unsigned *final_assembly_size,
char **error_str);
-/**
- * Scratch data used when compiling a GLSL geometry shader.
- */
-struct brw_gs_compile
-{
- struct brw_gs_prog_key key;
- struct brw_vue_map input_vue_map;
-
- unsigned control_data_bits_per_vertex;
- unsigned control_data_header_size_bits;
-};
-
/**
* Compile a vertex shader.
*
const unsigned *
brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
- struct brw_gs_compile *c,
+ const struct brw_gs_prog_key *key,
struct brw_gs_prog_data *prog_data,
const struct nir_shader *shader,
struct gl_shader_program *shader_prog,
struct brw_gs_prog_key *key)
{
struct gl_shader *shader = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
- nir_shader *nir = gp->program.Base.nir;
struct brw_stage_state *stage_state = &brw->gs.base;
struct brw_gs_prog_data prog_data;
- struct brw_gs_compile c;
memset(&prog_data, 0, sizeof(prog_data));
- memset(&c, 0, sizeof(c));
- c.key = *key;
-
- prog_data.include_primitive_id =
- (nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID) != 0;
-
- prog_data.invocations = nir->info.gs.invocations;
assign_gs_binding_table_offsets(brw->intelScreen->devinfo, prog,
&gp->program.Base, &prog_data);
brw_nir_setup_glsl_uniforms(gp->program.Base.nir, prog, &gp->program.Base,
&prog_data.base.base, false);
- if (brw->gen >= 8) {
- prog_data.static_vertex_count =
- nir_gs_count_vertices(gp->program.Base.nir);
- }
-
- if (brw->gen >= 7) {
- if (nir->info.gs.output_primitive == GL_POINTS) {
- /* When the output type is points, the geometry shader may output data
- * to multiple streams, and EndPrimitive() has no effect. So we
- * configure the hardware to interpret the control data as stream ID.
- */
- prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
-
- /* We only have to emit control bits if we are using streams */
- if (nir->info.gs.uses_streams)
- c.control_data_bits_per_vertex = 2;
- else
- c.control_data_bits_per_vertex = 0;
- } else {
- /* When the output type is triangle_strip or line_strip, EndPrimitive()
- * may be used to terminate the current strip and start a new one
- * (similar to primitive restart), and outputting data to multiple
- * streams is not supported. So we configure the hardware to interpret
- * the control data as EndPrimitive information (a.k.a. "cut bits").
- */
- prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
-
- /* We only need to output control data if the shader actually calls
- * EndPrimitive().
- */
- c.control_data_bits_per_vertex =
- nir->info.gs.uses_end_primitive ? 1 : 0;
- }
- } else {
- /* There are no control data bits in gen6. */
- c.control_data_bits_per_vertex = 0;
-
- /* If it is using transform feedback, enable it */
- if (nir->info.has_transform_feedback_varyings)
- prog_data.gen6_xfb_enabled = true;
- else
- prog_data.gen6_xfb_enabled = false;
- }
- c.control_data_header_size_bits =
- nir->info.gs.vertices_out * c.control_data_bits_per_vertex;
-
- /* 1 HWORD = 32 bytes = 256 bits */
- prog_data.control_data_header_size_hwords =
- ALIGN(c.control_data_header_size_bits, 256) / 256;
-
GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
brw_compute_vue_map(brw->intelScreen->devinfo,
&prog_data.base.vue_map, outputs_written,
prog ? prog->SeparateShader : false);
- /* Compute the output vertex size.
- *
- * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
- * Size (p168):
- *
- * [0,62] indicating [1,63] 16B units
- *
- * Specifies the size of each vertex stored in the GS output entry
- * (following any Control Header data) as a number of 128-bit units
- * (minus one).
- *
- * Programming Restrictions: The vertex size must be programmed as a
- * multiple of 32B units with the following exception: Rendering is
- * disabled (as per SOL stage state) and the vertex size output by the
- * GS thread is 16B.
- *
- * If rendering is enabled (as per SOL state) the vertex size must be
- * programmed as a multiple of 32B units. In other words, the only time
- * software can program a vertex size with an odd number of 16B units
- * is when rendering is disabled.
- *
- * Note: B=bytes in the above text.
- *
- * It doesn't seem worth the extra trouble to optimize the case where the
- * vertex size is 16B (especially since this would require special-casing
- * the GEN assembly that writes to the URB). So we just set the vertex
- * size to a multiple of 32B (2 vec4's) in all cases.
- *
- * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
- * budget that as follows:
- *
- * 512 bytes for varyings (a varying component is 4 bytes and
- * gl_MaxGeometryOutputComponents = 128)
- * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
- * bytes)
- * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
- * even if it's not used)
- * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
- * whenever clip planes are enabled, even if the shader doesn't
- * write to gl_ClipDistance)
- * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
- * (see below)--this causes up to 1 VUE slot to be wasted
- * 400 bytes available for varying packing overhead
- *
- * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
- * per interpolation type, so this is plenty.
- *
- */
- unsigned output_vertex_size_bytes = prog_data.base.vue_map.num_slots * 16;
- assert(brw->gen == 6 ||
- output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
- prog_data.output_vertex_size_hwords =
- ALIGN(output_vertex_size_bytes, 32) / 32;
-
- /* Compute URB entry size. The maximum allowed URB entry size is 32k.
- * That divides up as follows:
- *
- * 64 bytes for the control data header (cut indices or StreamID bits)
- * 4096 bytes for varyings (a varying component is 4 bytes and
- * gl_MaxGeometryTotalOutputComponents = 1024)
- * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
- * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
- * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
- * even if it's not used)
- * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
- * whenever clip planes are enabled, even if the shader doesn't
- * write to gl_ClipDistance)
- * 4096 bytes overhead since the VUE size must be a multiple of 32
- * bytes (see above)--this causes up to 1 VUE slot to be wasted
- * 8128 bytes available for varying packing overhead
- *
- * Worst-case varying packing overhead is 3/4 of a varying slot per
- * interpolation type, which works out to 3072 bytes, so this would allow
- * us to accommodate 2 interpolation types without any danger of running
- * out of URB space.
- *
- * In practice, the risk of running out of URB space is very small, since
- * the above figures are all worst-case, and most of them scale with the
- * number of output vertices. So we'll just calculate the amount of space
- * we need, and if it's too large, fail to compile.
- *
- * The above is for gen7+ where we have a single URB entry that will hold
- * all the output. In gen6, we will have to allocate URB entries for every
- * vertex we emit, so our URB entries only need to be large enough to hold
- * a single vertex. Also, gen6 does not have a control data header.
- */
- unsigned output_size_bytes;
- if (brw->gen >= 7) {
- output_size_bytes =
- prog_data.output_vertex_size_hwords * 32 * nir->info.gs.vertices_out;
- output_size_bytes += 32 * prog_data.control_data_header_size_hwords;
- } else {
- output_size_bytes = prog_data.output_vertex_size_hwords * 32;
- }
-
- /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
- * which comes before the control header.
- */
- if (brw->gen >= 8)
- output_size_bytes += 32;
-
- assert(output_size_bytes >= 1);
- int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
- if (brw->gen == 6)
- max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
- if (output_size_bytes > max_output_size_bytes)
- return false;
-
-
- /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
- * a multiple of 128 bytes in gen6.
- */
- if (brw->gen >= 7)
- prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
- else
- prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
-
- prog_data.output_topology =
- get_hw_prim_for_gl_prim(nir->info.gs.output_primitive);
-
- /* The GLSL linker will have already matched up GS inputs and the outputs
- * of prior stages. The driver does extend VS outputs in some cases, but
- * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
- * geometry shader support. So we can safely ignore that.
- *
- * For SSO pipelines, we use a fixed VUE map layout based on variable
- * locations, so we can rely on rendezvous-by-location making this work.
- *
- * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
- * written by previous stages and shows up via payload magic.
- */
- GLbitfield64 inputs_read =
- nir->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID;
- brw_compute_vue_map(brw->intelScreen->devinfo,
- &c.input_vue_map, inputs_read,
- nir->info.separate_shader);
-
- /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
- * need to program a URB read length of ceiling(num_slots / 2).
- */
- prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
-
if (unlikely(INTEL_DEBUG & DEBUG_GS))
brw_dump_ir("geometry", prog, gs, NULL);
unsigned program_size;
char *error_str;
const unsigned *program =
- brw_compile_gs(brw->intelScreen->compiler, brw, mem_ctx, &c,
+ brw_compile_gs(brw->intelScreen->compiler, brw, mem_ctx, key,
&prog_data, shader->Program->nir, prog,
st_index, &program_size, &error_str);
if (program == NULL) {
}
brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
- &c.key, sizeof(c.key),
+ key, sizeof(*key),
program, program_size,
&prog_data, sizeof(prog_data),
&stage_state->prog_offset, &brw->gs.prog_data);
extern "C" {
#endif
+/**
+ * Scratch data used when compiling a GLSL geometry shader.
+ */
+struct brw_gs_compile
+{
+ struct brw_gs_prog_key key;
+ struct brw_vue_map input_vue_map;
+
+ unsigned control_data_bits_per_vertex;
+ unsigned control_data_header_size_bits;
+};
+
struct brw_compiler *
brw_compiler_create(void *mem_ctx, const struct brw_device_info *devinfo);
extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
void *mem_ctx,
- struct brw_gs_compile *c,
+ const struct brw_gs_prog_key *key,
struct brw_gs_prog_data *prog_data,
const nir_shader *shader,
struct gl_shader_program *shader_prog,
unsigned *final_assembly_size,
char **error_str)
{
+ struct brw_gs_compile c;
+ memset(&c, 0, sizeof(c));
+ c.key = *key;
+
+ prog_data->include_primitive_id =
+ (shader->info.inputs_read & VARYING_BIT_PRIMITIVE_ID) != 0;
+
+ prog_data->invocations = shader->info.gs.invocations;
+
+ if (compiler->devinfo->gen >= 8)
+ prog_data->static_vertex_count = nir_gs_count_vertices(shader);
+
+ if (compiler->devinfo->gen >= 7) {
+ if (shader->info.gs.output_primitive == GL_POINTS) {
+ /* When the output type is points, the geometry shader may output data
+ * to multiple streams, and EndPrimitive() has no effect. So we
+ * configure the hardware to interpret the control data as stream ID.
+ */
+ prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
+
+ /* We only have to emit control bits if we are using streams */
+ if (shader_prog && shader_prog->Geom.UsesStreams)
+ c.control_data_bits_per_vertex = 2;
+ else
+ c.control_data_bits_per_vertex = 0;
+ } else {
+ /* When the output type is triangle_strip or line_strip, EndPrimitive()
+ * may be used to terminate the current strip and start a new one
+ * (similar to primitive restart), and outputting data to multiple
+ * streams is not supported. So we configure the hardware to interpret
+ * the control data as EndPrimitive information (a.k.a. "cut bits").
+ */
+ prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
+
+ /* We only need to output control data if the shader actually calls
+ * EndPrimitive().
+ */
+ c.control_data_bits_per_vertex =
+ shader->info.gs.uses_end_primitive ? 1 : 0;
+ }
+ } else {
+ /* There are no control data bits in gen6. */
+ c.control_data_bits_per_vertex = 0;
+
+ /* If it is using transform feedback, enable it */
+ if (shader->info.has_transform_feedback_varyings)
+ prog_data->gen6_xfb_enabled = true;
+ else
+ prog_data->gen6_xfb_enabled = false;
+ }
+ c.control_data_header_size_bits =
+ shader->info.gs.vertices_out * c.control_data_bits_per_vertex;
+
+ /* 1 HWORD = 32 bytes = 256 bits */
+ prog_data->control_data_header_size_hwords =
+ ALIGN(c.control_data_header_size_bits, 256) / 256;
+
+ /* Compute the output vertex size.
+ *
+ * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
+ * Size (p168):
+ *
+ * [0,62] indicating [1,63] 16B units
+ *
+ * Specifies the size of each vertex stored in the GS output entry
+ * (following any Control Header data) as a number of 128-bit units
+ * (minus one).
+ *
+ * Programming Restrictions: The vertex size must be programmed as a
+ * multiple of 32B units with the following exception: Rendering is
+ * disabled (as per SOL stage state) and the vertex size output by the
+ * GS thread is 16B.
+ *
+ * If rendering is enabled (as per SOL state) the vertex size must be
+ * programmed as a multiple of 32B units. In other words, the only time
+ * software can program a vertex size with an odd number of 16B units
+ * is when rendering is disabled.
+ *
+ * Note: B=bytes in the above text.
+ *
+ * It doesn't seem worth the extra trouble to optimize the case where the
+ * vertex size is 16B (especially since this would require special-casing
+ * the GEN assembly that writes to the URB). So we just set the vertex
+ * size to a multiple of 32B (2 vec4's) in all cases.
+ *
+ * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
+ * budget that as follows:
+ *
+ * 512 bytes for varyings (a varying component is 4 bytes and
+ * gl_MaxGeometryOutputComponents = 128)
+ * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
+ * bytes)
+ * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
+ * even if it's not used)
+ * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
+ * whenever clip planes are enabled, even if the shader doesn't
+ * write to gl_ClipDistance)
+ * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
+ * (see below)--this causes up to 1 VUE slot to be wasted
+ * 400 bytes available for varying packing overhead
+ *
+ * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
+ * per interpolation type, so this is plenty.
+ *
+ */
+ unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
+ assert(compiler->devinfo->gen == 6 ||
+ output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
+ prog_data->output_vertex_size_hwords =
+ ALIGN(output_vertex_size_bytes, 32) / 32;
+
+ /* Compute URB entry size. The maximum allowed URB entry size is 32k.
+ * That divides up as follows:
+ *
+ * 64 bytes for the control data header (cut indices or StreamID bits)
+ * 4096 bytes for varyings (a varying component is 4 bytes and
+ * gl_MaxGeometryTotalOutputComponents = 1024)
+ * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
+ * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
+ * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
+ * even if it's not used)
+ * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
+ * whenever clip planes are enabled, even if the shader doesn't
+ * write to gl_ClipDistance)
+ * 4096 bytes overhead since the VUE size must be a multiple of 32
+ * bytes (see above)--this causes up to 1 VUE slot to be wasted
+ * 8128 bytes available for varying packing overhead
+ *
+ * Worst-case varying packing overhead is 3/4 of a varying slot per
+ * interpolation type, which works out to 3072 bytes, so this would allow
+ * us to accommodate 2 interpolation types without any danger of running
+ * out of URB space.
+ *
+ * In practice, the risk of running out of URB space is very small, since
+ * the above figures are all worst-case, and most of them scale with the
+ * number of output vertices. So we'll just calculate the amount of space
+ * we need, and if it's too large, fail to compile.
+ *
+ * The above is for gen7+ where we have a single URB entry that will hold
+ * all the output. In gen6, we will have to allocate URB entries for every
+ * vertex we emit, so our URB entries only need to be large enough to hold
+ * a single vertex. Also, gen6 does not have a control data header.
+ */
+ unsigned output_size_bytes;
+ if (compiler->devinfo->gen >= 7) {
+ output_size_bytes =
+ prog_data->output_vertex_size_hwords * 32 * shader->info.gs.vertices_out;
+ output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
+ } else {
+ output_size_bytes = prog_data->output_vertex_size_hwords * 32;
+ }
+
+ /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
+ * which comes before the control header.
+ */
+ if (compiler->devinfo->gen >= 8)
+ output_size_bytes += 32;
+
+ assert(output_size_bytes >= 1);
+ int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
+ if (compiler->devinfo->gen == 6)
+ max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
+ if (output_size_bytes > max_output_size_bytes)
+ return false;
+
+
+ /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
+ * a multiple of 128 bytes in gen6.
+ */
+ if (compiler->devinfo->gen >= 7)
+ prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
+ else
+ prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
+
+ prog_data->output_topology =
+ get_hw_prim_for_gl_prim(shader->info.gs.output_primitive);
+
+ /* The GLSL linker will have already matched up GS inputs and the outputs
+ * of prior stages. The driver does extend VS outputs in some cases, but
+ * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
+ * geometry shader support. So we can safely ignore that.
+ *
+ * For SSO pipelines, we use a fixed VUE map layout based on variable
+ * locations, so we can rely on rendezvous-by-location making this work.
+ *
+ * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
+ * written by previous stages and shows up via payload magic.
+ */
+ GLbitfield64 inputs_read =
+ shader->info.inputs_read & ~VARYING_BIT_PRIMITIVE_ID;
+ brw_compute_vue_map(compiler->devinfo,
+ &c.input_vue_map, inputs_read,
+ shader->info.separate_shader);
+
+ /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
+ * need to program a URB read length of ceiling(num_slots / 2).
+ */
+ prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
+
+ /* Now that prog_data setup is done, we are ready to actually compile the
+ * program.
+ */
+
if (compiler->devinfo->gen >= 7) {
/* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
* so without spilling. If the GS invocations count > 1, then we can't use
likely(!(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS))) {
prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
- vec4_gs_visitor v(compiler, log_data, c, prog_data, shader,
+ vec4_gs_visitor v(compiler, log_data, &c, prog_data, shader,
mem_ctx, true /* no_spills */, shader_time_index);
if (v.run()) {
vec4_generator g(compiler, log_data, &prog_data->base, mem_ctx,
const unsigned *ret = NULL;
if (compiler->devinfo->gen >= 7)
- gs = new vec4_gs_visitor(compiler, log_data, c, prog_data,
+ gs = new vec4_gs_visitor(compiler, log_data, &c, prog_data,
shader, mem_ctx, false /* no_spills */,
shader_time_index);
else
- gs = new gen6_gs_visitor(compiler, log_data, c, prog_data, shader_prog,
+ gs = new gen6_gs_visitor(compiler, log_data, &c, prog_data, shader_prog,
shader, mem_ctx, false /* no_spills */,
shader_time_index);