using is_transparent = void;
};
+ namespace __cmp_cust
+ {
+ template<floating_point _Tp>
+ constexpr weak_ordering
+ __fp_weak_ordering(_Tp __e, _Tp __f)
+ {
+ // Returns an integer with the same sign as the argument, and magnitude
+ // indicating the classification: zero=1 subnorm=2 norm=3 inf=4 nan=5
+ auto __cat = [](_Tp __fp) -> int {
+ const int __sign = __builtin_signbit(__fp) ? -1 : 1;
+ if (__builtin_isnormal(__fp))
+ return (__fp == 0 ? 1 : 3) * __sign;
+ if (__builtin_isnan(__fp))
+ return 5 * __sign;
+ if (int __inf = __builtin_isinf_sign(__fp))
+ return 4 * __inf;
+ return 2 * __sign;
+ };
+
+ auto __po = __e <=> __f;
+ if (is_lt(__po))
+ return weak_ordering::less;
+ else if (is_gt(__po))
+ return weak_ordering::greater;
+ else if (__po == partial_ordering::equivalent)
+ return weak_ordering::equivalent;
+ else // unordered, at least one argument is NaN
+ {
+ // return -1 for negative nan, +1 for positive nan, 0 otherwise.
+ auto __isnan_sign = [](_Tp __fp) -> int {
+ return __builtin_isnan(__fp)
+ ? __builtin_signbit(__fp) ? -1 : 1
+ : 0;
+ };
+ auto __ord = __isnan_sign(__e) <=> __isnan_sign(__f);
+ if (is_eq(__ord))
+ return weak_ordering::equivalent;
+ else if (is_lt(__ord))
+ return weak_ordering::less;
+ else
+ return weak_ordering::greater;
+ }
+ }
+
+ template<typename _Tp, typename _Up>
+ concept __adl_strong = requires(_Tp&& __t, _Up&& __u)
+ {
+ strong_ordering(strong_order(static_cast<_Tp&&>(__t),
+ static_cast<_Up&&>(__u)));
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __adl_weak = requires(_Tp&& __t, _Up&& __u)
+ {
+ weak_ordering(weak_order(static_cast<_Tp&&>(__t),
+ static_cast<_Up&&>(__u)));
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __adl_partial = requires(_Tp&& __t, _Up&& __u)
+ {
+ partial_ordering(partial_order(static_cast<_Tp&&>(__t),
+ static_cast<_Up&&>(__u)));
+ };
+
+ template<typename _Ord, typename _Tp, typename _Up>
+ concept __op_cmp = requires(_Tp&& __t, _Up&& __u)
+ {
+ _Ord(static_cast<_Tp&&>(__t) <=> static_cast<_Up&&>(__u));
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __strongly_ordered
+ = __adl_strong<_Tp, _Up>
+ // FIXME: || floating_point<remove_reference_t<_Tp>>
+ || __op_cmp<strong_ordering, _Tp, _Up>;
+
+ class _Strong_order
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (floating_point<decay_t<_Tp>>)
+ return true;
+ else if constexpr (__adl_strong<_Tp, _Up>)
+ return noexcept(strong_ordering(strong_order(std::declval<_Tp>(),
+ std::declval<_Up>())));
+ else if constexpr (__op_cmp<strong_ordering, _Tp, _Up>)
+ return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
+ }
+
+ friend class _Weak_order;
+ friend class _Strong_fallback;
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __strongly_ordered<_Tp, _Up>
+ constexpr strong_ordering
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ /* FIXME:
+ if constexpr (floating_point<decay_t<_Tp>>)
+ return __cmp_cust::__fp_strong_order(__e, __f);
+ else */ if constexpr (__adl_strong<_Tp, _Up>)
+ return strong_ordering(strong_order(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f)));
+ else if constexpr (__op_cmp<strong_ordering, _Tp, _Up>)
+ return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
+ }
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __weakly_ordered
+ = floating_point<remove_reference_t<_Tp>>
+ || __adl_weak<_Tp, _Up>
+ || __op_cmp<weak_ordering, _Tp, _Up>
+ || __strongly_ordered<_Tp, _Up>;
+
+ class _Weak_order
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (floating_point<decay_t<_Tp>>)
+ return true;
+ else if constexpr (__adl_weak<_Tp, _Up>)
+ return noexcept(weak_ordering(weak_order(std::declval<_Tp>(),
+ std::declval<_Up>())));
+ else if constexpr (__op_cmp<weak_ordering, _Tp, _Up>)
+ return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
+ else if constexpr (__strongly_ordered<_Tp, _Up>)
+ return _Strong_order::_S_noexcept<_Tp, _Up>();
+ }
+
+ friend class _Partial_order;
+ friend class _Weak_fallback;
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __weakly_ordered<_Tp, _Up>
+ constexpr weak_ordering
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ if constexpr (floating_point<decay_t<_Tp>>)
+ return __cmp_cust::__fp_weak_ordering(__e, __f);
+ else if constexpr (__adl_weak<_Tp, _Up>)
+ return weak_ordering(weak_order(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f)));
+ else if constexpr (__op_cmp<weak_ordering, _Tp, _Up>)
+ return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
+ else if constexpr (__strongly_ordered<_Tp, _Up>)
+ return _Strong_order{}(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f));
+ }
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __partially_ordered
+ = __adl_partial<_Tp, _Up>
+ || __op_cmp<partial_ordering, _Tp, _Up>
+ || __weakly_ordered<_Tp, _Up>;
+
+ class _Partial_order
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (__adl_partial<_Tp, _Up>)
+ return noexcept(partial_ordering(partial_order(std::declval<_Tp>(),
+ std::declval<_Up>())));
+ else if constexpr (__op_cmp<partial_ordering, _Tp, _Up>)
+ return noexcept(std::declval<_Tp>() <=> std::declval<_Up>());
+ else if constexpr (__weakly_ordered<_Tp, _Up>)
+ return _Weak_order::_S_noexcept<_Tp, _Up>();
+ }
+
+ friend class _Partial_fallback;
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __partially_ordered<_Tp, _Up>
+ constexpr partial_ordering
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ if constexpr (__adl_partial<_Tp, _Up>)
+ return partial_ordering(partial_order(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f)));
+ else if constexpr (__op_cmp<partial_ordering, _Tp, _Up>)
+ return static_cast<_Tp&&>(__e) <=> static_cast<_Up&&>(__f);
+ else if constexpr (__weakly_ordered<_Tp, _Up>)
+ return _Weak_order{}(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f));
+ }
+ };
+
+ template<typename _Tp, typename _Up>
+ concept __op_eq_lt = requires(_Tp&& __t, _Up&& __u)
+ {
+ { static_cast<_Tp&&>(__t) == static_cast<_Up&&>(__u) }
+ -> convertible_to<bool>;
+ { static_cast<_Tp&&>(__t) < static_cast<_Up&&>(__u) }
+ -> convertible_to<bool>;
+ };
+
+ class _Strong_fallback
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (__strongly_ordered<_Tp, _Up>)
+ return _Strong_order::_S_noexcept<_Tp, _Up>();
+ else
+ return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
+ && noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
+ }
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __strongly_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
+ constexpr decltype(auto)
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ if constexpr (__strongly_ordered<_Tp, _Up>)
+ return _Strong_order{}(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f));
+ else if constexpr (__op_eq_lt<_Tp, _Up>)
+ return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
+ ? strong_ordering::equal
+ : static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
+ ? strong_ordering::less
+ : strong_ordering::greater;
+ }
+ };
+
+ class _Weak_fallback
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (__weakly_ordered<_Tp, _Up>)
+ return _Weak_order::_S_noexcept<_Tp, _Up>();
+ else
+ return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
+ && noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
+ }
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __weakly_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
+ constexpr decltype(auto)
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ if constexpr (__weakly_ordered<_Tp, _Up>)
+ return _Weak_order{}(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f));
+ else if constexpr (__op_eq_lt<_Tp, _Up>)
+ return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
+ ? weak_ordering::equivalent
+ : static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
+ ? weak_ordering::less
+ : weak_ordering::greater;
+ }
+ };
+
+ class _Partial_fallback
+ {
+ template<typename _Tp, typename _Up>
+ static constexpr bool
+ _S_noexcept()
+ {
+ if constexpr (__partially_ordered<_Tp, _Up>)
+ return _Partial_order::_S_noexcept<_Tp, _Up>();
+ else
+ return noexcept(bool(std::declval<_Tp>() == std::declval<_Up>()))
+ && noexcept(bool(std::declval<_Tp>() < std::declval<_Up>()));
+ }
+
+ public:
+ template<typename _Tp, typename _Up>
+ requires __partially_ordered<_Tp, _Up> || __op_eq_lt<_Tp, _Up>
+ constexpr decltype(auto)
+ operator()(_Tp&& __e, _Up&& __f) const
+ noexcept(_S_noexcept<_Tp, _Up>())
+ {
+ static_assert(same_as<decay_t<_Tp>, decay_t<_Up>>);
+
+ if constexpr (__partially_ordered<_Tp, _Up>)
+ return _Partial_order{}(static_cast<_Tp&&>(__e),
+ static_cast<_Up&&>(__f));
+ else if constexpr (__op_eq_lt<_Tp, _Up>)
+ return static_cast<_Tp&&>(__e) == static_cast<_Up&&>(__f)
+ ? partial_ordering::equivalent
+ : static_cast<_Tp&&>(__e) < static_cast<_Up&&>(__f)
+ ? partial_ordering::less
+ : static_cast<_Up&&>(__f) < static_cast<_Tp&&>(__e)
+ ? partial_ordering::greater
+ : partial_ordering::unordered;
+ }
+ };
+ } // namespace __cmp_cust
+
// [cmp.alg], comparison algorithms
inline namespace __cmp_alg
{
- // TODO
-#if 0
- inline constexpr unspecified strong_order = unspecified;
- inline constexpr unspecified weak_order = unspecified;
- inline constexpr unspecified partial_order = unspecified;
- inline constexpr unspecified compare_strong_order_fallback = unspecified;
- inline constexpr unspecified compare_weak_order_fallback = unspecified;
- inline constexpr unspecified compare_partial_order_fallback = unspecified;
-#endif
+ inline constexpr __cmp_cust::_Strong_order strong_order{};
+
+ inline constexpr __cmp_cust::_Weak_order weak_order{};
+
+ inline constexpr __cmp_cust::_Partial_order partial_order{};
+
+ inline constexpr __cmp_cust::_Strong_fallback
+ compare_strong_order_fallback{};
+
+ inline constexpr __cmp_cust::_Weak_fallback
+ compare_weak_order_fallback{};
+
+ inline constexpr __cmp_cust::_Partial_fallback
+ compare_partial_order_fallback{};
}
-#endif
+#endif // concepts
} // namespace std
#pragma GCC visibility pop
--- /dev/null
+// Copyright (C) 2019 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// { dg-options "-std=gnu++2a" }
+// { dg-do run { target c++2a } }
+
+#include <compare>
+#include <limits>
+#include <testsuite_hooks.h>
+
+using std::partial_order;
+using std::partial_ordering;
+
+void
+test01()
+{
+ int one = 1, two = 2;
+
+ VERIFY( partial_order(one, two) == partial_ordering::less );
+ VERIFY( partial_order(one, one) == partial_ordering::equivalent );
+ VERIFY( partial_order(two, one) == partial_ordering::greater );
+ static_assert( noexcept(partial_order(1, 1)) );
+}
+
+constexpr partial_ordering different_cv_quals(int i, const int j)
+{
+ return partial_order(i, j);
+}
+
+void
+test02()
+{
+ int fortytwo = 42, nines = 999, lots = 1000;
+ VERIFY( different_cv_quals(fortytwo, nines) == partial_ordering::less );
+ VERIFY( different_cv_quals(-nines, -nines) == partial_ordering::equivalent );
+ VERIFY( different_cv_quals(-nines, -lots) == partial_ordering::greater );
+}
+
+void
+test03()
+{
+ double zero = 0.0;
+ VERIFY( partial_order(zero, zero) == partial_ordering::equivalent );
+ VERIFY( partial_order(-zero, -zero) == partial_ordering::equivalent );
+ VERIFY( partial_order(-zero, zero) == partial_ordering::equivalent );
+ VERIFY( partial_order(zero, -zero) == partial_ordering::equivalent );
+ static_assert( noexcept(partial_order(zero, 1.0)) );
+ static_assert( partial_order(0.0, 1.0) == std::partial_ordering::less );
+
+ double min = std::numeric_limits<double>::lowest();
+ double max = std::numeric_limits<double>::max();
+ double nan = std::numeric_limits<double>::quiet_NaN();
+ double inf = std::numeric_limits<double>::infinity();
+ double denorm = std::numeric_limits<double>::denorm_min();
+ double smallest = std::numeric_limits<double>::min();
+ double epsilon = std::numeric_limits<double>::epsilon();
+ VERIFY( partial_order(denorm, smallest) == partial_ordering::less );
+ VERIFY( partial_order(denorm, 0.0) == partial_ordering::greater );
+ VERIFY( partial_order(0.0, nan) == partial_ordering::unordered );
+ VERIFY( partial_order(nan, nan) == partial_ordering::unordered );
+ VERIFY( partial_order(nan, 0.0) == partial_ordering::unordered );
+ VERIFY( partial_order(-nan, 0.0) == partial_ordering::unordered );
+ VERIFY( partial_order(-nan, min) == partial_ordering::unordered );
+ VERIFY( partial_order(-inf, min) == partial_ordering::less );
+ VERIFY( partial_order(-nan, -inf) == partial_ordering::unordered );
+ VERIFY( partial_order(-inf, -nan) == partial_ordering::unordered );
+ VERIFY( partial_order(max, inf) == partial_ordering::less );
+ VERIFY( partial_order(inf, max) == partial_ordering::greater );
+ VERIFY( partial_order(inf, nan) == partial_ordering::unordered );
+ VERIFY( partial_order(1.0, 1.0+epsilon) == partial_ordering::less );
+}
+
+namespace N
+{
+ struct X { int i; };
+
+ constexpr partial_ordering operator<=>(X l, X r)
+ {
+ if (l.i < 0 && r.i < 0)
+ return partial_ordering::equivalent;
+ return r.i <=> l.i;
+ }
+}
+
+void
+test04()
+{
+ using N::X;
+ X one{1};
+ X negone{-1};
+
+ VERIFY( partial_order(one, X{1}) == partial_ordering::equivalent );
+ VERIFY( partial_order(negone, X{-2}) == partial_ordering::equivalent );
+ VERIFY( partial_order(one, X{2}) == partial_ordering::greater );
+ static_assert( !noexcept(partial_order(X{1}, X{2})) );
+}
+
+int main()
+{
+ test01();
+ test02();
+ test03();
+ test04();
+}
--- /dev/null
+// Copyright (C) 2019 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// { dg-options "-std=gnu++2a" }
+// { dg-do run { target c++2a } }
+
+#include <compare>
+#include <limits>
+#include <testsuite_hooks.h>
+
+using std::weak_order;
+using std::weak_ordering;
+
+void
+test01()
+{
+ int one = 1, two = 2;
+
+ VERIFY( weak_order(one, two) == weak_ordering::less );
+ VERIFY( weak_order(one, one) == weak_ordering::equivalent );
+ VERIFY( weak_order(two, one) == weak_ordering::greater );
+ static_assert( noexcept(weak_order(1, 1)) );
+}
+
+constexpr weak_ordering different_cv_quals(int i, const int j)
+{
+ return weak_order(i, j);
+}
+
+void
+test02()
+{
+ int fortytwo = 42, nines = 999, lots = 1000;
+
+ VERIFY( different_cv_quals(fortytwo, nines) == weak_ordering::less );
+ VERIFY( different_cv_quals(-nines, -nines) == weak_ordering::equivalent );
+ VERIFY( different_cv_quals(-nines, -lots) == weak_ordering::greater );
+}
+
+void
+test03()
+{
+ double zero = 0.0;
+ VERIFY( weak_order(zero, zero) == weak_ordering::equivalent );
+ VERIFY( weak_order(-zero, -zero) == weak_ordering::equivalent );
+ VERIFY( weak_order(-zero, zero) == weak_ordering::equivalent );
+ VERIFY( weak_order(zero, -zero) == weak_ordering::equivalent );
+
+ double min = std::numeric_limits<double>::lowest();
+ double max = std::numeric_limits<double>::max();
+ double nan = std::numeric_limits<double>::quiet_NaN();
+ double inf = std::numeric_limits<double>::infinity();
+ double denorm = std::numeric_limits<double>::denorm_min();
+ double smallest = std::numeric_limits<double>::min();
+ double epsilon = std::numeric_limits<double>::epsilon();
+ VERIFY( weak_order(denorm, smallest) == weak_ordering::less );
+ VERIFY( weak_order(denorm, 0.0) == weak_ordering::greater );
+ VERIFY( weak_order(0.0, nan) == weak_ordering::less );
+ VERIFY( weak_order(nan, nan) == weak_ordering::equivalent );
+ VERIFY( weak_order(nan, -nan) == weak_ordering::greater );
+ VERIFY( weak_order(-nan, nan) == weak_ordering::less );
+ VERIFY( weak_order(nan, 0.0) == weak_ordering::greater );
+ VERIFY( weak_order(-nan, 0.0) == weak_ordering::less );
+ VERIFY( weak_order(-nan, min) == weak_ordering::less );
+ VERIFY( weak_order(-inf, min) == weak_ordering::less );
+ VERIFY( weak_order(-nan, -inf) == weak_ordering::less );
+ VERIFY( weak_order(-inf, -nan) == weak_ordering::greater );
+ VERIFY( weak_order(max, inf) == weak_ordering::less );
+ VERIFY( weak_order(inf, max) == weak_ordering::greater );
+ VERIFY( weak_order(inf, nan) == weak_ordering::less );
+ VERIFY( weak_order(1.0, 1.0+epsilon) == weak_ordering::less );
+}
+
+namespace N
+{
+ struct X { int i; };
+
+ constexpr weak_ordering operator<=>(X l, X r)
+ {
+ if (l.i < 0 && r.i < 0)
+ return weak_ordering::equivalent;
+ return r.i <=> l.i;
+ }
+}
+
+void
+test04()
+{
+ using N::X;
+ X one{1};
+ X negone{-1};
+
+ VERIFY( weak_order(one, X{1}) == weak_ordering::equivalent );
+ VERIFY( weak_order(negone, X{-2}) == weak_ordering::equivalent );
+ VERIFY( weak_order(one, X{2}) == weak_ordering::greater );
+ static_assert( !noexcept(weak_order(X{1}, X{2})) );
+}
+
+int main()
+{
+ test01();
+ test02();
+ test03();
+ test04();
+}