snap(v2[0][0] - setup->pixel_offset);
- info.x[2] = subpixel_snap(v3[0][0] - setup->pixel_offset);
- info.y[0] = subpixel_snap(v1[0][1] - setup->pixel_offset);
- info.y[1] = subpixel_snap(v2[0][1] - setup->pixel_offset);
- info.y[2] = subpixel_snap(v3[0][1] - setup->pixel_offset);
-
+ x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
+ x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
+ x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
+ y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
+ y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
+ y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
/* Bounding rectangle (in pixels) */
*/
int adj = (setup->pixel_offset != 0) ? 1 : 0;
- bbox.x0 = (MIN3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
- bbox.x1 = (MAX3(info.x[0], info.x[1], info.x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
- bbox.y0 = (MIN3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
- bbox.y1 = (MAX3(info.y[0], info.y[1], info.y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
+ bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
+ bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
/* Inclusive coordinates:
*/
return;
#ifdef DEBUG
- tri->v[0][0] = v1[0][0];
- tri->v[1][0] = v2[0][0];
- tri->v[2][0] = v3[0][0];
- tri->v[0][1] = v1[0][1];
- tri->v[1][1] = v2[0][1];
- tri->v[2][1] = v3[0][1];
+ tri->v[0][0] = v0[0][0];
+ tri->v[1][0] = v1[0][0];
+ tri->v[2][0] = v2[0][0];
+ tri->v[0][1] = v0[0][1];
+ tri->v[1][1] = v1[0][1];
+ tri->v[2][1] = v2[0][1];
#endif
- tri->plane[0].dcdy = info.x[0] - info.x[1];
- tri->plane[1].dcdy = info.x[1] - info.x[2];
- tri->plane[2].dcdy = info.x[2] - info.x[0];
+ tri->plane[0].dcdy = x[0] - x[1];
+ tri->plane[1].dcdy = x[1] - x[2];
+ tri->plane[2].dcdy = x[2] - x[0];
- tri->plane[0].dcdx = info.y[0] - info.y[1];
- tri->plane[1].dcdx = info.y[1] - info.y[2];
- tri->plane[2].dcdx = info.y[2] - info.y[0];
+ tri->plane[0].dcdx = y[0] - y[1];
+ tri->plane[1].dcdx = y[1] - y[2];
+ tri->plane[2].dcdx = y[2] - y[0];
area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
tri->plane[2].dcdy * tri->plane[0].dcdx);
/*
*/
- info.pixel_offset = setup->pixel_offset;
- info.v0 = v1;
- info.v1 = v2;
- info.v2 = v3;
- info.dx01 = info.v0[0][0] - info.v1[0][0];
- info.dx20 = info.v2[0][0] - info.v0[0][0];
- info.dy01 = info.v0[0][1] - info.v1[0][1];
- info.dy20 = info.v2[0][1] - info.v0[0][1];
- info.oneoverarea = 1.0f / (info.dx01 * info.dy20 - info.dx20 * info.dy01);
+ dx01 = v0[0][0] - v1[0][0];
+ dy01 = v0[0][1] - v1[0][1];
+ dx20 = v2[0][0] - v0[0][0];
+ dy20 = v2[0][1] - v0[0][1];
+ oneoverarea = 1.0f / (dx01 * dy20 - dx20 * dy01);
+
+ info.v0 = v0;
+ info.v1 = v1;
+ info.v2 = v2;
info.frontfacing = frontfacing;
+ info.x0_center = v0[0][0] - setup->pixel_offset;
+ info.y0_center = v0[0][1] - setup->pixel_offset;
+ info.dx01_ooa = dx01 * oneoverarea;
+ info.dx20_ooa = dx20 * oneoverarea;
+ info.dy01_ooa = dy01 * oneoverarea;
+ info.dy20_ooa = dy20 * oneoverarea;
/* Setup parameter interpolants:
*/
- setup_tri_coefficients( setup, tri, &info );
+ lp_setup_tri_coef( setup, &tri->inputs, &info );
tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
tri->inputs.state = setup->fs.stored;
/* half-edge constants, will be interated over the whole render
* target.
*/
- plane->c = plane->dcdx * info.x[i] - plane->dcdy * info.y[i];
+ plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
/* correct for top-left vs. bottom-left fill convention.
*