This patch adds an rtl representation of poly_int values.
There were three possible ways of doing this:
(1) Add a new rtl code for the poly_ints themselves and store the
coefficients as trailing wide_ints. This would give constants like:
(const_poly_int [c0 c1 ... cn])
The runtime value would be:
c0 + c1 * x1 + ... + cn * xn
(2) Like (1), but use rtxes for the coefficients. This would give
constants like:
(const_poly_int [(const_int c0)
(const_int c1)
...
(const_int cn)])
although the coefficients could be const_wide_ints instead
of const_ints where appropriate.
(3) Add a new rtl code for the polynomial indeterminates,
then use them in const wrappers. A constant like c0 + c1 * x1
would then look like:
(const:M (plus:M (mult:M (const_param:M x1)
(const_int c1))
(const_int c0)))
There didn't seem to be that much to choose between them. The main
advantage of (1) is that it's a more efficient representation and
that we can refer to the cofficients directly as wide_int_storage.
2017-12-20 Richard Sandiford <richard.sandiford@linaro.org>
Alan Hayward <alan.hayward@arm.com>
David Sherwood <david.sherwood@arm.com>
gcc/
* doc/rtl.texi (const_poly_int): Document. Also document the
rtl sharing behavior.
* gengenrtl.c (excluded_rtx): Return true for CONST_POLY_INT.
* rtl.h (const_poly_int_def): New struct.
(rtx_def::u): Add a cpi field.
(CASE_CONST_UNIQUE, CASE_CONST_ANY): Add CONST_POLY_INT.
(CONST_POLY_INT_P, CONST_POLY_INT_COEFFS): New macros.
(wi::rtx_to_poly_wide_ref): New typedef
(const_poly_int_value, wi::to_poly_wide, rtx_to_poly_int64)
(poly_int_rtx_p): New functions.
(trunc_int_for_mode): Declare a poly_int64 version.
(plus_constant): Take a poly_int64 instead of a HOST_WIDE_INT.
(immed_wide_int_const): Take a poly_wide_int_ref rather than
a wide_int_ref.
(strip_offset): Declare.
(strip_offset_and_add): New function.
* rtl.def (CONST_POLY_INT): New rtx code.
* rtl.c (rtx_size): Handle CONST_POLY_INT.
(shared_const_p): Use poly_int_rtx_p.
* emit-rtl.h (gen_int_mode): Take a poly_int64 instead of a
HOST_WIDE_INT.
(gen_int_shift_amount): Likewise.
* emit-rtl.c (const_poly_int_hasher): New class.
(const_poly_int_htab): New variable.
(init_emit_once): Initialize it when NUM_POLY_INT_COEFFS > 1.
(const_poly_int_hasher::hash): New function.
(const_poly_int_hasher::equal): Likewise.
(gen_int_mode): Take a poly_int64 instead of a HOST_WIDE_INT.
(immed_wide_int_const): Rename to...
(immed_wide_int_const_1): ...this and make static.
(immed_wide_int_const): New function, taking a poly_wide_int_ref
instead of a wide_int_ref.
(gen_int_shift_amount): Take a poly_int64 instead of a HOST_WIDE_INT.
(gen_lowpart_common): Handle CONST_POLY_INT.
* cse.c (hash_rtx_cb, equiv_constant): Likewise.
* cselib.c (cselib_hash_rtx): Likewise.
* dwarf2out.c (const_ok_for_output_1): Likewise.
* expr.c (convert_modes): Likewise.
* print-rtl.c (rtx_writer::print_rtx, print_value): Likewise.
* rtlhash.c (add_rtx): Likewise.
* explow.c (trunc_int_for_mode): Add a poly_int64 version.
(plus_constant): Take a poly_int64 instead of a HOST_WIDE_INT.
Handle existing CONST_POLY_INT rtxes.
* expmed.h (expand_shift): Take a poly_int64 instead of a
HOST_WIDE_INT.
* expmed.c (expand_shift): Likewise.
* rtlanal.c (strip_offset): New function.
(commutative_operand_precedence): Give CONST_POLY_INT the same
precedence as CONST_DOUBLE and put CONST_WIDE_INT between that
and CONST_INT.
* rtl-tests.c (const_poly_int_tests): New struct.
(rtl_tests_c_tests): Use it.
* simplify-rtx.c (simplify_const_unary_operation): Handle
CONST_POLY_INT.
(simplify_const_binary_operation): Likewise.
(simplify_binary_operation_1): Fold additions of symbolic constants
and CONST_POLY_INTs.
(simplify_subreg): Handle extensions and truncations of
CONST_POLY_INTs.
(simplify_const_poly_int_tests): New struct.
(simplify_rtx_c_tests): Use it.
* wide-int.h (storage_ref): Add default constructor.
(wide_int_ref_storage): Likewise.
(trailing_wide_ints): Use GTY((user)).
(trailing_wide_ints::operator[]): Add a const version.
(trailing_wide_ints::get_precision): New function.
(trailing_wide_ints::extra_size): Likewise.
Co-Authored-By: Alan Hayward <alan.hayward@arm.com>
Co-Authored-By: David Sherwood <david.sherwood@arm.com>
From-SVN: r255862
+2017-12-20 Richard Sandiford <richard.sandiford@linaro.org>
+ Alan Hayward <alan.hayward@arm.com>
+ David Sherwood <david.sherwood@arm.com>
+
+ * doc/rtl.texi (const_poly_int): Document. Also document the
+ rtl sharing behavior.
+ * gengenrtl.c (excluded_rtx): Return true for CONST_POLY_INT.
+ * rtl.h (const_poly_int_def): New struct.
+ (rtx_def::u): Add a cpi field.
+ (CASE_CONST_UNIQUE, CASE_CONST_ANY): Add CONST_POLY_INT.
+ (CONST_POLY_INT_P, CONST_POLY_INT_COEFFS): New macros.
+ (wi::rtx_to_poly_wide_ref): New typedef
+ (const_poly_int_value, wi::to_poly_wide, rtx_to_poly_int64)
+ (poly_int_rtx_p): New functions.
+ (trunc_int_for_mode): Declare a poly_int64 version.
+ (plus_constant): Take a poly_int64 instead of a HOST_WIDE_INT.
+ (immed_wide_int_const): Take a poly_wide_int_ref rather than
+ a wide_int_ref.
+ (strip_offset): Declare.
+ (strip_offset_and_add): New function.
+ * rtl.def (CONST_POLY_INT): New rtx code.
+ * rtl.c (rtx_size): Handle CONST_POLY_INT.
+ (shared_const_p): Use poly_int_rtx_p.
+ * emit-rtl.h (gen_int_mode): Take a poly_int64 instead of a
+ HOST_WIDE_INT.
+ (gen_int_shift_amount): Likewise.
+ * emit-rtl.c (const_poly_int_hasher): New class.
+ (const_poly_int_htab): New variable.
+ (init_emit_once): Initialize it when NUM_POLY_INT_COEFFS > 1.
+ (const_poly_int_hasher::hash): New function.
+ (const_poly_int_hasher::equal): Likewise.
+ (gen_int_mode): Take a poly_int64 instead of a HOST_WIDE_INT.
+ (immed_wide_int_const): Rename to...
+ (immed_wide_int_const_1): ...this and make static.
+ (immed_wide_int_const): New function, taking a poly_wide_int_ref
+ instead of a wide_int_ref.
+ (gen_int_shift_amount): Take a poly_int64 instead of a HOST_WIDE_INT.
+ (gen_lowpart_common): Handle CONST_POLY_INT.
+ * cse.c (hash_rtx_cb, equiv_constant): Likewise.
+ * cselib.c (cselib_hash_rtx): Likewise.
+ * dwarf2out.c (const_ok_for_output_1): Likewise.
+ * expr.c (convert_modes): Likewise.
+ * print-rtl.c (rtx_writer::print_rtx, print_value): Likewise.
+ * rtlhash.c (add_rtx): Likewise.
+ * explow.c (trunc_int_for_mode): Add a poly_int64 version.
+ (plus_constant): Take a poly_int64 instead of a HOST_WIDE_INT.
+ Handle existing CONST_POLY_INT rtxes.
+ * expmed.h (expand_shift): Take a poly_int64 instead of a
+ HOST_WIDE_INT.
+ * expmed.c (expand_shift): Likewise.
+ * rtlanal.c (strip_offset): New function.
+ (commutative_operand_precedence): Give CONST_POLY_INT the same
+ precedence as CONST_DOUBLE and put CONST_WIDE_INT between that
+ and CONST_INT.
+ * rtl-tests.c (const_poly_int_tests): New struct.
+ (rtl_tests_c_tests): Use it.
+ * simplify-rtx.c (simplify_const_unary_operation): Handle
+ CONST_POLY_INT.
+ (simplify_const_binary_operation): Likewise.
+ (simplify_binary_operation_1): Fold additions of symbolic constants
+ and CONST_POLY_INTs.
+ (simplify_subreg): Handle extensions and truncations of
+ CONST_POLY_INTs.
+ (simplify_const_poly_int_tests): New struct.
+ (simplify_rtx_c_tests): Use it.
+ * wide-int.h (storage_ref): Add default constructor.
+ (wide_int_ref_storage): Likewise.
+ (trailing_wide_ints): Use GTY((user)).
+ (trailing_wide_ints::operator[]): Add a const version.
+ (trailing_wide_ints::get_precision): New function.
+ (trailing_wide_ints::extra_size): Likewise.
+
2017-12-20 Richard Sandiford <richard.sandiford@linaro.org>
Alan Hayward <alan.hayward@arm.com>
David Sherwood <david.sherwood@arm.com>
hash += CONST_WIDE_INT_ELT (x, i);
return hash;
+ case CONST_POLY_INT:
+ {
+ inchash::hash h;
+ h.add_int (hash);
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
+ return h.end ();
+ }
+
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
/* See if we previously assigned a constant value to this SUBREG. */
if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
|| (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
+ || (NUM_POLY_INT_COEFFS > 1
+ && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
|| (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
|| (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
return new_rtx;
hash += CONST_WIDE_INT_ELT (x, i);
return hash;
+ case CONST_POLY_INT:
+ {
+ inchash::hash h;
+ h.add_int (hash);
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
+ return h.end ();
+ }
+
case CONST_DOUBLE:
/* This is like the general case, except that it only counts
the integers representing the constant. */
data is accessed with @code{CONST_FIXED_VALUE_HIGH}; the low part is
accessed with @code{CONST_FIXED_VALUE_LOW}.
+@findex const_poly_int
+@item (const_poly_int:@var{m} [@var{c0} @var{c1} @dots{}])
+Represents a @code{poly_int}-style polynomial integer with coefficients
+@var{c0}, @var{c1}, @dots{}. The coefficients are @code{wide_int}-based
+integers rather than rtxes. @code{CONST_POLY_INT_COEFFS} gives the
+values of individual coefficients (which is mostly only useful in
+low-level routines) and @code{const_poly_int_value} gives the full
+@code{poly_int} value.
+
@findex const_vector
@item (const_vector:@var{m} [@var{x0} @var{x1} @dots{}])
Represents a vector constant. The square brackets stand for the vector
@item
All @code{const_int} expressions with equal values are shared.
+@cindex @code{const_poly_int}, RTL sharing
+@item
+All @code{const_poly_int} expressions with equal modes and values
+are shared.
+
@cindex @code{pc}, RTL sharing
@item
There is only one @code{pc} expression.
return false;
}
+ if (CONST_POLY_INT_P (rtl))
+ return false;
+
+ if (targetm.const_not_ok_for_debug_p (rtl))
+ {
+ expansion_failed (NULL_TREE, rtl,
+ "Expression rejected for debug by the backend.\n");
+ return false;
+ }
+
/* FIXME: Refer to PR60655. It is possible for simplification
of rtl expressions in var tracking to produce such expressions.
We should really identify / validate expressions
static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
+struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
+{
+ typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
+
+ static hashval_t hash (rtx x);
+ static bool equal (rtx x, const compare_type &y);
+};
+
+static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
+
/* A hash table storing register attribute structures. */
struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
{
}
#endif
+/* Returns a hash code for CONST_POLY_INT X. */
+
+hashval_t
+const_poly_int_hasher::hash (rtx x)
+{
+ inchash::hash h;
+ h.add_int (GET_MODE (x));
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
+ return h.end ();
+}
+
+/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
+
+bool
+const_poly_int_hasher::equal (rtx x, const compare_type &y)
+{
+ if (GET_MODE (x) != y.first)
+ return false;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
+ return false;
+ return true;
+}
+
/* Returns a hash code for X (which is really a CONST_DOUBLE). */
hashval_t
const_double_hasher::hash (rtx x)
}
rtx
-gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
+gen_int_mode (poly_int64 c, machine_mode mode)
{
- return GEN_INT (trunc_int_for_mode (c, mode));
+ c = trunc_int_for_mode (c, mode);
+ if (c.is_constant ())
+ return GEN_INT (c.coeffs[0]);
+ unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
+ return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
}
/* CONST_DOUBLEs might be created from pairs of integers, or from
a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
(if TARGET_SUPPORTS_WIDE_INT). */
-rtx
-immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
+static rtx
+immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
{
unsigned int len = v.get_len ();
/* Not scalar_int_mode because we also allow pointer bound modes. */
}
#endif
+/* Return an rtx representation of C in mode MODE. */
+
+rtx
+immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
+{
+ if (c.is_constant ())
+ return immed_wide_int_const_1 (c.coeffs[0], mode);
+
+ /* Not scalar_int_mode because we also allow pointer bound modes. */
+ unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
+
+ /* Allow truncation but not extension since we do not know if the
+ number is signed or unsigned. */
+ gcc_assert (prec <= c.coeffs[0].get_precision ());
+ poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
+
+ /* See whether we already have an rtx for this constant. */
+ inchash::hash h;
+ h.add_int (mode);
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ h.add_wide_int (newc.coeffs[i]);
+ const_poly_int_hasher::compare_type typed_value (mode, newc);
+ rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
+ h.end (), INSERT);
+ rtx x = *slot;
+ if (x)
+ return x;
+
+ /* Create a new rtx. There's a choice to be made here between installing
+ the actual mode of the rtx or leaving it as VOIDmode (for consistency
+ with CONST_INT). In practice the handling of the codes is different
+ enough that we get no benefit from using VOIDmode, and various places
+ assume that VOIDmode implies CONST_INT. Using the real mode seems like
+ the right long-term direction anyway. */
+ typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
+ size_t extra_size = twi::extra_size (prec);
+ x = rtx_alloc_v (CONST_POLY_INT,
+ sizeof (struct const_poly_int_def) + extra_size);
+ PUT_MODE (x, mode);
+ CONST_POLY_INT_COEFFS (x).set_precision (prec);
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
+
+ *slot = x;
+ return x;
+}
+
rtx
gen_rtx_REG (machine_mode mode, unsigned int regno)
{
}
else if (GET_CODE (x) == SUBREG || REG_P (x)
|| GET_CODE (x) == CONCAT || const_vec_p (x)
- || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
+ || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
+ || CONST_POLY_INT_P (x))
return lowpart_subreg (mode, x, innermode);
/* Otherwise, we can't do this. */
#endif
const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
+ if (NUM_POLY_INT_COEFFS > 1)
+ const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
+
const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
by VALUE bits. */
rtx
-gen_int_shift_amount (machine_mode, HOST_WIDE_INT value)
+gen_int_shift_amount (machine_mode, poly_int64 value)
{
/* Use a 64-bit mode, to avoid any truncation.
extern rtx copy_insn_1 (rtx);
extern rtx copy_insn (rtx);
extern rtx_insn *copy_delay_slot_insn (rtx_insn *);
-extern rtx gen_int_mode (HOST_WIDE_INT, machine_mode);
+extern rtx gen_int_mode (poly_int64, machine_mode);
extern rtx_insn *emit_copy_of_insn_after (rtx_insn *, rtx_insn *);
extern void set_reg_attrs_from_value (rtx, rtx);
extern void set_reg_attrs_for_parm (rtx, rtx);
extern void set_reg_attrs_for_decl_rtl (tree t, rtx x);
extern void adjust_reg_mode (rtx, machine_mode);
extern int mem_expr_equal_p (const_tree, const_tree);
-extern rtx gen_int_shift_amount (machine_mode, HOST_WIDE_INT);
+extern rtx gen_int_shift_amount (machine_mode, poly_int64);
extern bool need_atomic_barrier_p (enum memmodel, bool);
return c;
}
+/* Likewise for polynomial values, using the sign-extended representation
+ for each individual coefficient. */
+
+poly_int64
+trunc_int_for_mode (poly_int64 x, machine_mode mode)
+{
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
+ return x;
+}
+
/* Return an rtx for the sum of X and the integer C, given that X has
mode MODE. INPLACE is true if X can be modified inplace or false
if it must be treated as immutable. */
rtx
-plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
- bool inplace)
+plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
{
RTX_CODE code;
rtx y;
gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
- if (c == 0)
+ if (known_eq (c, 0))
return x;
restart:
break;
default:
+ if (CONST_POLY_INT_P (x))
+ return immed_wide_int_const (const_poly_int_value (x) + c, mode);
break;
}
- if (c != 0)
+ if (maybe_ne (c, 0))
x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
rtx
expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
- int amount, rtx target, int unsignedp)
+ poly_int64 amount, rtx target, int unsignedp)
{
return expand_shift_1 (code, mode, shifted,
gen_int_shift_amount (mode, amount),
#ifdef TREE_CODE
extern rtx expand_variable_shift (enum tree_code, machine_mode,
rtx, tree, rtx, int);
-extern rtx expand_shift (enum tree_code, machine_mode, rtx, int, rtx,
- int);
+extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
+ int);
extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
rtx, int);
#endif
&& is_int_mode (oldmode, &int_oldmode)
&& GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
&& ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
+ || CONST_POLY_INT_P (x)
|| (REG_P (x)
&& (!HARD_REGISTER_P (x)
|| targetm.hard_regno_mode_ok (REGNO (x), int_mode))
return (strcmp (defs[idx].enumname, "VAR_LOCATION") == 0
|| strcmp (defs[idx].enumname, "CONST_DOUBLE") == 0
|| strcmp (defs[idx].enumname, "CONST_WIDE_INT") == 0
+ || strcmp (defs[idx].enumname, "CONST_POLY_INT") == 0
|| strcmp (defs[idx].enumname, "CONST_FIXED") == 0);
}
fprintf (m_outfile, " ");
cwi_output_hex (m_outfile, in_rtx);
break;
+
+ case CONST_POLY_INT:
+ fprintf (m_outfile, " [");
+ print_dec (CONST_POLY_INT_COEFFS (in_rtx)[0], m_outfile, SIGNED);
+ for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
+ {
+ fprintf (m_outfile, ", ");
+ print_dec (CONST_POLY_INT_COEFFS (in_rtx)[i], m_outfile, SIGNED);
+ }
+ fprintf (m_outfile, "]");
+ break;
#endif
case CODE_LABEL:
}
break;
+ case CONST_POLY_INT:
+ pp_left_bracket (pp);
+ pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[0], SIGNED);
+ for (unsigned int i = 1; i < NUM_POLY_INT_COEFFS; ++i)
+ {
+ pp_string (pp, ", ");
+ pp_wide_int (pp, CONST_POLY_INT_COEFFS (x)[i], SIGNED);
+ }
+ pp_right_bracket (pp);
+ break;
+
case CONST_DOUBLE:
if (FLOAT_MODE_P (GET_MODE (x)))
{
jump_insn);
}
+template<unsigned int N>
+struct const_poly_int_tests
+{
+ static void run ();
+};
+
+template<>
+struct const_poly_int_tests<1>
+{
+ static void run () {}
+};
+
+/* Test various CONST_POLY_INT properties. */
+
+template<unsigned int N>
+void
+const_poly_int_tests<N>::run ()
+{
+ rtx x1 = gen_int_mode (poly_int64 (1, 1), QImode);
+ rtx x255 = gen_int_mode (poly_int64 (1, 255), QImode);
+
+ /* Test that constants are unique. */
+ ASSERT_EQ (x1, gen_int_mode (poly_int64 (1, 1), QImode));
+ ASSERT_NE (x1, gen_int_mode (poly_int64 (1, 1), HImode));
+ ASSERT_NE (x1, x255);
+
+ /* Test const_poly_int_value. */
+ ASSERT_KNOWN_EQ (const_poly_int_value (x1), poly_int64 (1, 1));
+ ASSERT_KNOWN_EQ (const_poly_int_value (x255), poly_int64 (1, -1));
+
+ /* Test rtx_to_poly_int64. */
+ ASSERT_KNOWN_EQ (rtx_to_poly_int64 (x1), poly_int64 (1, 1));
+ ASSERT_KNOWN_EQ (rtx_to_poly_int64 (x255), poly_int64 (1, -1));
+ ASSERT_MAYBE_NE (rtx_to_poly_int64 (x255), poly_int64 (1, 255));
+
+ /* Test plus_constant of a symbol. */
+ rtx symbol = gen_rtx_SYMBOL_REF (Pmode, "foo");
+ rtx offset1 = gen_int_mode (poly_int64 (9, 11), Pmode);
+ rtx sum1 = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, symbol, offset1));
+ ASSERT_RTX_EQ (plus_constant (Pmode, symbol, poly_int64 (9, 11)), sum1);
+
+ /* Test plus_constant of a CONST. */
+ rtx offset2 = gen_int_mode (poly_int64 (12, 20), Pmode);
+ rtx sum2 = gen_rtx_CONST (Pmode, gen_rtx_PLUS (Pmode, symbol, offset2));
+ ASSERT_RTX_EQ (plus_constant (Pmode, sum1, poly_int64 (3, 9)), sum2);
+
+ /* Test a cancelling plus_constant. */
+ ASSERT_EQ (plus_constant (Pmode, sum2, poly_int64 (-12, -20)), symbol);
+
+ /* Test plus_constant on integer constants. */
+ ASSERT_EQ (plus_constant (QImode, const1_rtx, poly_int64 (4, -2)),
+ gen_int_mode (poly_int64 (5, -2), QImode));
+ ASSERT_EQ (plus_constant (QImode, x1, poly_int64 (4, -2)),
+ gen_int_mode (poly_int64 (5, -1), QImode));
+}
+
/* Run all of the selftests within this file. */
void
test_dumping_rtx_reuse ();
test_single_set ();
test_uncond_jump ();
+ const_poly_int_tests<NUM_POLY_INT_COEFFS>::run ();
/* Purge state. */
set_first_insn (NULL);
+ sizeof (struct hwivec_def)
+ ((CONST_WIDE_INT_NUNITS (x) - 1)
* sizeof (HOST_WIDE_INT)));
+ if (CONST_POLY_INT_P (x))
+ return (RTX_HDR_SIZE
+ + sizeof (struct const_poly_int_def)
+ + CONST_POLY_INT_COEFFS (x).extra_size ());
if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_HAS_BLOCK_INFO_P (x))
return RTX_HDR_SIZE + sizeof (struct block_symbol);
return RTX_CODE_SIZE (GET_CODE (x));
/* CONST can be shared if it contains a SYMBOL_REF. If it contains
a LABEL_REF, it isn't sharable. */
+ poly_int64 offset;
return (GET_CODE (XEXP (orig, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
- && CONST_INT_P (XEXP (XEXP (orig, 0), 1)));
+ && poly_int_rtx_p (XEXP (XEXP (orig, 0), 1), &offset));
}
/* numeric integer constant */
DEF_RTL_EXPR(CONST_WIDE_INT, "const_wide_int", "", RTX_CONST_OBJ)
+/* An rtx representation of a poly_wide_int. */
+DEF_RTL_EXPR(CONST_POLY_INT, "const_poly_int", "", RTX_CONST_OBJ)
+
/* fixed-point constant */
DEF_RTL_EXPR(CONST_FIXED, "const_fixed", "www", RTX_CONST_OBJ)
#define CWI_PUT_NUM_ELEM(RTX, NUM) \
(RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
+struct GTY((variable_size)) const_poly_int_def {
+ trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
+};
+
/* RTL expression ("rtx"). */
/* The GTY "desc" and "tag" options below are a kludge: we need a desc
struct real_value rv;
struct fixed_value fv;
struct hwivec_def hwiv;
+ struct const_poly_int_def cpi;
} GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
};
#define CASE_CONST_UNIQUE \
case CONST_INT: \
case CONST_WIDE_INT: \
+ case CONST_POLY_INT: \
case CONST_DOUBLE: \
case CONST_FIXED
#define CASE_CONST_ANY \
case CONST_INT: \
case CONST_WIDE_INT: \
+ case CONST_POLY_INT: \
case CONST_DOUBLE: \
case CONST_FIXED: \
case CONST_VECTOR
/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
+/* Predicate yielding nonzero iff X is an rtx for a polynomial constant
+ integer. */
+#define CONST_POLY_INT_P(X) \
+ (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
+
/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
+/* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
+ individual coefficients, in the form of a trailing_wide_ints structure. */
+#define CONST_POLY_INT_COEFFS(RTX) \
+ (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
+ CONST_POLY_INT)->u.cpi.coeffs)
+
/* For a CONST_DOUBLE:
#if TARGET_SUPPORTS_WIDE_INT == 0
For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
}
+namespace wi
+{
+ typedef poly_int<NUM_POLY_INT_COEFFS,
+ generic_wide_int <wide_int_ref_storage <false, false> > >
+ rtx_to_poly_wide_ref;
+ rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
+}
+
+/* Return the value of a CONST_POLY_INT in its native precision. */
+
+inline wi::rtx_to_poly_wide_ref
+const_poly_int_value (const_rtx x)
+{
+ poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
+ return res;
+}
+
+/* Return true if X is a scalar integer or a CONST_POLY_INT. The value
+ can then be extracted using wi::to_poly_wide. */
+
+inline bool
+poly_int_rtx_p (const_rtx x)
+{
+ return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
+}
+
+/* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
+ MODE is the mode of X. */
+
+inline wi::rtx_to_poly_wide_ref
+wi::to_poly_wide (const_rtx x, machine_mode mode)
+{
+ if (CONST_POLY_INT_P (x))
+ return const_poly_int_value (x);
+ return rtx_mode_t (const_cast<rtx> (x), mode);
+}
+
+/* Return the value of X as a poly_int64. */
+
+inline poly_int64
+rtx_to_poly_int64 (const_rtx x)
+{
+ if (CONST_POLY_INT_P (x))
+ {
+ poly_int64 res;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
+ return res;
+ }
+ return INTVAL (x);
+}
+
+/* Return true if arbitrary value X is an integer constant that can
+ be represented as a poly_int64. Store the value in *RES if so,
+ otherwise leave it unmodified. */
+
+inline bool
+poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
+{
+ if (CONST_INT_P (x))
+ {
+ *res = INTVAL (x);
+ return true;
+ }
+ if (CONST_POLY_INT_P (x))
+ {
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
+ return false;
+ for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
+ return true;
+ }
+ return false;
+}
+
extern void init_rtlanal (void);
extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
extern int address_cost (rtx, machine_mode, addr_space_t, bool);
/* In explow.c */
extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
-extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
+extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
+extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
extern HOST_WIDE_INT get_stack_check_protect (void);
/* In rtl.c */
extern double_int rtx_to_double_int (const_rtx);
#endif
extern void cwi_output_hex (FILE *, const_rtx);
-#ifndef GENERATOR_FILE
-extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
-#endif
#if TARGET_SUPPORTS_WIDE_INT == 0
extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
machine_mode);
#endif
+extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
/* In varasm.c */
extern rtx force_const_mem (machine_mode, rtx);
extern rtx get_related_value (const_rtx);
extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
extern void split_const (rtx, rtx *, rtx *);
+extern rtx strip_offset (rtx, poly_int64_pod *);
extern bool unsigned_reg_p (rtx);
extern int reg_mentioned_p (const_rtx, const_rtx);
extern int count_occurrences (const_rtx, const_rtx, int);
return UNKNOWN;
}
+/* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
+ and return the base. Return X otherwise. */
+
+inline rtx
+strip_offset_and_add (rtx x, poly_int64_pod *offset)
+{
+ if (GET_CODE (x) == PLUS)
+ {
+ poly_int64 suboffset;
+ x = strip_offset (x, &suboffset);
+ *offset += suboffset;
+ }
+ return x;
+}
+
/* gtype-desc.c. */
extern void gt_ggc_mx (rtx &);
extern void gt_pch_nx (rtx &);
*base_out = x;
*offset_out = const0_rtx;
}
+
+/* Express integer value X as some value Y plus a polynomial offset,
+ where Y is either const0_rtx, X or something within X (as opposed
+ to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
+
+rtx
+strip_offset (rtx x, poly_int64_pod *offset_out)
+{
+ rtx base = const0_rtx;
+ rtx test = x;
+ if (GET_CODE (test) == CONST)
+ test = XEXP (test, 0);
+ if (GET_CODE (test) == PLUS)
+ {
+ base = XEXP (test, 0);
+ test = XEXP (test, 1);
+ }
+ if (poly_int_rtx_p (test, offset_out))
+ return base;
+ *offset_out = 0;
+ return x;
+}
\f
/* Return the number of places FIND appears within X. If COUNT_DEST is
zero, we do not count occurrences inside the destination of a SET. */
/* Constants always become the second operand. Prefer "nice" constants. */
if (code == CONST_INT)
- return -8;
+ return -10;
if (code == CONST_WIDE_INT)
- return -7;
+ return -9;
+ if (code == CONST_POLY_INT)
+ return -8;
if (code == CONST_DOUBLE)
- return -7;
+ return -8;
if (code == CONST_FIXED)
- return -7;
+ return -8;
op = avoid_constant_pool_reference (op);
code = GET_CODE (op);
{
case RTX_CONST_OBJ:
if (code == CONST_INT)
- return -6;
+ return -7;
if (code == CONST_WIDE_INT)
- return -6;
+ return -6;
+ if (code == CONST_POLY_INT)
+ return -5;
if (code == CONST_DOUBLE)
- return -5;
+ return -5;
if (code == CONST_FIXED)
- return -5;
+ return -5;
return -4;
case RTX_EXTRA:
for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
hstate.add_object (CONST_WIDE_INT_ELT (x, i));
return;
+ case CONST_POLY_INT:
+ for (i = 0; i < NUM_POLY_INT_COEFFS; ++i)
+ hstate.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
+ break;
case SYMBOL_REF:
if (XSTR (x, 0))
hstate.add (XSTR (x, 0), strlen (XSTR (x, 0)) + 1);
}
}
+ /* Handle polynomial integers. */
+ else if (CONST_POLY_INT_P (op))
+ {
+ poly_wide_int result;
+ switch (code)
+ {
+ case NEG:
+ result = -const_poly_int_value (op);
+ break;
+
+ case NOT:
+ result = ~const_poly_int_value (op);
+ break;
+
+ default:
+ return NULL_RTX;
+ }
+ return immed_wide_int_const (result, mode);
+ }
+
return NULL_RTX;
}
\f
rtx tem, reversed, opleft, opright, elt0, elt1;
HOST_WIDE_INT val;
scalar_int_mode int_mode, inner_mode;
+ poly_int64 offset;
/* Even if we can't compute a constant result,
there are some cases worth simplifying. */
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
}
+ if ((GET_CODE (op0) == CONST
+ || GET_CODE (op0) == SYMBOL_REF
+ || GET_CODE (op0) == LABEL_REF)
+ && poly_int_rtx_p (op1, &offset))
+ return plus_constant (mode, op0, trunc_int_for_mode (-offset, mode));
+
/* Don't let a relocatable value get a negative coeff. */
if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
return simplify_gen_binary (PLUS, mode,
return immed_wide_int_const (result, int_mode);
}
+ /* Handle polynomial integers. */
+ if (NUM_POLY_INT_COEFFS > 1
+ && is_a <scalar_int_mode> (mode, &int_mode)
+ && poly_int_rtx_p (op0)
+ && poly_int_rtx_p (op1))
+ {
+ poly_wide_int result;
+ switch (code)
+ {
+ case PLUS:
+ result = wi::to_poly_wide (op0, mode) + wi::to_poly_wide (op1, mode);
+ break;
+
+ case MINUS:
+ result = wi::to_poly_wide (op0, mode) - wi::to_poly_wide (op1, mode);
+ break;
+
+ case MULT:
+ if (CONST_SCALAR_INT_P (op1))
+ result = wi::to_poly_wide (op0, mode) * rtx_mode_t (op1, mode);
+ else
+ return NULL_RTX;
+ break;
+
+ case ASHIFT:
+ if (CONST_SCALAR_INT_P (op1))
+ {
+ wide_int shift = rtx_mode_t (op1, mode);
+ if (SHIFT_COUNT_TRUNCATED)
+ shift = wi::umod_trunc (shift, GET_MODE_PRECISION (int_mode));
+ else if (wi::geu_p (shift, GET_MODE_PRECISION (int_mode)))
+ return NULL_RTX;
+ result = wi::to_poly_wide (op0, mode) << shift;
+ }
+ else
+ return NULL_RTX;
+ break;
+
+ case IOR:
+ if (!CONST_SCALAR_INT_P (op1)
+ || !can_ior_p (wi::to_poly_wide (op0, mode),
+ rtx_mode_t (op1, mode), &result))
+ return NULL_RTX;
+ break;
+
+ default:
+ return NULL_RTX;
+ }
+ return immed_wide_int_const (result, int_mode);
+ }
+
return NULL_RTX;
}
scalar_int_mode int_outermode, int_innermode;
if (is_a <scalar_int_mode> (outermode, &int_outermode)
&& is_a <scalar_int_mode> (innermode, &int_innermode)
- && (GET_MODE_PRECISION (int_outermode)
- < GET_MODE_PRECISION (int_innermode))
&& byte == subreg_lowpart_offset (int_outermode, int_innermode))
{
- rtx tem = simplify_truncation (int_outermode, op, int_innermode);
- if (tem)
- return tem;
+ /* Handle polynomial integers. The upper bits of a paradoxical
+ subreg are undefined, so this is safe regardless of whether
+ we're truncating or extending. */
+ if (CONST_POLY_INT_P (op))
+ {
+ poly_wide_int val
+ = poly_wide_int::from (const_poly_int_value (op),
+ GET_MODE_PRECISION (int_outermode),
+ SIGNED);
+ return immed_wide_int_const (val, int_outermode);
+ }
+
+ if (GET_MODE_PRECISION (int_outermode)
+ < GET_MODE_PRECISION (int_innermode))
+ {
+ rtx tem = simplify_truncation (int_outermode, op, int_innermode);
+ if (tem)
+ return tem;
+ }
}
return NULL_RTX;
}
}
+template<unsigned int N>
+struct simplify_const_poly_int_tests
+{
+ static void run ();
+};
+
+template<>
+struct simplify_const_poly_int_tests<1>
+{
+ static void run () {}
+};
+
+/* Test various CONST_POLY_INT properties. */
+
+template<unsigned int N>
+void
+simplify_const_poly_int_tests<N>::run ()
+{
+ rtx x1 = gen_int_mode (poly_int64 (1, 1), QImode);
+ rtx x2 = gen_int_mode (poly_int64 (-80, 127), QImode);
+ rtx x3 = gen_int_mode (poly_int64 (-79, -128), QImode);
+ rtx x4 = gen_int_mode (poly_int64 (5, 4), QImode);
+ rtx x5 = gen_int_mode (poly_int64 (30, 24), QImode);
+ rtx x6 = gen_int_mode (poly_int64 (20, 16), QImode);
+ rtx x7 = gen_int_mode (poly_int64 (7, 4), QImode);
+ rtx x8 = gen_int_mode (poly_int64 (30, 24), HImode);
+ rtx x9 = gen_int_mode (poly_int64 (-30, -24), HImode);
+ rtx x10 = gen_int_mode (poly_int64 (-31, -24), HImode);
+ rtx two = GEN_INT (2);
+ rtx six = GEN_INT (6);
+ HOST_WIDE_INT offset = subreg_lowpart_offset (QImode, HImode);
+
+ /* These tests only try limited operation combinations. Fuller arithmetic
+ testing is done directly on poly_ints. */
+ ASSERT_EQ (simplify_unary_operation (NEG, HImode, x8, HImode), x9);
+ ASSERT_EQ (simplify_unary_operation (NOT, HImode, x8, HImode), x10);
+ ASSERT_EQ (simplify_unary_operation (TRUNCATE, QImode, x8, HImode), x5);
+ ASSERT_EQ (simplify_binary_operation (PLUS, QImode, x1, x2), x3);
+ ASSERT_EQ (simplify_binary_operation (MINUS, QImode, x3, x1), x2);
+ ASSERT_EQ (simplify_binary_operation (MULT, QImode, x4, six), x5);
+ ASSERT_EQ (simplify_binary_operation (MULT, QImode, six, x4), x5);
+ ASSERT_EQ (simplify_binary_operation (ASHIFT, QImode, x4, two), x6);
+ ASSERT_EQ (simplify_binary_operation (IOR, QImode, x4, two), x7);
+ ASSERT_EQ (simplify_subreg (HImode, x5, QImode, 0), x8);
+ ASSERT_EQ (simplify_subreg (QImode, x8, HImode, offset), x5);
+}
+
/* Run all of the selftests within this file. */
void
simplify_rtx_c_tests ()
{
test_vector_ops ();
+ simplify_const_poly_int_tests<NUM_POLY_INT_COEFFS>::run ();
}
} // namespace selftest
access. */
struct storage_ref
{
+ storage_ref () {}
storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
const HOST_WIDE_INT *val;
HOST_WIDE_INT scratch[2];
public:
+ wide_int_ref_storage () {}
+
wide_int_ref_storage (const wi::storage_ref &);
template <typename T>
bytes beyond the sizeof need to be allocated. Use set_precision
to initialize the structure. */
template <int N>
-class GTY(()) trailing_wide_ints
+class GTY((user)) trailing_wide_ints
{
private:
/* The shared precision of each number. */
HOST_WIDE_INT m_val[1];
public:
+ typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
+
void set_precision (unsigned int);
+ unsigned int get_precision () const { return m_precision; }
trailing_wide_int operator [] (unsigned int);
+ const_reference operator [] (unsigned int) const;
static size_t extra_size (unsigned int);
+ size_t extra_size () const { return extra_size (m_precision); }
};
inline trailing_wide_int_storage::
&m_val[index * m_max_len]);
}
+template <int N>
+inline typename trailing_wide_ints <N>::const_reference
+trailing_wide_ints <N>::operator [] (unsigned int index) const
+{
+ return wi::storage_ref (&m_val[index * m_max_len],
+ m_len[index], m_precision);
+}
+
/* Return how many extra bytes need to be added to the end of the structure
in order to handle N wide_ints of precision PRECISION. */
template <int N>