RTLIL::Design *design;
SigMap *sigmap;
std::string prefix;
+ SigPool initial_signals;
SatGen(ezSAT *ez, RTLIL::Design *design, SigMap *sigmap, std::string prefix = std::string()) :
ez(ez), design(design), sigmap(sigmap), prefix(prefix)
this->prefix = prefix;
}
- std::vector<int> importSigSpec(RTLIL::SigSpec &sig)
+ std::vector<int> importSigSpec(RTLIL::SigSpec &sig, int timestep = -1)
{
+ assert(timestep < 0 || timestep > 0);
RTLIL::SigSpec s = sig;
sigmap->apply(s);
s.expand();
vec.reserve(s.chunks.size());
for (auto &c : s.chunks)
- if (c.wire == NULL)
+ if (c.wire == NULL) {
vec.push_back(c.data.as_bool() ? ez->TRUE : ez->FALSE);
- else
- vec.push_back(ez->literal(prefix + stringf(c.wire->width == 1 ?
- "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset)));
+ } else {
+ std::string name = prefix;
+ name += timestep == -1 ? "" : stringf("@%d:", timestep);
+ name += stringf(c.wire->width == 1 ? "%s" : "%s [%d]", RTLIL::id2cstr(c.wire->name), c.offset);
+ vec.push_back(ez->literal(name));
+ }
return vec;
}
vec_y.push_back(ez->literal());
}
- bool importCell(RTLIL::Cell *cell)
+ bool importCell(RTLIL::Cell *cell, int timestep = -1)
{
if (cell->type == "$_AND_" || cell->type == "$_OR_" || cell->type == "$_XOR_" ||
cell->type == "$and" || cell->type == "$or" || cell->type == "$xor" || cell->type == "$xnor" ||
cell->type == "$add" || cell->type == "$sub") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, y, cell);
if (cell->type == "$and" || cell->type == "$_AND_")
ez->assume(ez->vec_eq(ez->vec_and(a, b), y));
}
if (cell->type == "$_INV_" || cell->type == "$not") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
ez->assume(ez->vec_eq(ez->vec_not(a), y));
return true;
}
if (cell->type == "$_MUX_" || cell->type == "$mux") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"));
- std::vector<int> s = importSigSpec(cell->connections.at("\\S"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> s = importSigSpec(cell->connections.at("\\S"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
ez->assume(ez->vec_eq(ez->vec_ite(s.at(0), b, a), y));
return true;
}
if (cell->type == "$pmux" || cell->type == "$safe_pmux") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"));
- std::vector<int> s = importSigSpec(cell->connections.at("\\S"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> s = importSigSpec(cell->connections.at("\\S"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
std::vector<int> tmp = a;
for (size_t i = 0; i < s.size(); i++) {
std::vector<int> part_of_b(b.begin()+i*a.size(), b.begin()+(i+1)*a.size());
}
if (cell->type == "$pos" || cell->type == "$neg") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
if (cell->type == "$pos") {
ez->assume(ez->vec_eq(a, y));
} else {
if (cell->type == "$reduce_and" || cell->type == "$reduce_or" || cell->type == "$reduce_xor" ||
cell->type == "$reduce_xnor" || cell->type == "$reduce_bool" || cell->type == "$logic_not") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
if (cell->type == "$reduce_and")
ez->SET(ez->expression(ez->OpAnd, a), y.at(0));
if (cell->type == "$reduce_or" || cell->type == "$reduce_bool")
}
if (cell->type == "$logic_and" || cell->type == "$logic_or") {
- int a = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\A")));
- int b = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\B")));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ int a = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\A"), timestep));
+ int b = ez->expression(ez->OpOr, importSigSpec(cell->connections.at("\\B"), timestep));
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
if (cell->type == "$logic_and")
ez->SET(ez->expression(ez->OpAnd, a, b), y.at(0));
else
if (cell->type == "$lt" || cell->type == "$le" || cell->type == "$eq" || cell->type == "$ne" || cell->type == "$ge" || cell->type == "$gt") {
bool is_signed = cell->parameters["\\A_SIGNED"].as_bool() && cell->parameters["\\B_SIGNED"].as_bool();
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
extendSignalWidth(a, b, cell);
if (cell->type == "$lt")
ez->SET(is_signed ? ez->vec_lt_signed(a, b) : ez->vec_lt_unsigned(a, b), y.at(0));
}
if (cell->type == "$shl" || cell->type == "$shr" || cell->type == "$sshl" || cell->type == "$sshr") {
- std::vector<int> a = importSigSpec(cell->connections.at("\\A"));
- std::vector<int> b = importSigSpec(cell->connections.at("\\B"));
- std::vector<int> y = importSigSpec(cell->connections.at("\\Y"));
+ std::vector<int> a = importSigSpec(cell->connections.at("\\A"), timestep);
+ std::vector<int> b = importSigSpec(cell->connections.at("\\B"), timestep);
+ std::vector<int> y = importSigSpec(cell->connections.at("\\Y"), timestep);
char shift_left = cell->type == "$shl" || cell->type == "$sshl";
bool sign_extend = cell->type == "$sshr";
while (y.size() < a.size())
return true;
}
+ if (timestep > 0 && (cell->type == "$dff" || cell->type == "$_DFF_N_" || cell->type == "$_DFF_P_")) {
+ if (timestep == 1) {
+ initial_signals.add((*sigmap)(cell->connections.at("\\Q")));
+ } else {
+ std::vector<int> d = importSigSpec(cell->connections.at("\\D"), timestep-1);
+ std::vector<int> q = importSigSpec(cell->connections.at("\\Q"), timestep);
+ ez->assume(ez->vec_eq(d, q));
+ }
+ return true;
+ }
+
// Unsupported internal cell types: $mul $div $mod $pow
+ // .. and all sequential cells except $dff and $_DFF_[NP]_
return false;
}
};
log(" show the model for the specified signal. if no -show option is\n");
log(" passed then a set of signals to be shown is automatically selected.\n");
log("\n");
+ log("The following options can be used to set up a sequential problem:\n");
+ log("\n");
+ log(" -seq <N>\n");
+ log(" set up a sequential problem with <N> time steps. The steps will\n");
+ log(" be numbered from 1 to N.\n");
+ log("\n");
+ log(" -set-at <N> <signal> <value>\n");
+ log(" -unset-at <N> <signal>\n");
+ log(" set or unset the specified signal to the specified value in the\n");
+ log(" given timestep. this has priority over a -set for the same signal.\n");
+ log("\n");
}
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
std::vector<std::pair<std::string, std::string>> sets;
+ std::map<int, std::vector<std::pair<std::string, std::string>>> sets_at;
+ std::map<int, std::vector<std::string>> unsets_at;
std::vector<std::string> shows;
- int loopcount = 0;
+ int loopcount = 0, seq_len = 0;
log_header("Executing SAT_SOLVE pass (solving SAT problems in the circuit).\n");
sets.push_back(std::pair<std::string, std::string>(lhs, rhs));
continue;
}
+ if (args[argidx] == "-seq" && argidx+1 < args.size()) {
+ seq_len = atoi(args[++argidx].c_str());
+ continue;
+ }
+ if (args[argidx] == "-set-at" && argidx+3 < args.size()) {
+ int timestep = atoi(args[++argidx].c_str());
+ std::string lhs = args[++argidx].c_str();
+ std::string rhs = args[++argidx].c_str();
+ sets_at[timestep].push_back(std::pair<std::string, std::string>(lhs, rhs));
+ continue;
+ }
+ if (args[argidx] == "-unset-at" && argidx+2 < args.size()) {
+ int timestep = atoi(args[++argidx].c_str());
+ std::string lhs = args[++argidx].c_str();
+ unsets_at[timestep].push_back(lhs);
+ continue;
+ }
if (args[argidx] == "-show" && argidx+1 < args.size()) {
shows.push_back(args[++argidx]);
continue;
std::map<RTLIL::Cell*,RTLIL::SigSpec> show_driven;
CellTypes ct(design);
- for (auto &s : sets)
+ for (int timestep = -1; timestep <= seq_len; timestep++)
{
- RTLIL::SigSpec lhs, rhs;
+ // set timestep=-1 for non-seq problems and timestep=1:N for seq problems
+ if ((timestep == -1 && seq_len > 0) || timestep == 0)
+ continue;
+
+ if (timestep > 0)
+ log ("\nSetting up time step %d:\n", timestep);
+ else
+ log ("\nSetting up SAT problem:\n");
+
+ RTLIL::SigSpec big_lhs, big_rhs;
+
+ for (auto &s : sets)
+ {
+ RTLIL::SigSpec lhs, rhs;
+
+ if (!parse_sigstr(lhs, module, s.first))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
+ if (!parse_sigstr(rhs, module, s.second))
+ log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
+ show_signal_pool.add(sigmap(lhs));
+ show_signal_pool.add(sigmap(rhs));
+
+ if (lhs.width != rhs.width)
+ log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
+ s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+
+ log("Import set-constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ big_lhs.append(lhs);
+ big_rhs.append(rhs);
+ }
- if (!parse_sigstr(lhs, module, s.first))
- log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
- if (!parse_sigstr(rhs, module, s.second))
- log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
- show_signal_pool.add(sigmap(lhs));
- show_signal_pool.add(sigmap(rhs));
+ for (auto &s : sets_at[timestep])
+ {
+ RTLIL::SigSpec lhs, rhs;
+
+ if (!parse_sigstr(lhs, module, s.first))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.first.c_str());
+ if (!parse_sigstr(rhs, module, s.second))
+ log_cmd_error("Failed to parse rhs set expression `%s'.\n", s.second.c_str());
+ show_signal_pool.add(sigmap(lhs));
+ show_signal_pool.add(sigmap(rhs));
+
+ if (lhs.width != rhs.width)
+ log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
+ s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+
+ log("Import set-constraint for timestep: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ big_lhs.append(lhs);
+ big_rhs.append(rhs);
+ }
+
+ for (auto &s : unsets_at[timestep])
+ {
+ RTLIL::SigSpec lhs;
+
+ if (!parse_sigstr(lhs, module, s))
+ log_cmd_error("Failed to parse lhs set expression `%s'.\n", s.c_str());
+ show_signal_pool.add(sigmap(lhs));
- if (lhs.width != rhs.width)
- log_cmd_error("Set expression with different lhs and rhs sizes: %s (%s, %d bits) vs. %s (%s, %d bits)\n",
- s.first.c_str(), log_signal(lhs), lhs.width, s.second.c_str(), log_signal(rhs), rhs.width);
+ log("Import unset-constraint for timestep: %s\n", log_signal(lhs));
+ big_lhs.remove2(lhs, &big_rhs);
+ }
- log("Import constraint: %s = %s\n", log_signal(lhs), log_signal(rhs));
+ log("Final constraint equation: %s = %s\n", log_signal(big_lhs), log_signal(big_rhs));
- std::vector<int> lhs_vec = satgen.importSigSpec(lhs);
- std::vector<int> rhs_vec = satgen.importSigSpec(rhs);
+ std::vector<int> lhs_vec = satgen.importSigSpec(big_lhs, timestep);
+ std::vector<int> rhs_vec = satgen.importSigSpec(big_rhs, timestep);
ez.assume(ez.vec_eq(lhs_vec, rhs_vec));
+
+ int import_cell_counter = 0;
+ for (auto &c : module->cells)
+ if (design->selected(module, c.second) && ct.cell_known(c.second->type)) {
+ // log("Import cell: %s\n", RTLIL::id2cstr(c.first));
+ if (satgen.importCell(c.second, timestep)) {
+ for (auto &p : c.second->connections)
+ if (ct.cell_output(c.second->type, p.first))
+ show_drivers.insert(sigmap(p.second), c.second);
+ else
+ show_driven[c.second].append(sigmap(p.second));
+ import_cell_counter++;
+ } else
+ log("Warning: failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
+ }
+ log("Imported %d cells to SAT database.\n", import_cell_counter);
}
- int import_cell_counter = 0;
- for (auto &c : module->cells)
- if (design->selected(module, c.second) && ct.cell_known(c.second->type)) {
- // log("Import cell: %s\n", RTLIL::id2cstr(c.first));
- if (satgen.importCell(c.second)) {
- for (auto &p : c.second->connections)
- if (ct.cell_output(c.second->type, p.first))
- show_drivers.insert(sigmap(p.second), c.second);
- else
- show_driven[c.second].append(sigmap(p.second));
- import_cell_counter++;
- } else
- log("Warning: failed to import cell %s (type %s) to SAT database.\n", RTLIL::id2cstr(c.first), RTLIL::id2cstr(c.second->type));
+ struct ModelBlockInfo {
+ int timestep, offset, width;
+ std::string description;
+ bool operator < (const ModelBlockInfo &other) const {
+ if (timestep != other.timestep)
+ return timestep < other.timestep;
+ if (description != other.description)
+ return description < other.description;
+ if (offset != other.offset)
+ return offset < other.offset;
+ if (width != other.width)
+ return width < other.width;
+ return false;
}
- log("Imported %d cells to SAT database.\n", import_cell_counter);
+ };
- RTLIL::SigSpec modelSig;
std::vector<int> modelExpressions;
std::vector<bool> modelValues;
+ std::set<ModelBlockInfo> modelInfo;
+
+ // Add "normal" show signals for every timestep
+
+ RTLIL::SigSpec modelSig;
if (shows.size() == 0) {
SigPool handled_signals, final_signals;
}
}
- modelSig.expand();
+ modelSig.sort_and_unify();
+ // log("Model signals: %s\n", log_signal(modelSig));
+
+ for (auto &c : modelSig.chunks)
+ if (c.wire != NULL) {
+ ModelBlockInfo info;
+ RTLIL::SigSpec chunksig = c;
+ info.width = chunksig.width;
+ info.description = log_signal(chunksig);
+
+ for (int timestep = -1; timestep <= seq_len; timestep++) {
+ if ((timestep == -1 && seq_len > 0) || timestep == 0)
+ continue;
+ std::vector<int> vec = satgen.importSigSpec(chunksig, timestep);
+ info.timestep = timestep;
+ info.offset = modelExpressions.size();
+ modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
+ modelInfo.insert(info);
+ }
+ }
+
+ // Add zero step signals as collected by satgen
+
+ modelSig = satgen.initial_signals.export_all();
for (auto &c : modelSig.chunks)
if (c.wire != NULL) {
+ ModelBlockInfo info;
RTLIL::SigSpec chunksig = c;
- std::vector<int> vec = satgen.importSigSpec(chunksig);
- log_assert(vec.size() == 1);
- modelExpressions.push_back(vec[0]);
+ info.timestep = 0;
+ info.offset = modelExpressions.size();
+ info.width = chunksig.width;
+ info.description = log_signal(chunksig);
+ std::vector<int> vec = satgen.importSigSpec(chunksig, 1);
+ modelExpressions.insert(modelExpressions.end(), vec.begin(), vec.end());
+ modelInfo.insert(info);
}
+#if 0
+ // print CNF for debugging
+ ez.printDIMACS(stdout, true);
+#endif
+
rerun_solver:
- log("Solving problem with %d variables and %d clauses..\n", ez.numCnfVariables(), ez.numCnfClauses());
+ log("\nSolving problem with %d variables and %d clauses..\n", ez.numCnfVariables(), ez.numCnfClauses());
if (ez.solve(modelExpressions, modelValues))
{
- log("SAT solving finished - model found:\n\n");
+ log("SAT solving finished - model found:\n");
+ log("\n");
- int modelIdx = 0;
int maxModelName = 10;
int maxModelWidth = 10;
- modelSig.optimize();
- for (auto &c : modelSig.chunks)
- if (c.wire != NULL) {
- maxModelName = std::max(maxModelName, int(c.wire->name.size()));
- maxModelWidth = std::max(maxModelWidth, c.width);
+ for (auto &info : modelInfo) {
+ maxModelName = std::max(maxModelName, int(info.description.size()));
+ maxModelWidth = std::max(maxModelWidth, info.width);
+ }
+
+ int last_timestep = -2;
+ for (auto &info : modelInfo)
+ {
+ RTLIL::Const value;
+ for (int i = 0; i < info.width; i++)
+ value.bits.push_back(modelValues.at(info.offset+i) ? RTLIL::State::S1 : RTLIL::State::S0);
+
+ if (info.timestep != last_timestep) {
+ const char *hline = "--------------------------------------------------------";
+ if (last_timestep == -2) {
+ log(seq_len > 0 ? " Time " : " ");
+ log("%-*s %10s %10s %*s\n", maxModelName+10, "Signal Name", "Dec", "Hex", maxModelWidth+5, "Bin");
+ }
+ log(seq_len > 0 ? " ---- " : " ");
+ log("%*.*s %10.10s %10.10s %*.*s\n", maxModelName+10, maxModelName+10,
+ hline, hline, hline, maxModelWidth+5, maxModelWidth+5, hline);
+ last_timestep = info.timestep;
}
- const char *hline = "--------------------------------------------------------";
- log(" %-*s %10s %10s %*s\n", maxModelName+10, "Signal Name", "Dec", "Hex", maxModelWidth+5, "Bin");
- log(" %*.*s %10.10s %10.10s %*.*s\n", maxModelName+10, maxModelName+10,
- hline, hline, hline, maxModelWidth+5, maxModelWidth+5, hline);
+ if (seq_len > 0) {
+ if (info.timestep > 0)
+ log(" %4d ", info.timestep);
+ else
+ log(" init ");
+ } else
+ log(" ");
- for (auto &c : modelSig.chunks) {
- if (c.wire == NULL)
- continue;
- RTLIL::Const value;
- for (int i = 0; i < c.width; i++)
- value.bits.push_back(modelValues.at(modelIdx+i) ? RTLIL::State::S1 : RTLIL::State::S0);
- if (c.width <= 32)
- log(" %-*s %10d %10x %*s\n", maxModelName+10, log_signal(c), value.as_int(), value.as_int(), maxModelWidth+5, value.as_string().c_str());
+ if (info.width <= 32)
+ log("%-*s %10d %10x %*s\n", maxModelName+10, info.description.c_str(), value.as_int(), value.as_int(), maxModelWidth+5, value.as_string().c_str());
else
- log(" %-*s %10s %10s %*s\n", maxModelName+10, log_signal(c), "--", "--", maxModelWidth+5, value.as_string().c_str());
- modelIdx += c.width;
+ log("%-*s %10s %10s %*s\n", maxModelName+10, info.description.c_str(), "--", "--", maxModelWidth+5, value.as_string().c_str());
}
+ if (last_timestep == -2)
+ log(" no model variables selected for display.\n");
+
if (loopcount != 0) {
- log("\n");
std::vector<int> clause;
for (size_t i = 0; i < modelExpressions.size(); i++)
clause.push_back(modelValues.at(i) ? ez.NOT(modelExpressions.at(i)) : modelExpressions.at(i));