remove the GLSL spec wording;
authorMichal Krol <mjkrol@gmail.org>
Wed, 25 May 2005 13:43:32 +0000 (13:43 +0000)
committerMichal Krol <mjkrol@gmail.org>
Wed, 25 May 2005 13:43:32 +0000 (13:43 +0000)
reorder some elementary operators;
disable assignment "=" and equality "==" "!=" operators - they are
handled internally by the assembly generator;
fix minor typos

src/mesa/shader/slang/library/slang_core.gc
src/mesa/shader/slang/library/slang_core_gc.h
src/mesa/shader/slang/library/slang_core_gc_bin.h

index e20b144a0d6520f221cd9c44e894008315e31c9e..d1d2cb10fdfc19ab23d936bc2439738265ed7b11 100755 (executable)
-
-// 
-// This file defines nearly all constructors and operators for built-in data types, using
-// extended language syntax. In general, compiler treats constructors and operators as
-// ordinary functions with some exceptions. For example, the language does not allow
-// functions to be called in constant expressions - here the exception is made to allow it.
-// 
-// Each implementation provides its own version of this file. Each implementation can define
-// the required set of operators and constructors in its own fashion.
-// 
-// The extended language syntax is only present when compiling this file. It is implicitly
-// included at the very beginning of the compiled shader, so no built-in functions can be
-// used.
-// 
-// To communicate with the implementation, a special extended "__asm" keyword is used, followed
-// by an instruction name (any valid identifier), a destination variable identifier and a
-// a list of zero or more source variable identifiers. A variable identifier is a variable name
-// declared earlier in the code (as a function parameter, local or global variable).
-// An instruction name designates an instruction that must be exported by the implementation.
+\r
+// \r
+// This file defines nearly all constructors and operators for built-in data types, using\r
+// extended language syntax. In general, compiler treats constructors and operators as\r
+// ordinary functions with some exceptions. For example, the language does not allow\r
+// functions to be called in constant expressions - here the exception is made to allow it.\r
+// \r
+// Each implementation provides its own version of this file. Each implementation can define\r
+// the required set of operators and constructors in its own fashion.\r
+// \r
+// The extended language syntax is only present when compiling this file. It is implicitly\r
+// included at the very beginning of the compiled shader, so no built-in functions can be\r
+// used.\r
+// \r
+// To communicate with the implementation, a special extended "__asm" keyword is used, followed\r
+// by an instruction name (any valid identifier), a destination variable identifier and a\r
+// a list of zero or more source variable identifiers. A variable identifier is a variable name\r
+// declared earlier in the code (as a function parameter, local or global variable).\r
+// An instruction name designates an instruction that must be exported by the implementation.\r
 // Each instruction receives data from source variable identifiers and returns data in the\r
-// destination variable identifier.
-// 
-// It is up to the implementation how to define a particular operator or constructor. If it is
-// expected to being used rarely, it can be defined in terms of other operators and constructors,
-// for example:
-// 
-// ivec2 __operator + (const ivec2 x, const ivec2 y) {
-//    return ivec2 (x[0] + y[0], x[1] + y[1]);
-// }
-// 
-// If a particular operator or constructor is expected to be used very often or is an atomic
-// operation (that is, an operation that cannot be expressed in terms of other operations or
-// would create a dependency cycle) it must be defined using one or more __asm constructs.
-// 
-// Each implementation must define constructors for all scalar types (bool, float, int).
-// There are 9 scalar-to-scalar constructors (including identity constructors). However,
-// since the language introduces special constructors (like matrix constructor with a single
-// scalar value), implementations must also implement these cases.
-// The compiler provides the following algorithm when resolving a constructor:
-// - try to find a constructor with a prototype matching ours,
-// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error,
-// - if a constructor is found, execute it and return,
-// - count the size of the constructor parameter list - if it is less than the size of
-//   our constructor's type, raise an error,
-// - for each parameter in the list do a recursive constructor matching for appropriate
-//   scalar fields in the constructed variable,
-// 
-// Each implementation must also define a set of operators that deal with built-in data types.
-// There are four kinds of operators:
-// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence)
-//    and "?:" (selection).
-// 2) Operators that are implemented by the compiler by expressing it in terms of other operators:
-//    - "." (field selection) - translated to subscript access,
-//    - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false",
-//    - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>",
-// 3) Operators that can be defined by the implementation and if the required prototype is not
-//    found, standard behaviour is used:
-//    - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one;
-//      note that at least operators for scalar data types must be defined by the implementation
-//      to get it work,
-// 4) All other operators not mentioned above. If no required prototype is found, an error is
-//    raised. An implementation must follow the language specification to provide all valid
-//    operator prototypes.
-// 
-
-// 
-// From Shader Spec, ver. 1.10, rev. 59
-// 
-
-// 
-// 5.4.1 Conversion and Scalar Constructors
-// 
-
-// 
-// When constructors are used to convert a float to an int, the fractional part of the
-// floating-point value is dropped.
-// 
-
-int __constructor (const float _f) {
-    int _i;
-    __asm float_to_int _i, _f;
-    return _i;
-}
-
-// 
-// When a constructor is used to convert an int or a float to bool, 0 and 0.0 are converted to
-// false, and nonzero values are converted to true.
-// 
-
-bool __constructor (const int _i) {
-    return _i != 0;
-}
-
-bool __constructor (const float _f) {
-    return _f != 0.0;
-}
-
-// 
-// When a constructor is used to convert a bool to an int or float, false is converted to 0 or
-// 0.0, and true is converted to 1 or 1.0.
-// 
-
-int __constructor (const bool _b) {
-    return _b ? 1 : 0;
-}
-
-float __constructor (const bool _b) {
-    return _b ? 1.0 : 0.0;
-}
-
-// 
-// Int to float constructor.
-// 
-
-float __constructor (const int _i) {
-    float _f;
-    __asm int_to_float _f, _i;
-    return _f;
-}
-
-// 
-// Identity constructors, like float(float) are also legal, but of little use.
-// 
-
-bool __constructor (const bool _b) {
-    return _b;
-}
-
-int __constructor (const int _i) {
-    return _i;
-}
-
-float __constructor (const float _f) {
-    return _f;
-}
-
-// 
-// Scalar constructors with non-scalar parameters can be used to take the first element from
-// a non-scalar. For example, the constructor float(vec3) will select the first component of the
-// vec3 parameter.
-// 
-
-// [These scalar conversions will be handled internally by the compiler.]
-
-// 
-// 5.4.2 Vector and Matrix Constructors
-// 
-// Constructors can be used to create vectors or matrices from a set of scalars, vectors,
-// or matrices. This includes the ability to shorten vectors.
-// 
-
-// 
-// If there is a single scalar parameter to a vector constructor, it is used to initialize all
-// components of the constructed vector to that scalar's value.
-// 
-// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
-// type of the object being constructed, the scalar construction rules (above) are used to convert
-// the parameters.
-// 
-
-vec2 __constructor (const float _f) {
-    return vec2 (_f, _f);
-}
-
-vec2 __constructor (const int _i) {
-    return vec2 (_i, _i);
-}
-
-vec2 __constructor (const bool _b) {
-    return vec2 (_b, _b);
-}
-
-vec3 __constructor (const float _f) {
-    return vec3 (_f, _f, _f);
-}
-
-vec3 __constructor (const int _i) {
-    return vec3 (_i, _i, _i);
-}
-
-vec3 __constructor (const bool _b) {
-    return vec3 (_b, _b, _b);
-}
-
-vec4 __constructor (const float _f) {
-    return vec4 (_f, _f, _f, _f);
-}
-
-vec4 __constructor (const int _i) {
-    return vec4 (_i, _i, _i, _i);
-}
-
-vec4 __constructor (const bool _b) {
-    return vec4 (_b, _b, _b, _b);
-}
-
-ivec2 __constructor (const int _i) {
-    return ivec2 (_i, _i);
-}
-
-ivec2 __constructor (const float _f) {
-    return ivec2 (_f, _f);
-}
-
-ivec2 __constructor (const bool _b) {
-    return ivec2 (_b, _b);
-}
-
-ivec3 __constructor (const int _i) {
-    return ivec3 (_i, _i, _i);
-}
-
-ivec3 __constructor (const float _f) {
-    return ivec3 (_f, _f, _f);
-}
-
-ivec3 __constructor (const bool _b) {
-    return ivec3 (_b, _b, _b);
-}
-
-ivec4 __constructor (const int _i) {
-    return ivec4 (_i, _i, _i, _i);
-}
-
-ivec4 __constructor (const float _f) {
-    return ivec4 (_f, _f, _f, _f);
-}
-
-ivec4 __constructor (const bool _b) {
-    return ivec4 (_b, _b, _b, _b);
-}
-
-bvec2 __constructor (const bool _b) {
-    return bvec2 (_b, _b);
-}
-
-bvec2 __constructor (const float _f) {
-    return bvec2 (_f, _f);
-}
-
-bvec2 __constructor (const int _i) {
-    return bvec2 (_i, _i);
-}
-
-bvec3 __constructor (const bool _b) {
-    return bvec3 (_b, _b, _b);
-}
-
-bvec3 __constructor (const float _f) {
-    return bvec3 (_f, _f, _f);
-}
-
-bvec3 __constructor (const int _i) {
-    return bvec3 (_i, _i, _i);
-}
-
-bvec4 __constructor (const bool _b) {
-    return bvec4 (_b, _b, _b, _b);
-}
-
-bvec4 __constructor (const float _f) {
-    return bvec4 (_f, _f, _f, _f);
-}
-
-bvec4 __constructor (const int _i) {
-    return bvec4 (_i, _i, _i, _i);
-}
-
-// 
-// If there is a single scalar parameter to a matrix constructor, it is used to initialize all the
-// components on the matrix's diagonal, with the remaining components initialized to 0.0.
-// (...) Matrices will be constructed in column major order. It is an error to construct matrices
-// from other matrices. This is reserved for future use.
-// 
-// If the basic type (bool, int, or float) of a parameter to a constructor does not match the basic
-// type of the object being constructed, the scalar construction rules (above) are used to convert
-// the parameters.
-// 
-
-mat2 __constructor (const float _f) {
-    return mat2 (
-        _f, .0,
-        .0, _f
-    );
-}
-
-mat2 __constructor (const int _i) {
-    return mat2 (
-        _i, .0,
-        .0, _i
-    );
-}
-
-mat2 __constructor (const bool _b) {
-    return mat2 (
-        _b, .0,
-        .0, _b
-    );
-}
-
-mat3 __constructor (const float _f) {
-    return mat3 (
-        _f, .0, .0,
-        .0, _f, .0,
-        .0, .0, _f
-    );
-}
-
-mat3 __constructor (const int _i) {
-    return mat3 (
-        _i, .0, .0,
-        .0, _i, .0,
-        .0, .0, _i
-    );
-}
-
-mat3 __constructor (const bool _b) {
-    return mat3 (
-        _b, .0, .0,
-        .0, _b, .0,
-        .0, .0, _b
-    );
-}
-
-mat4 __constructor (const float _f) {
-    return mat4 (
-        _f, .0, .0, .0,
-        .0, _f, .0, .0,
-        .0, .0, _f, .0,
-        .0, .0, .0, _f
-    );
-}
-
-mat4 __constructor (const int _i) {
-    return mat4 (
-        _i, .0, .0, .0,
-        .0, _i, .0, .0,
-        .0, .0, _i, .0,
-        .0, .0, .0, _i
-    );
-}
-
-mat4 __constructor (const bool _b) {
-    return mat4 (
-        _b, .0, .0, .0,
-        .0, _b, .0, .0,
-        .0, .0, _b, .0,
-        .0, .0, .0, _b
-    );
-}
-
-// 
-// 5.8 Assignments
-// 
-// Assignments of values to variable names are done with the assignment operator ( = ), like
-// 
-//   lvalue = expression
-// 
-// The assignment operator stores the value of expression into lvalue. It will compile only if
-// expression and lvalue have the same type. All desired type-conversions must be specified
-// explicitly via a constructor. Lvalues must be writable. Variables that are built-in types,
-// entire structures, structure fields, l-values with the field selector ( . ) applied to select
-// components or swizzles without repeated fields, and l-values dereferenced with the array
-// subscript operator ( [ ] ) are all possible l-values. Other binary or unary expressions,
-// non-dereferenced arrays, function names, swizzles with repeated fields, and constants cannot
-// be l-values.
-// 
-// Expressions on the left of an assignment are evaluated before expressions on the right of the
-// assignment.
-// 
-
-void __operator = (out float a, const float b) {
-    __asm float_copy a, b;
-}
-
-void __operator = (out int a, const int b) {
-    __asm int_copy a, b;
-}
-
-void __operator = (out bool a, const bool b) {
-    __asm bool_copy a, b;
-}
-
-void __operator = (out vec2 v, const vec2 u) {
-    v.x = u.x, v.y = u.y;
-}
-
-void __operator = (out vec3 v, const vec3 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (out vec4 v, const vec4 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (out ivec2 v, const ivec2 u) {
-    v.x = u.x, v.y = u.y;
-}
-
-void __operator = (out ivec3 v, const ivec3 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (out ivec4 v, const ivec4 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (out bvec2 v, const bvec2 u) {
-    v.x = u.x, v.y = u.y;
-}
-
-void __operator = (out bvec3 v, const bvec3 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z;
-}
-
-void __operator = (out bvec4 v, const bvec4 u) {
-    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;
-}
-
-void __operator = (out mat2 m, const mat2 n) {
-    m[0] = n[0], m[1] = n[1];
-}
-
-void __operator = (out mat3 m, const mat3 n) {
-    m[0] = n[0], m[1] = n[1], m[2] = n[2];
-}
-
-void __operator = (out mat4 m, const mat4 n) {
-    m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];
-}
-
-// 
-// * The arithmetic assignments add into (+=), subtract from (-=), multiply into (*=), and divide
-//   into (/=). The variable and expression must be the same floating-point or integer type, ...
-// 
-
-void __operator += (inout float a, const float b) {
-    __asm float_add a, a, b;
-}
-
-void __operator -= (inout float a, const float b) {
-    a += -b;
-}
-
-void __operator *= (inout float a, const float b) {
-    __asm float_multiply a, a, b;
-}
-
-void __operator /= (inout float a, const float b) {
-    __asm float_divide a, a, b;
-}
-
-void __operator += (inout int x, const int y) {
-    x = int (float (x) + float (y));
-}
-
-void __operator -= (inout int x, const int y) {
-    x += -y;
-}
-
-void __operator *= (inout int x, const int y) {
-    x = int (float (x) * float (y));
-}
-
-void __operator /= (inout int x, const int y) {
-    x = int (float (x) / float (y));
-}
-
-void __operator += (inout vec2 v, const vec2 u) {
-    v.x += u.x, v.y += u.y;
-}
-
-void __operator -= (inout vec2 v, const vec2 u) {
-    v.x -= u.x, v.y -= u.y;
-}
-
-void __operator *= (inout vec2 v, const vec2 u) {
-    v.x *= u.x, v.y *= u.y;
-}
-
-void __operator /= (inout vec2 v, const vec2 u) {
-    v.x /= u.x, v.y /= u.y;
-}
-
-void __operator += (inout vec3 v, const vec3 u) {
-    v.x += u.x, v.y += u.y, v.z += u.z;
-}
-
-void __operator -= (inout vec3 v, const vec3 u) {
-    v.x -= u.x, v.y -= u.y, v.z -= u.z;
-}
-
-void __operator *= (inout vec3 v, const vec3 u) {
-    v.x *= u.x, v.y *= u.y, v.z *= u.z;
-}
-
-void __operator /= (inout vec3 v, const vec3 u) {
-    v.x /= u.x, v.y /= u.y, v.z /= u.z;
-}
-
-void __operator += (inout vec4 v, const vec4 u) {
-    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
-}
-
-void __operator -= (inout vec4 v, const vec4 u) {
-    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
-}
-
-void __operator *= (inout vec4 v, const vec4 u) {
-    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
-}
-
-void __operator /= (inout vec4 v, const vec4 u) {
-    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
-}
-
-void __operator += (inout ivec2 v, const ivec2 u) {
-    v.x += u.x, v.y += u.y;
-}
-
-void __operator -= (inout ivec2 v, const ivec2 u) {
-    v.x -= u.x, v.y -= u.y;
-}
-
-void __operator *= (inout ivec2 v, const ivec2 u) {
-    v.x *= u.x, v.y *= u.y;
-}
-
-void __operator /= (inout ivec2 v, const ivec2 u) {
-    v.x /= u.x, v.y /= u.y;
-}
-
-void __operator += (inout ivec3 v, const ivec3 u) {
-    v.x += u.x, v.y += u.y, v.z += u.z;
-}
-
-void __operator -= (inout ivec3 v, const ivec3 u) {
-    v.x -= u.x, v.y -= u.y, v.z -= u.z;
-}
-
-void __operator *= (inout ivec3 v, const ivec3 u) {
-    v.x *= u.x, v.y *= u.y, v.z *= u.z;
-}
-
-void __operator /= (inout ivec3 v, const ivec3 u) {
-    v.x /= u.x, v.y /= u.y, v.z /= u.z;
-}
-
-void __operator += (inout ivec4 v, const ivec4 u) {
-    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;
-}
-
-void __operator -= (inout ivec4 v, const ivec4 u) {
-    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;
-}
-
-void __operator *= (inout ivec4 v, const ivec4 u) {
-    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;
-}
-
-void __operator /= (inout ivec4 v, const ivec4 u) {
-    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;
-}
-
-void __operator += (inout mat2 m, const mat2 n) {
-    m[0] += n[0], m[1] += n[1];
-}
-
-void __operator -= (inout mat2 v, const mat2 n) {
-    m[0] -= n[0], m[1] -= n[1];
-}
-
-void __operator *= (inout mat2 m, const mat2 n) {
-    m = m * n;
-}
-
-void __operator /= (inout mat2 m, const mat2 n) {
-    m[0] /= n[0], m[1] /= n[1];
-}
-
-void __operator += (inout mat3 m, const mat3 n) {
-    m[0] += n[0], m[1] += n[1], m[2] += n[2];
-}
-
-void __operator -= (inout mat3 m, const mat3 n) {
-    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];
-}
-
-void __operator *= (inout mat3 m, const mat3 n) {
-    m = m * n;
-}
-
-void __operator /= (inout mat3 m, const mat3 n) {
-    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2];
-}
-
-void __operator += (inout mat4 m, const mat4 n) {
-    m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3];
-}
-
-void __operator -= (inout mat4 m, const mat4 n) {
-    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];
-}
-
-void __operator *= (inout mat4 m, const mat4 n) {
-    m = m * n;
-}
-
-void __operator /= (inout mat4 m, const mat4 n) {
-    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];
-}
-
-// 
-//   ... or if the expression is a float, then the variable can be floating-point, a vector, or
-//   a matrix, ...
-// 
-
-void __operator += (inout vec2 v, const float a) {
-    v.x += a, v.y += a;
-}
-
-void __operator -= (inout vec2 v, const float a) {
-    v.x -= a, v.y -= a;
-}
-
-void __operator *= (inout vec2 v, const float a) {
-    v.x *= a, v.y *= a;
-}
-
-void __operator /= (inout vec2 v, const float a) {
-    v.x /= a, v.y /= a;
-}
-
-void __operator += (inout vec3 v, const float a) {
-    v.x += a, v.y += a, v.z += a;
-}
-
-void __operator -= (inout vec3 v, const float a) {
-    v.x -= a, v.y -= a, v.z -= a;
-}
-
-void __operator *= (inout vec3 v, const float a) {
-    v.x *= a, v.y *= a, v.z *= a;
-}
-
-void __operator /= (inout vec3 v, const float a) {
-    v.x /= a, v.y /= a, v.z /= a;
-}
-
-void __operator += (inout vec4 v, const float a) {
-    v.x += a, v.y += a, v.z += a, v.w += a;
-}
-
-void __operator -= (inout vec4 v, const float a) {
-    v.x -= a, v.y -= a, v.z -= a, v.w -= a;
-}
-
-void __operator *= (inout vec4 v, const float a) {
-    v.x *= a, v.y *= a, v.z *= a, v.w *= a;
-}
-
-void __operator /= (inout vec4 v, const float a) {
-    v.x /= a, v.y /= a, v.z /= a, v.w /= a;
-}
-
-void __operator += (inout mat2 m, const float a) {
-    m[0] += a, m[1] += a;
-}
-
-void __operator -= (inout mat2 m, const float a) {
-    m[0] -= a, m[1] -= a;
-}
-
-void __operator *= (inout mat2 m, const float a) {
-    m[0] *= a, m[1] *= a;
-}
-
-void __operator /= (inout mat2 m, const float a) {
-    m[0] /= a, m[1] /= a;
-}
-
-void __operator += (inout mat3 m, const float a) {
-    m[0] += a, m[1] += a, m[2] += a;
-}
-
-void __operator -= (inout mat3 m, const float a) {
-    m[0] -= a, m[1] -= a, m[2] -= a;
-}
-
-void __operator *= (inout mat3 m, const float a) {
-    m[0] *= a, m[1] *= a, m[2] *= a;
-}
-
-void __operator /= (inout mat3 m, const float a) {
-    m[0] /= a, m[1] /= a, m[2] /= a;
-}
-
-void __operator += (inout mat4 m, const float a) {
-    m[0] += a, m[1] += a, m[2] += a, m[3] += a;
-}
-
-void __operator -= (inout mat4 m, const float a) {
-    m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a;
-}
-
-void __operator *= (inout mat4 m, const float a) {
-    m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a;
-}
-
-void __operator /= (inout mat4 m, const float a) {
-    m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;
-}
-
-// 
-//   ... or if the operation is multiply into (*=), then the variable can be a vector and the
-//   expression can be a matrix of matching size.
-// 
-
-void __operator *= (inout vec2 v, const mat2 m) {
-    v = v * m;
-}
-
-void __operator *= (inout vec3 v, const mat3 m) {
-    v = v * m;
-}
-
-void __operator *= (inout vec4 v, const mat4 m) {
-    v = v * m;
-}
-
-// 
-// 5.9 Expressions
-// 
-// Expressions in the shading language include the following:
-// 
-
-// 
-// * The arithmetic binary operators add (+), subtract (-), multiply (*), and divide (/), that
-//   operate on integer and floating-point typed expressions (including vectors and matrices).
-//   The two operands must be the same type, (...) Additionally, for multiply (*) (...) If one
-//   operand is scalar and the other is a vector or matrix, the scalar is applied component-wise
-//   to the vector or matrix, resulting in the same type as the vector or matrix.
-// 
-
-float __operator + (const float a, const float b) {
-    float c = a;
-    return c += b;
-}
-
-float __operator - (const float a, const float b) {
-    return a + -b;
-}
-
-float __operator * (const float a, const float b) {
-    float c = a;
-    return c *= b;
-}
-
-float __operator / (const float a, const float b) {
-    float c = a;
-    return c /= b;
-}
-
-int __operator + (const int a, const int b) {
-    int c = a;
-    return c += b;
-}
-
-int __operator - (const int x, const int y) {
-    return x + -y;
-}
-
-int __operator * (const int x, const int y) {
-    int z = x;
-    return z *= y;
-}
-
-int __operator / (const int x, const int y) {
-    int z = x;
-    return z /= y;
-}
-
-vec2 __operator + (const vec2 v, const vec2 u) {
-    return vec2 (v.x + u.x, v.y + u.y);
-}
-
-vec2 __operator - (const vec2 v, const vec2 u) {
-    return vec2 (v.x - u.x, v.y - u.y);
-}
-
-vec3 __operator + (const vec3 v, const vec3 u) {
-    return vec3 (v.x + u.x, v.y + u.y, v.z + u.z);
-}
-
-vec3 __operator - (const vec3 v, const vec3 u) {
-    return vec3 (v.x - u.x, v.y - u.y, v.z - u.z);
-}
-
-vec4 __operator + (const vec4 v, const vec4 u) {
-    return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
-}
-
-vec4 __operator - (const vec4 v, const vec4 u) {
-    return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
-}
-
-ivec2 __operator + (const ivec2 v, const ivec2 u) {
-    return ivec2 (v.x + u.x, v.y + u.y);
-}
-
-ivec2 __operator - (const ivec2 v, const ivec2 u) {
-    return ivec2 (v.x - u.x, v.y - u.y);
-}
-
-ivec3 __operator + (const ivec3 v, const ivec3 u) {
-    return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z);
-}
-
-ivec3 __operator - (const ivec3 v, const ivec3 u) {
-    return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z);
-}
-
-ivec4 __operator + (const ivec4 v, const ivec4 u) {
-    return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);
-}
-
-ivec4 __operator - (const ivec4 v, const ivec4 u) {
-    return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);
-}
-
-mat2 __operator + (const mat2 m, const mat2 n) {
-    return mat2 (m[0] + n[0], m[1] + n[1]);
-}
-
-mat2 __operator - (const mat2 m, const mat2 n) {
-    return mat2 (m[0] - n[0], m[1] - n[1]);
-}
-
-mat3 __operator + (const mat3 m, const mat3 n) {
-    return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]);
-}
-
-mat3 __operator - (const mat3 m, const mat3 n) {
-    return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]);
-}
-
-mat4 __operator + (const mat4 m, const mat4 n) {
-    return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]);
-}
-
-mat4 __operator - (const mat4 m, const mat4 n) {
-    return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);
-}
-
-// 
-//   ... or one can be a scalar float and the other a float vector or matrix, ...
-// 
-
-vec2 __operator + (const float a, const vec2 u) {
-    return vec2 (a + u.x, a + u.y);
-}
-
-vec2 __operator + (const vec2 v, const float b) {
-    return vec2 (v.x + b, v.y + b);
-}
-
-vec2 __operator - (const float a, const vec2 u) {
-    return vec2 (a - u.x, a - u.y);
-}
-
-vec2 __operator - (const vec2 v, const float b) {
-    return vec2 (v.x - b, v.y - b);
-}
-
-vec2 __operator * (const float a, const vec2 u) {
-    return vec2 (a * u.x, a * u.y);
-}
-
-vec2 __operator * (const vec2 v, const float b) {
-    return vec2 (v.x * b, v.y * b);
-}
-
-vec2 __operator / (const float a, const vec2 u) {
-    return vec2 (a / u.x, a / u.y);
-}
-
-vec2 __operator / (const vec2 v, const float b) {
-    return vec2 (v.x / b, v.y / b);
-}
-
-vec3 __operator + (const float a, const vec3 u) {
-    return vec3 (a + u.x, a + u.y, a + u.z);
-}
-
-vec3 __operator + (const vec3 v, const float b) {
-    return vec3 (v.x + b, v.y + b, v.z + b);
-}
-
-vec3 __operator - (const float a, const vec3 u) {
-    return vec3 (a - u.x, a - u.y, a - u.z);
-}
-
-vec3 __operator - (const vec3 v, const float b) {
-    return vec3 (v.x - b, v.y - b, v.z - b);
-}
-
-vec3 __operator * (const float a, const vec3 u) {
-    return vec3 (a * u.x, a * u.y, a * u.z);
-}
-
-vec3 __operator * (const vec3 v, const float b) {
-    return vec3 (v.x * b, v.y * b, v.z * b);
-}
-
-vec3 __operator / (const float a, const vec3 u) {
-    return vec3 (a / u.x, a / u.y, a / u.z);
-}
-
-vec3 __operator / (const vec3 v, const float b) {
-    return vec3 (v.x / b, v.y / b, v.z / b);
-}
-
-vec4 __operator + (const float a, const vec4 u) {
-    return vec4 (a + u.x, a + u.y, a + u.z, a + u.w);
-}
-
-vec4 __operator + (const vec4 v, const float b) {
-    return vec4 (v.x + b, v.y + b, v.z + b, v.w + b);
-}
-
-vec4 __operator - (const float a, const vec4 u) {
-    return vec4 (a - u.x, a - u.y, a - u.z, a - u.w);
-}
-
-vec4 __operator - (const vec4 v, const float b) {
-    return vec4 (v.x - b, v.y - b, v.z - b, v.w - b);
-}
-
-vec4 __operator * (const float a, const vec4 u) {
-    return vec4 (a * u.x, a * u.y, a * u.z, a * u.w);
-}
-
-vec4 __operator * (const vec4 v, const float b) {
-    return vec4 (v.x * b, v.y * b, v.z * b, v.w * b);
-}
-
-vec4 __operator / (const float a, const vec4 u) {
-    return vec4 (a / u.x, a / u.y, a / u.z, a / u.w);
-}
-
-vec4 __operator / (const vec4 v, const float b) {
-    return vec4 (v.x / b, v.y / b, v.z / b, v.w / b);
-}
-
-mat2 __operator + (const float a, const mat2 n) {
-    return mat2 (a + n[0], a + n[1]);
-}
-
-mat2 __operator + (const mat2 m, const float b) {
-    return mat2 (m[0] + b, m[1] + b);
-}
-
-mat2 __operator - (const float a, const mat2 n) {
-    return mat2 (a - n[0], a - n[1]);
-}
-
-mat2 __operator - (const mat2 m, const float b) {
-    return mat2 (m[0] - b, m[1] - b);
-}
-
-mat2 __operator * (const float a, const mat2 n) {
-    return mat2 (a * n[0], a * n[1]);
-}
-
-mat2 __operator * (const mat2 m, const float b) {
-    return mat2 (m[0] * b, m[1] * b);
-}
-
-mat2 __operator / (const float a, const mat2 n) {
-    return mat2 (a / n[0], a / n[1]);
-}
-
-mat2 __operator / (const mat2 m, const float b) {
-    return mat2 (m[0] / b, m[1] / b);
-}
-
-mat3 __operator + (const float a, const mat3 n) {
-    return mat3 (a + n[0], a + n[1], a + n[2]);
-}
-
-mat3 __operator + (const mat3 m, const float b) {
-    return mat3 (m[0] + b, m[1] + b, m[2] + b);
-}
-
-mat3 __operator - (const float a, const mat3 n) {
-    return mat3 (a - n[0], a - n[1], a - n[2]);
-}
-
-mat3 __operator - (const mat3 m, const float b) {
-    return mat3 (m[0] - b, m[1] - b, m[2] - b);
-}
-
-mat3 __operator * (const float a, const mat3 n) {
-    return mat3 (a * n[0], a * n[1], a * n[2]);
-}
-
-mat3 __operator * (const mat3 m, const float b) {
-    return mat3 (m[0] * b, m[1] * b, m[2] * b);
-}
-
-mat3 __operator / (const float a, const mat3 n) {
-    return mat3 (a / n[0], a / n[1], a / n[2]);
-}
-
-mat3 __operator / (const mat3 m, const float b) {
-    return mat3 (m[0] / b, m[1] / b, m[2] / b);
-}
-
-mat4 __operator + (const float a, const mat4 n) {
-    return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]);
-}
-
-mat4 __operator + (const mat4 m, const float b) {
-    return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b);
-}
-
-mat4 __operator - (const float a, const mat4 n) {
-    return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]);
-}
-
-mat4 __operator - (const mat4 m, const float b) {
-    return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b);
-}
-
-mat4 __operator * (const float a, const mat4 n) {
-    return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]);
-}
-
-mat4 __operator * (const mat4 m, const float b) {
-    return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b);
-}
-
-mat4 __operator / (const float a, const mat4 n) {
-    return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]);
-}
-
-mat4 __operator / (const mat4 m, const float b) {
-    return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);
-}
-
-//
-// ... or one can be a scalar integer and the other an integer vector.
-//
-
-ivec2 __operator + (const int a, const ivec2 u) {
-    return ivec2 (a + u.x, a + u.y);
-}
-
-ivec2 __operator + (const ivec2 v, const int b) {
-    return ivec2 (v.x + b, v.y + b);
-}
-
-ivec2 __operator - (const int a, const ivec2 u) {
-    return ivec2 (a - u.x, a - u.y);
-}
-
-ivec2 __operator - (const ivec2 v, const int b) {
-    return ivec2 (v.x - b, v.y - b);
-}
-
-ivec2 __operator * (const int a, const ivec2 u) {
-    return ivec2 (a * u.x, a * u.y);
-}
-
-ivec2 __operator * (const ivec2 v, const int b) {
-    return ivec2 (v.x * b, v.y * b);
-}
-
-ivec2 __operator / (const int a, const ivec2 u) {
-    return ivec2 (a / u.x, a / u.y);
-}
-
-ivec2 __operator / (const ivec2 v, const int b) {
-    return ivec2 (v.x / b, v.y / b);
-}
-
-ivec3 __operator + (const int a, const ivec3 u) {
-    return ivec3 (a + u.x, a + u.y, a + u.z);
-}
-
-ivec3 __operator + (const ivec3 v, const int b) {
-    return ivec3 (v.x + b, v.y + b, v.z + b);
-}
-
-ivec3 __operator - (const int a, const ivec3 u) {
-    return ivec3 (a - u.x, a - u.y, a - u.z);
-}
-
-ivec3 __operator - (const ivec3 v, const int b) {
-    return ivec3 (v.x - b, v.y - b, v.z - b);
-}
-
-ivec3 __operator * (const int a, const ivec3 u) {
-    return ivec3 (a * u.x, a * u.y, a * u.z);
-}
-
-ivec3 __operator * (const ivec3 v, const int b) {
-    return ivec3 (v.x * b, v.y * b, v.z * b);
-}
-
-ivec3 __operator / (const int a, const ivec3 u) {
-    return ivec3 (a / u.x, a / u.y, a / u.z);
-}
-
-ivec3 __operator / (const ivec3 v, const int b) {
-    return ivec3 (v.x / b, v.y / b, v.z / b);
-}
-
-ivec4 __operator + (const int a, const ivec4 u) {
-    return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w);
-}
-
-ivec4 __operator + (const ivec4 v, const int b) {
-    return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b);
-}
-
-ivec4 __operator - (const int a, const ivec4 u) {
-    return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w);
-}
-
-ivec4 __operator - (const ivec4 v, const int b) {
-    return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b);
-}
-
-ivec4 __operator * (const int a, const ivec4 u) {
-    return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w);
-}
-
-ivec4 __operator * (const ivec4 v, const int b) {
-    return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b);
-}
-
-ivec4 __operator / (const int a, const ivec4 u) {
-    return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w);
-}
-
-ivec4 __operator / (const ivec4 v, const int b) {
-    return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b);
-}
-
-// 
-//   Additionally, for multiply (*) one can be a vector and the other a matrix with the same
-//   dimensional size of the vector. These result in the same fundamental type (integer or float)
-//   as the expressions they operate on.
-// 
-// [When:]
-// * the left argument is a floating-point vector and the right is a matrix with a compatible
-//   dimension in which case the * operator will do a row vector matrix multiplication.
-// * the left argument is a matrix and the right is a floating-point vector with a compatible
-//   dimension in which case the * operator will do a column vector matrix multiplication.
-// 
-
-vec2 __operator * (const mat2 m, const vec2 v) {
-    return vec2 (
-        v.x * m[0].x + v.y * m[1].x,
-        v.x * m[0].y + v.y * m[1].y
-    );
-}
-
-vec2 __operator * (const vec2 v, const mat2 m) {
-    return vec2 (
-        v.x * m[0].x + v.y * m[0].y,
-        v.x * m[1].x + v.y * m[1].y
-    );
-}
-
-vec3 __operator * (const mat3 m, const vec3 v) {
-    return vec3 (
-        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,
-        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,
-        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z
-    );
-}
-
-vec3 __operator * (const vec3 v, const mat3 m) {
-    return vec3 (
-        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,
-        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,
-        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z
-    );
-}
-
-vec4 __operator * (const mat4 m, const vec4 v) {
-    return vec4 (
-        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,
-        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,
-        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,
-        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w
-    );
-}
-
-vec4 __operator * (const vec4 v, const mat4 m) {
-    return vec4 (
-        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,
-        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,
-        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,
-        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w
-    );
-}
-
-// 
-//   Multiply (*) applied to two vectors yields a component-wise multiply.
-// 
-
-vec2 __operator * (const vec2 v, const vec2 u) {
-    return vec2 (v.x * u.x, v.y * u.y);
-}
-
-vec3 __operator * (const vec3 v, const vec3 u) {
-    return vec3 (v.x * u.x, v.y * u.y, v.z * u.z);
-}
-
-vec4 __operator * (const vec4 v, const vec4 u) {
-    return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
-}
-
-ivec2 __operator * (const ivec2 v, const ivec2 u) {
-    return ivec2 (v.x * u.x, v.y * u.y);
-}
-
-ivec3 __operator * (const ivec3 v, const ivec3 u) {
-    return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z);
-}
-
-ivec4 __operator * (const ivec4 v, const ivec4 u) {
-    return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);
-}
-
-// 
-//   Dividing by zero does not cause an exception but does result in an unspecified value.
-// 
-
-vec2 __operator / (const vec2 v, const vec2 u) {
-    return vec2 (v.x / u.x, v.y / u.y);
-}
-
-vec3 __operator / (const vec3 v, const vec3 u) {
-    return vec3 (v.x / u.x, v.y / u.y, v.z / u.z);
-}
-
-vec4 __operator / (const vec4 v, const vec4 u) {
-    return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
-}
-
-ivec2 __operator / (const ivec2 v, const ivec2 u) {
-    return ivec2 (v.x / u.x, v.y / u.y);
-}
-
-ivec3 __operator / (const ivec3 v, const ivec3 u) {
-    return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z);
-}
-
-ivec4 __operator / (const ivec4 v, const ivec4 u) {
-    return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);
-}
-
-mat2 __operator / (const mat2 m, const mat2 n) {
-    return mat2 (m[0] / n[0], m[1] / n[1]);
-}
-
-mat3 __operator / (const mat3 m, const mat3 n) {
-    return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]);
-}
-
-mat4 __operator / (const mat4 m, const mat4 n) {
-    return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);
-}
-
-// 
-//   Multiply (*) applied to two matrices yields a linear algebraic matrix multiply, not
-//   a component-wise multiply.
-// 
-
-mat2 __operator * (const mat2 m, const mat2 n) {
-    return mat2 (m * n[0], m * n[1]);
-}
-
-mat3 __operator * (const mat3 m, const mat3 n) {
-    return mat3 (m * n[0], m * n[1], m * n[2]);
-}
-
-mat4 __operator * (const mat4 m, const mat4 n) {
-    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);
-}
-
-// 
-// * The arithmetic unary operators negate (-), post- and pre-increment and decrement (-- and
-//   ++) that operate on integer or floating-point values (including vectors and matrices). These
-//   result with the same type they operated on. For post- and pre-increment and decrement, the
-//   expression must be one that could be assigned to (an l-value). Pre-increment and predecrement
-//   add or subtract 1 or 1.0 to the contents of the expression they operate on, and the
-//   value of the pre-increment or pre-decrement expression is the resulting value of that
-//   modification. Post-increment and post-decrement expressions add or subtract 1 or 1.0 to
-//   the contents of the expression they operate on, but the resulting expression has the
-//   expression's value before the post-increment or post-decrement was executed.
-// 
-// [NOTE: postfix increment and decrement operators take additional dummy int parameter to
-//        distinguish their prototypes from prefix ones.]
-// 
-
-float __operator - (const float a) {
-    float c;
-    __asm float_negate c, a;
-    return c;
-}
-
-int __operator - (const int a) {
-       return int (-float (a));
-}
-
-vec2 __operator - (const vec2 v) {
-    return vec2 (-v.x, -v.y);
-}
-
-vec3 __operator - (const vec3 v) {
-    return vec3 (-v.x, -v.y, -v.z);
-}
-
-vec4 __operator - (const vec4 v) {
-    return vec4 (-v.x, -v.y, -v.z, -v.w);
-}
-
-ivec2 __operator - (const ivec2 v) {
-    return ivec2 (-v.x, -v.y);
-}
-
-ivec3 __operator - (const ivec3 v) {
-    return ivec3 (-v.x, -v.y, -v.z);
-}
-
-ivec4 __operator - (const ivec4 v) {
-    return ivec4 (-v.x, -v.y, -v.z, -v.w);
-}
-
-mat2 __operator - (const mat2 m) {
-    return mat2 (-m[0], -m[1]);
-}
-
-mat3 __operator - (const mat3 m) {
-    return mat3 (-m[0], -m[1], -m[2]);
-}
-
-mat4 __operator - (const mat4 m) {
-    return mat4 (-m[0], -m[1], -m[2], -m[3]);
-}
-
-void __operator -- (inout float a) {
-    a -= 1.0;
-}
-
-void __operator -- (inout int a) {
-    a -= 1;
-}
-
-void __operator -- (inout vec2 v) {
-    --v.x, --v.y;
-}
-
-void __operator -- (inout vec3 v) {
-    --v.x, --v.y, --v.z;
-}
-
-void __operator -- (inout vec4 v) {
-    --v.x, --v.y, --v.z, --v.w;
-}
-
-void __operator -- (inout ivec2 v) {
-    --v.x, --v.y;
-}
-
-void __operator -- (inout ivec3 v) {
-    --v.x, --v.y, --v.z;
-}
-
-void __operator -- (inout ivec4 v) {
-    --v.x, --v.y, --v.z, --v.w;
-}
-
-void __operator -- (inout mat2 m) {
-    --m[0], --m[1];
-}
-
-void __operator -- (inout mat3 m) {
-    --m[0], --m[1], --m[2];
-}
-
-void __operator -- (inout mat4 m) {
-    --m[0], --m[1], --m[2], --m[3];
-}
-
-void __operator ++ (inout float a) {
-    a += 1.0;
-}
-
-void __operator ++ (inout int a) {
-    a += 1;
-}
-
-void __operator ++ (inout vec2 v) {
-    ++v.x, ++v.y;
-}
-
-void __operator ++ (inout vec3 v) {
-    ++v.x, ++v.y, ++v.z;
-}
-
-void __operator ++ (inout vec4 v) {
-    ++v.x, ++v.y, ++v.z, ++v.w;
-}
-
-void __operator ++ (inout ivec2 v) {
-    ++v.x, ++v.y;
-}
-
-void __operator ++ (inout ivec3 v) {
-    ++v.x, ++v.y, ++v.z;
-}
-
-void __operator ++ (inout ivec4 v) {
-    ++v.x, ++v.y, ++v.z, ++v.w;
-}
-
-void __operator ++ (inout mat2 m) {
-    ++m[0], ++m[1];
-}
-
-void __operator ++ (inout mat3 m) {
-    ++m[0], ++m[1], ++m[2];
-}
-
-void __operator ++ (inout mat4 m) {
-    ++m[0], ++m[1], ++m[2], ++m[3];
-}
-
-float __operator -- (inout float a, const int) {
-    const float c = a;
-    --a;
-    return c;
-}
-
-int __operator -- (inout int a, const int) {
-    const int c = a;
-    --a;
-    return c;
-}
-
-vec2 __operator -- (inout vec2 v, const int) {
-    return vec2 (v.x--, v.y--);
-}
-
-vec3 __operator -- (inout vec3 v, const int) {
-    return vec3 (v.x--, v.y--, v.z--);
-}
-
-vec4 __operator -- (inout vec4 v, const int) {
-    return vec4 (v.x--, v.y--, v.z--, v.w--);
-}
-
-ivec2 __operator -- (inout ivec2 v, const int) {
-    return ivec2 (v.x--, v.y--);
-}
-
-ivec3 __operator -- (inout ivec3 v, const int) {
-    return ivec3 (v.x--, v.y--, v.z--);
-}
-
-ivec4 __operator -- (inout ivec4 v, const int) {
-    return ivec4 (v.x--, v.y--, v.z--, v.w--);
-}
-
-mat2 __operator -- (inout mat2 m, const int) {
-    return mat2 (m[0]--, m[1]--);
-}
-
-mat3 __operator -- (inout mat3 m, const int) {
-    return mat3 (m[0]--, m[1]--, m[2]--);
-}
-
-mat4 __operator -- (inout mat4 m, const int) {
-    return mat4 (m[0]--, m[1]--, m[2]--, m[3]--);
-}
-
-float __operator ++ (inout float a, const int) {
-    const float c = a;
-    ++a;
-    return c;
-}
-
-int __operator ++ (inout int a, const int) {
-    const int c = a;
-    ++a;
-    return c;
-}
-
-vec2 __operator ++ (inout vec2 v, const int) {
-    return vec2 (v.x++, v.y++);
-}
-
-vec3 __operator ++ (inout vec3 v, const int) {
-    return vec3 (v.x++, v.y++, v.z++);
-}
-
-vec4 __operator ++ (inout vec4 v, const int) {
-    return vec4 (v.x++, v.y++, v.z++, v.w++);
-}
-
-ivec2 __operator ++ (inout ivec2 v, const int) {
-    return ivec2 (v.x++, v.y++);
-}
-
-ivec3 __operator ++ (inout ivec3 v, const int) {
-    return ivec3 (v.x++, v.y++, v.z++);
-}
-
-ivec4 __operator ++ (inout ivec4 v, const int) {
-    return ivec4 (v.x++, v.y++, v.z++, v.w++);
-}
-
-mat2 __operator ++ (inout mat2 m, const int) {
-    return mat2 (m[0]++, m[1]++);
-}
-
-mat3 __operator ++ (inout mat3 m, const int) {
-    return mat3 (m[0]++, m[1]++, m[2]++);
-}
-
-mat4 __operator ++ (inout mat4 m, const int) {
-    return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);
-}
-
-// 
-// * The relational operators greater than (>), less than (<), greater than or equal (>=), and less
-//   than or equal (<=) operate only on scalar integer and scalar floating-point expressions. The
-//   result is scalar Boolean. The operands' types must match. To do component-wise
-//   comparisons on vectors, use the built-in functions lessThan, lessThanEqual,
-//   greaterThan, and greaterThanEqual.
-// 
-
-bool __operator < (const float a, const float b) {
-    bool c;
-    __asm float_less c, a, b;
-    return c;
-}
-
-bool __operator < (const int a, const int b) {
-       return float (a) < float (b);
-}
-
-bool __operator > (const float a, const float b) {
-    return b < a;
-}
-
-bool __operator > (const int a, const int b) {
-    return b < a;
-}
-
-bool __operator >= (const float a, const float b) {
-    return a > b || a == b;
-}
-
-bool __operator >= (const int a, const int b) {
-    return a > b || a == b;
-}
-
-bool __operator <= (const float a, const float b) {
-    return a < b || a == b;
-}
-
-bool __operator <= (const int a, const int b) {
-    return a < b || a == b;
-}
-
-// 
-// * The equality operators equal (==), and not equal (!=) operate on all types except arrays.
-//   They result in a scalar Boolean. For vectors, matrices, and structures, all components of the
-//   operands must be equal for the operands to be considered equal. To get component-wise
-//   equality results for vectors, use the built-in functions equal and notEqual.
-// 
-
-bool __operator == (const float a, const float b) {
-    bool c;
-    __asm float_equal c, a, b;
-    return c;
-}
-
-bool __operator == (const int a, const int b) {
-       return float (a) == float (b);
-}
-
-bool __operator == (const bool a, const bool b) {
-    return float (a) == float (b);
-}
-
-bool __operator == (const vec2 v, const vec2 u) {
-    return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const vec3 v, const vec3 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const vec4 v, const vec4 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const ivec2 v, const ivec2 u) {
-    return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const ivec3 v, const ivec3 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const ivec4 v, const ivec4 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const bvec2 v, const bvec2 u) {
-    return v.x == u.x && v.y == u.y;
-}
-
-bool __operator == (const bvec3 v, const bvec3 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z;
-}
-
-bool __operator == (const bvec4 v, const bvec4 u) {
-    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;
-}
-
-bool __operator == (const mat2 m, const mat2 n) {
-    return m[0] == n[0] && m[1] == n[1];
-}
-
-bool __operator == (const mat3 m, const mat3 n) {
-    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];
-}
-
-bool __operator == (const mat4 m, const mat4 n) {
-    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];
-}
-
-bool __operator != (const float a, const float b) {
-    return !(a == b);
-}
-
-bool __operator != (const int a, const int b) {
-    return !(a == b);
-}
-
-bool __operator != (const bool a, const bool b) {
-    return !(a == b);
-}
-
-bool __operator != (const vec2 v, const vec2 u) {
-    return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const vec3 v, const vec3 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const vec4 v, const vec4 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const ivec2 v, const ivec2 u) {
-    return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const ivec3 v, const ivec3 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const ivec4 v, const ivec4 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const bvec2 v, const bvec2 u) {
-    return v.x != u.x || v.y != u.y;
-}
-
-bool __operator != (const bvec3 v, const bvec3 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z;
-}
-
-bool __operator != (const bvec4 v, const bvec4 u) {
-    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;
-}
-
-bool __operator != (const mat2 m, const mat2 n) {
-    return m[0] != n[0] || m[1] != n[1];
-}
-
-bool __operator != (const mat3 m, const mat3 n) {
-    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];
-}
-
-bool __operator != (const mat4 m, const mat4 n) {
-    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];
-}
-
-// 
-// * The logical binary operators and (&&), or ( | | ), and exclusive or (^^). They operate only
-//   on two Boolean expressions and result in a Boolean expression. And (&&) will only
-//   evaluate the right hand operand if the left hand operand evaluated to true. Or ( | | ) will
-//   only evaluate the right hand operand if the left hand operand evaluated to false. Exclusive or
-//   (^^) will always evaluate both operands.
-// 
-
-bool __operator ^^ (const bool a, const bool b) {
-    return a != b;
-}
-
-// 
-// [These operators are handled internally by the compiler:]
-// 
-// bool __operator && (bool a, bool b) {
-//     return a ? b : false;
-// }
-// bool __operator || (bool a, bool b) {
-//     return a ? true : b;
-// }
-// 
-
-// 
-// * The logical unary operator not (!). It operates only on a Boolean expression and results in a
-//   Boolean expression. To operate on a vector, use the built-in function not.
-// 
-
-bool __operator ! (const bool a) {
-    return a == false;
-}
+// destination variable identifier.\r
+// \r
+// It is up to the implementation how to define a particular operator or constructor. If it is\r
+// expected to being used rarely, it can be defined in terms of other operators and constructors,\r
+// for example:\r
+// \r
+// ivec2 __operator + (const ivec2 x, const ivec2 y) {\r
+//    return ivec2 (x[0] + y[0], x[1] + y[1]);\r
+// }\r
+// \r
+// If a particular operator or constructor is expected to be used very often or is an atomic\r
+// operation (that is, an operation that cannot be expressed in terms of other operations or\r
+// would create a dependency cycle) it must be defined using one or more __asm constructs.\r
+// \r
+// Each implementation must define constructors for all scalar types (bool, float, int).\r
+// There are 9 scalar-to-scalar constructors (including identity constructors). However,\r
+// since the language introduces special constructors (like matrix constructor with a single\r
+// scalar value), implementations must also implement these cases.\r
+// The compiler provides the following algorithm when resolving a constructor:\r
+// - try to find a constructor with a prototype matching ours,\r
+// - if no constructor is found and this is a scalar-to-scalar constructor, raise an error,\r
+// - if a constructor is found, execute it and return,\r
+// - count the size of the constructor parameter list - if it is less than the size of\r
+//   our constructor's type, raise an error,\r
+// - for each parameter in the list do a recursive constructor matching for appropriate\r
+//   scalar fields in the constructed variable,\r
+// \r
+// Each implementation must also define a set of operators that deal with built-in data types.\r
+// There are four kinds of operators:\r
+// 1) Operators that are implemented only by the compiler: "()" (function call), "," (sequence)\r
+//    and "?:" (selection).\r
+// 2) Operators that are implemented by the compiler by expressing it in terms of other operators:\r
+//    - "." (field selection) - translated to subscript access,\r
+//    - "&&" (logical and) - translated to "<left_expr> ? <right_expr> : false",\r
+//    - "||" (logical or) - translated to "<left_expr> ? true : <right_expr>",\r
+// 3) Operators that can be defined by the implementation and if the required prototype is not\r
+//    found, standard behaviour is used:\r
+//    - "==", "!=", "=" (equality, assignment) - compare or assign matching fields one-by-one;\r
+//      note that at least operators for scalar data types must be defined by the implementation\r
+//      to get it work,\r
+// 4) All other operators not mentioned above. If no required prototype is found, an error is\r
+//    raised. An implementation must follow the language specification to provide all valid\r
+//    operator prototypes.\r
+// \r
+\r
+int __constructor (const float _f) {\r
+    int _i;\r
+    __asm float_to_int _i, _f;\r
+    return _i;\r
+}\r
+\r
+bool __constructor (const int _i) {\r
+    return _i != 0;\r
+}\r
+\r
+bool __constructor (const float _f) {\r
+    return _f != 0.0;\r
+}\r
+\r
+int __constructor (const bool _b) {\r
+    return _b ? 1 : 0;\r
+}\r
+\r
+float __constructor (const bool _b) {\r
+    return _b ? 1.0 : 0.0;\r
+}\r
+\r
+float __constructor (const int _i) {\r
+    float _f;\r
+    __asm int_to_float _f, _i;\r
+    return _f;\r
+}\r
+\r
+bool __constructor (const bool _b) {\r
+    return _b;\r
+}\r
+\r
+int __constructor (const int _i) {\r
+    return _i;\r
+}\r
+\r
+float __constructor (const float _f) {\r
+    return _f;\r
+}\r
+\r
+vec2 __constructor (const float _f) {\r
+    return vec2 (_f, _f);\r
+}\r
+\r
+vec2 __constructor (const int _i) {\r
+    return vec2 (_i, _i);\r
+}\r
+\r
+vec2 __constructor (const bool _b) {\r
+    return vec2 (_b, _b);\r
+}\r
+\r
+vec3 __constructor (const float _f) {\r
+    return vec3 (_f, _f, _f);\r
+}\r
+\r
+vec3 __constructor (const int _i) {\r
+    return vec3 (_i, _i, _i);\r
+}\r
+\r
+vec3 __constructor (const bool _b) {\r
+    return vec3 (_b, _b, _b);\r
+}\r
+\r
+vec4 __constructor (const float _f) {\r
+    return vec4 (_f, _f, _f, _f);\r
+}\r
+\r
+vec4 __constructor (const int _i) {\r
+    return vec4 (_i, _i, _i, _i);\r
+}\r
+\r
+vec4 __constructor (const bool _b) {\r
+    return vec4 (_b, _b, _b, _b);\r
+}\r
+\r
+ivec2 __constructor (const int _i) {\r
+    return ivec2 (_i, _i);\r
+}\r
+\r
+ivec2 __constructor (const float _f) {\r
+    return ivec2 (_f, _f);\r
+}\r
+\r
+ivec2 __constructor (const bool _b) {\r
+    return ivec2 (_b, _b);\r
+}\r
+\r
+ivec3 __constructor (const int _i) {\r
+    return ivec3 (_i, _i, _i);\r
+}\r
+\r
+ivec3 __constructor (const float _f) {\r
+    return ivec3 (_f, _f, _f);\r
+}\r
+\r
+ivec3 __constructor (const bool _b) {\r
+    return ivec3 (_b, _b, _b);\r
+}\r
+\r
+ivec4 __constructor (const int _i) {\r
+    return ivec4 (_i, _i, _i, _i);\r
+}\r
+\r
+ivec4 __constructor (const float _f) {\r
+    return ivec4 (_f, _f, _f, _f);\r
+}\r
+\r
+ivec4 __constructor (const bool _b) {\r
+    return ivec4 (_b, _b, _b, _b);\r
+}\r
+\r
+bvec2 __constructor (const bool _b) {\r
+    return bvec2 (_b, _b);\r
+}\r
+\r
+bvec2 __constructor (const float _f) {\r
+    return bvec2 (_f, _f);\r
+}\r
+\r
+bvec2 __constructor (const int _i) {\r
+    return bvec2 (_i, _i);\r
+}\r
+\r
+bvec3 __constructor (const bool _b) {\r
+    return bvec3 (_b, _b, _b);\r
+}\r
+\r
+bvec3 __constructor (const float _f) {\r
+    return bvec3 (_f, _f, _f);\r
+}\r
+\r
+bvec3 __constructor (const int _i) {\r
+    return bvec3 (_i, _i, _i);\r
+}\r
+\r
+bvec4 __constructor (const bool _b) {\r
+    return bvec4 (_b, _b, _b, _b);\r
+}\r
+\r
+bvec4 __constructor (const float _f) {\r
+    return bvec4 (_f, _f, _f, _f);\r
+}\r
+\r
+bvec4 __constructor (const int _i) {\r
+    return bvec4 (_i, _i, _i, _i);\r
+}\r
+\r
+mat2 __constructor (const float _f) {\r
+    return mat2 (\r
+        _f, .0,\r
+        .0, _f\r
+    );\r
+}\r
+\r
+mat2 __constructor (const int _i) {\r
+    return mat2 (\r
+        _i, .0,\r
+        .0, _i\r
+    );\r
+}\r
+\r
+mat2 __constructor (const bool _b) {\r
+    return mat2 (\r
+        _b, .0,\r
+        .0, _b\r
+    );\r
+}\r
+\r
+mat3 __constructor (const float _f) {\r
+    return mat3 (\r
+        _f, .0, .0,\r
+        .0, _f, .0,\r
+        .0, .0, _f\r
+    );\r
+}\r
+\r
+mat3 __constructor (const int _i) {\r
+    return mat3 (\r
+        _i, .0, .0,\r
+        .0, _i, .0,\r
+        .0, .0, _i\r
+    );\r
+}\r
+\r
+mat3 __constructor (const bool _b) {\r
+    return mat3 (\r
+        _b, .0, .0,\r
+        .0, _b, .0,\r
+        .0, .0, _b\r
+    );\r
+}\r
+\r
+mat4 __constructor (const float _f) {\r
+    return mat4 (\r
+        _f, .0, .0, .0,\r
+        .0, _f, .0, .0,\r
+        .0, .0, _f, .0,\r
+        .0, .0, .0, _f\r
+    );\r
+}\r
+\r
+mat4 __constructor (const int _i) {\r
+    return mat4 (\r
+        _i, .0, .0, .0,\r
+        .0, _i, .0, .0,\r
+        .0, .0, _i, .0,\r
+        .0, .0, .0, _i\r
+    );\r
+}\r
+\r
+mat4 __constructor (const bool _b) {\r
+    return mat4 (\r
+        _b, .0, .0, .0,\r
+        .0, _b, .0, .0,\r
+        .0, .0, _b, .0,\r
+        .0, .0, .0, _b\r
+    );\r
+}\r
+\r
+//void __operator = (out float a, const float b) {\r
+//    __asm float_copy a, b;\r
+//}\r
+//\r
+//void __operator = (out int a, const int b) {\r
+//    __asm int_copy a, b;\r
+//}\r
+//\r
+//void __operator = (out bool a, const bool b) {\r
+//    __asm bool_copy a, b;\r
+//}\r
+//\r
+//void __operator = (out vec2 v, const vec2 u) {\r
+//    v.x = u.x, v.y = u.y;\r
+//}\r
+//\r
+//void __operator = (out vec3 v, const vec3 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z;\r
+//}\r
+//\r
+//void __operator = (out vec4 v, const vec4 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\r
+//}\r
+//\r
+//void __operator = (out ivec2 v, const ivec2 u) {\r
+//    v.x = u.x, v.y = u.y;\r
+//}\r
+//\r
+//void __operator = (out ivec3 v, const ivec3 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z;\r
+//}\r
+//\r
+//void __operator = (out ivec4 v, const ivec4 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\r
+//}\r
+//\r
+//void __operator = (out bvec2 v, const bvec2 u) {\r
+//    v.x = u.x, v.y = u.y;\r
+//}\r
+//\r
+//void __operator = (out bvec3 v, const bvec3 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z;\r
+//}\r
+//\r
+//void __operator = (out bvec4 v, const bvec4 u) {\r
+//    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\r
+//}\r
+//\r
+//void __operator = (out mat2 m, const mat2 n) {\r
+//    m[0] = n[0], m[1] = n[1];\r
+//}\r
+//\r
+//void __operator = (out mat3 m, const mat3 n) {\r
+//    m[0] = n[0], m[1] = n[1], m[2] = n[2];\r
+//}\r
+//\r
+//void __operator = (out mat4 m, const mat4 n) {\r
+//    m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];\r
+//}\r
+\r
+void __operator += (inout float a, const float b) {\r
+    __asm float_add a, a, b;\r
+}\r
+\r
+float __operator - (const float a) {\r
+    float c;\r
+    __asm float_negate c, a;\r
+    return c;\r
+}\r
+\r
+void __operator -= (inout float a, const float b) {\r
+    a += -b;\r
+}\r
+\r
+void __operator *= (inout float a, const float b) {\r
+    __asm float_multiply a, a, b;\r
+}\r
+\r
+void __operator /= (inout float a, const float b) {\r
+    __asm float_divide a, a, b;\r
+}\r
+\r
+float __operator + (const float a, const float b) {\r
+    float c;\r
+    c = a;\r
+    return c += b;\r
+}\r
+\r
+void __operator += (inout int a, const int b) {\r
+    a = int (float (a) + float (b));\r
+}\r
+\r
+int __operator - (const int a) {\r
+       return int (-float (a));\r
+}\r
+\r
+void __operator -= (inout int a, const int b) {\r
+    a += -b;\r
+}\r
+\r
+float __operator * (const float a, const float b) {\r
+    float c;\r
+    c = a;\r
+    return c *= b;\r
+}\r
+\r
+void __operator *= (inout int a, const int b) {\r
+    a = int (float (a) * float (b));\r
+}\r
+\r
+float __operator / (const float a, const float b) {\r
+    float c;\r
+    c = a;\r
+    return c /= b;\r
+}\r
+\r
+void __operator /= (inout int a, const int b) {\r
+    a = int (float (a) / float (b));\r
+}\r
+\r
+void __operator += (inout vec2 v, const vec2 u) {\r
+    v.x += u.x, v.y += u.y;\r
+}\r
+\r
+void __operator -= (inout vec2 v, const vec2 u) {\r
+    v.x -= u.x, v.y -= u.y;\r
+}\r
+\r
+void __operator *= (inout vec2 v, const vec2 u) {\r
+    v.x *= u.x, v.y *= u.y;\r
+}\r
+\r
+void __operator /= (inout vec2 v, const vec2 u) {\r
+    v.x /= u.x, v.y /= u.y;\r
+}\r
+\r
+void __operator += (inout vec3 v, const vec3 u) {\r
+    v.x += u.x, v.y += u.y, v.z += u.z;\r
+}\r
+\r
+void __operator -= (inout vec3 v, const vec3 u) {\r
+    v.x -= u.x, v.y -= u.y, v.z -= u.z;\r
+}\r
+\r
+void __operator *= (inout vec3 v, const vec3 u) {\r
+    v.x *= u.x, v.y *= u.y, v.z *= u.z;\r
+}\r
+\r
+void __operator /= (inout vec3 v, const vec3 u) {\r
+    v.x /= u.x, v.y /= u.y, v.z /= u.z;\r
+}\r
+\r
+void __operator += (inout vec4 v, const vec4 u) {\r
+    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;\r
+}\r
+\r
+void __operator -= (inout vec4 v, const vec4 u) {\r
+    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;\r
+}\r
+\r
+void __operator *= (inout vec4 v, const vec4 u) {\r
+    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;\r
+}\r
+\r
+void __operator /= (inout vec4 v, const vec4 u) {\r
+    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;\r
+}\r
+\r
+void __operator += (inout ivec2 v, const ivec2 u) {\r
+    v.x += u.x, v.y += u.y;\r
+}\r
+\r
+void __operator -= (inout ivec2 v, const ivec2 u) {\r
+    v.x -= u.x, v.y -= u.y;\r
+}\r
+\r
+void __operator *= (inout ivec2 v, const ivec2 u) {\r
+    v.x *= u.x, v.y *= u.y;\r
+}\r
+\r
+void __operator /= (inout ivec2 v, const ivec2 u) {\r
+    v.x /= u.x, v.y /= u.y;\r
+}\r
+\r
+void __operator += (inout ivec3 v, const ivec3 u) {\r
+    v.x += u.x, v.y += u.y, v.z += u.z;\r
+}\r
+\r
+void __operator -= (inout ivec3 v, const ivec3 u) {\r
+    v.x -= u.x, v.y -= u.y, v.z -= u.z;\r
+}\r
+\r
+void __operator *= (inout ivec3 v, const ivec3 u) {\r
+    v.x *= u.x, v.y *= u.y, v.z *= u.z;\r
+}\r
+\r
+void __operator /= (inout ivec3 v, const ivec3 u) {\r
+    v.x /= u.x, v.y /= u.y, v.z /= u.z;\r
+}\r
+\r
+void __operator += (inout ivec4 v, const ivec4 u) {\r
+    v.x += u.x, v.y += u.y, v.z += u.z, v.w += u.w;\r
+}\r
+\r
+void __operator -= (inout ivec4 v, const ivec4 u) {\r
+    v.x -= u.x, v.y -= u.y, v.z -= u.z, v.w -= u.w;\r
+}\r
+\r
+void __operator *= (inout ivec4 v, const ivec4 u) {\r
+    v.x *= u.x, v.y *= u.y, v.z *= u.z, v.w *= u.w;\r
+}\r
+\r
+void __operator /= (inout ivec4 v, const ivec4 u) {\r
+    v.x /= u.x, v.y /= u.y, v.z /= u.z, v.w /= u.w;\r
+}\r
+\r
+void __operator += (inout mat2 m, const mat2 n) {\r
+    m[0] += n[0], m[1] += n[1];\r
+}\r
+\r
+void __operator -= (inout mat2 m, const mat2 n) {\r
+    m[0] -= n[0], m[1] -= n[1];\r
+}\r
+\r
+vec2 __operator * (const mat2 m, const vec2 v) {\r
+    return vec2 (\r
+        v.x * m[0].x + v.y * m[1].x,\r
+        v.x * m[0].y + v.y * m[1].y\r
+    );\r
+}\r
+\r
+mat2 __operator * (const mat2 m, const mat2 n) {\r
+    return mat2 (m * n[0], m * n[1]);\r
+}\r
+\r
+void __operator *= (inout mat2 m, const mat2 n) {\r
+    m = m * n;\r
+}\r
+\r
+void __operator /= (inout mat2 m, const mat2 n) {\r
+    m[0] /= n[0], m[1] /= n[1];\r
+}\r
+\r
+void __operator += (inout mat3 m, const mat3 n) {\r
+    m[0] += n[0], m[1] += n[1], m[2] += n[2];\r
+}\r
+\r
+void __operator -= (inout mat3 m, const mat3 n) {\r
+    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];\r
+}\r
+\r
+vec3 __operator * (const mat3 m, const vec3 v) {\r
+    return vec3 (\r
+        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,\r
+        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,\r
+        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z\r
+    );\r
+}\r
+\r
+mat3 __operator * (const mat3 m, const mat3 n) {\r
+    return mat3 (m * n[0], m * n[1], m * n[2]);\r
+}\r
+\r
+void __operator *= (inout mat3 m, const mat3 n) {\r
+    m = m * n;\r
+}\r
+\r
+void __operator /= (inout mat3 m, const mat3 n) {\r
+    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2];\r
+}\r
+\r
+void __operator += (inout mat4 m, const mat4 n) {\r
+    m[0] += n[0], m[1] += n[1], m[2] += n[2], m[3] += n[3];\r
+}\r
+\r
+void __operator -= (inout mat4 m, const mat4 n) {\r
+    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];\r
+}\r
+\r
+vec4 __operator * (const mat4 m, const vec4 v) {\r
+    return vec4 (\r
+        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,\r
+        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,\r
+        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,\r
+        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w\r
+    );\r
+}\r
+\r
+mat4 __operator * (const mat4 m, const mat4 n) {\r
+    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);\r
+}\r
+\r
+void __operator *= (inout mat4 m, const mat4 n) {\r
+    m = m * n;\r
+}\r
+\r
+void __operator /= (inout mat4 m, const mat4 n) {\r
+    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];\r
+}\r
+\r
+void __operator += (inout vec2 v, const float a) {\r
+    v.x += a, v.y += a;\r
+}\r
+\r
+void __operator -= (inout vec2 v, const float a) {\r
+    v.x -= a, v.y -= a;\r
+}\r
+\r
+void __operator *= (inout vec2 v, const float a) {\r
+    v.x *= a, v.y *= a;\r
+}\r
+\r
+void __operator /= (inout vec2 v, const float a) {\r
+    v.x /= a, v.y /= a;\r
+}\r
+\r
+void __operator += (inout vec3 v, const float a) {\r
+    v.x += a, v.y += a, v.z += a;\r
+}\r
+\r
+void __operator -= (inout vec3 v, const float a) {\r
+    v.x -= a, v.y -= a, v.z -= a;\r
+}\r
+\r
+void __operator *= (inout vec3 v, const float a) {\r
+    v.x *= a, v.y *= a, v.z *= a;\r
+}\r
+\r
+void __operator /= (inout vec3 v, const float a) {\r
+    v.x /= a, v.y /= a, v.z /= a;\r
+}\r
+\r
+void __operator += (inout vec4 v, const float a) {\r
+    v.x += a, v.y += a, v.z += a, v.w += a;\r
+}\r
+\r
+void __operator -= (inout vec4 v, const float a) {\r
+    v.x -= a, v.y -= a, v.z -= a, v.w -= a;\r
+}\r
+\r
+void __operator *= (inout vec4 v, const float a) {\r
+    v.x *= a, v.y *= a, v.z *= a, v.w *= a;\r
+}\r
+\r
+void __operator /= (inout vec4 v, const float a) {\r
+    v.x /= a, v.y /= a, v.z /= a, v.w /= a;\r
+}\r
+\r
+void __operator += (inout mat2 m, const float a) {\r
+    m[0] += a, m[1] += a;\r
+}\r
+\r
+void __operator -= (inout mat2 m, const float a) {\r
+    m[0] -= a, m[1] -= a;\r
+}\r
+\r
+void __operator *= (inout mat2 m, const float a) {\r
+    m[0] *= a, m[1] *= a;\r
+}\r
+\r
+void __operator /= (inout mat2 m, const float a) {\r
+    m[0] /= a, m[1] /= a;\r
+}\r
+\r
+void __operator += (inout mat3 m, const float a) {\r
+    m[0] += a, m[1] += a, m[2] += a;\r
+}\r
+\r
+void __operator -= (inout mat3 m, const float a) {\r
+    m[0] -= a, m[1] -= a, m[2] -= a;\r
+}\r
+\r
+void __operator *= (inout mat3 m, const float a) {\r
+    m[0] *= a, m[1] *= a, m[2] *= a;\r
+}\r
+\r
+void __operator /= (inout mat3 m, const float a) {\r
+    m[0] /= a, m[1] /= a, m[2] /= a;\r
+}\r
+\r
+void __operator += (inout mat4 m, const float a) {\r
+    m[0] += a, m[1] += a, m[2] += a, m[3] += a;\r
+}\r
+\r
+void __operator -= (inout mat4 m, const float a) {\r
+    m[0] -= a, m[1] -= a, m[2] -= a, m[3] -= a;\r
+}\r
+\r
+void __operator *= (inout mat4 m, const float a) {\r
+    m[0] *= a, m[1] *= a, m[2] *= a, m[3] *= a;\r
+}\r
+\r
+void __operator /= (inout mat4 m, const float a) {\r
+    m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;\r
+}\r
+\r
+vec2 __operator * (const vec2 v, const mat2 m) {\r
+    return vec2 (\r
+        v.x * m[0].x + v.y * m[0].y,\r
+        v.x * m[1].x + v.y * m[1].y\r
+    );\r
+}\r
+\r
+void __operator *= (inout vec2 v, const mat2 m) {\r
+    v = v * m;\r
+}\r
+\r
+vec3 __operator * (const vec3 v, const mat3 m) {\r
+    return vec3 (\r
+        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,\r
+        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,\r
+        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z\r
+    );\r
+}\r
+\r
+void __operator *= (inout vec3 v, const mat3 m) {\r
+    v = v * m;\r
+}\r
+\r
+vec4 __operator * (const vec4 v, const mat4 m) {\r
+    return vec4 (\r
+        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,\r
+        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,\r
+        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,\r
+        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w\r
+    );\r
+}\r
+\r
+void __operator *= (inout vec4 v, const mat4 m) {\r
+    v = v * m;\r
+}\r
+\r
+float __operator - (const float a, const float b) {\r
+    return a + -b;\r
+}\r
+\r
+int __operator + (const int a, const int b) {\r
+    int c;\r
+    c = a;\r
+    return c += b;\r
+}\r
+\r
+int __operator - (const int a, const int b) {\r
+    return a + -b;\r
+}\r
+\r
+int __operator * (const int a, const int b) {\r
+    int c;\r
+    return (c = a) *= b;\r
+}\r
+\r
+int __operator / (const int a, const int b) {\r
+    int c;\r
+    return (c = a) /= b;\r
+}\r
+\r
+vec2 __operator + (const vec2 v, const vec2 u) {\r
+    return vec2 (v.x + u.x, v.y + u.y);\r
+}\r
+\r
+vec2 __operator - (const vec2 v, const vec2 u) {\r
+    return vec2 (v.x - u.x, v.y - u.y);\r
+}\r
+\r
+vec3 __operator + (const vec3 v, const vec3 u) {\r
+    return vec3 (v.x + u.x, v.y + u.y, v.z + u.z);\r
+}\r
+\r
+vec3 __operator - (const vec3 v, const vec3 u) {\r
+    return vec3 (v.x - u.x, v.y - u.y, v.z - u.z);\r
+}\r
+\r
+vec4 __operator + (const vec4 v, const vec4 u) {\r
+    return vec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);\r
+}\r
+\r
+vec4 __operator - (const vec4 v, const vec4 u) {\r
+    return vec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);\r
+}\r
+\r
+ivec2 __operator + (const ivec2 v, const ivec2 u) {\r
+    return ivec2 (v.x + u.x, v.y + u.y);\r
+}\r
+\r
+ivec2 __operator - (const ivec2 v, const ivec2 u) {\r
+    return ivec2 (v.x - u.x, v.y - u.y);\r
+}\r
+\r
+ivec3 __operator + (const ivec3 v, const ivec3 u) {\r
+    return ivec3 (v.x + u.x, v.y + u.y, v.z + u.z);\r
+}\r
+\r
+ivec3 __operator - (const ivec3 v, const ivec3 u) {\r
+    return ivec3 (v.x - u.x, v.y - u.y, v.z - u.z);\r
+}\r
+\r
+ivec4 __operator + (const ivec4 v, const ivec4 u) {\r
+    return ivec4 (v.x + u.x, v.y + u.y, v.z + u.z, v.w + u.w);\r
+}\r
+\r
+ivec4 __operator - (const ivec4 v, const ivec4 u) {\r
+    return ivec4 (v.x - u.x, v.y - u.y, v.z - u.z, v.w - u.w);\r
+}\r
+\r
+mat2 __operator + (const mat2 m, const mat2 n) {\r
+    return mat2 (m[0] + n[0], m[1] + n[1]);\r
+}\r
+\r
+mat2 __operator - (const mat2 m, const mat2 n) {\r
+    return mat2 (m[0] - n[0], m[1] - n[1]);\r
+}\r
+\r
+mat3 __operator + (const mat3 m, const mat3 n) {\r
+    return mat3 (m[0] + n[0], m[1] + n[1], m[2] + n[2]);\r
+}\r
+\r
+mat3 __operator - (const mat3 m, const mat3 n) {\r
+    return mat3 (m[0] - n[0], m[1] - n[1], m[2] - n[2]);\r
+}\r
+\r
+mat4 __operator + (const mat4 m, const mat4 n) {\r
+    return mat4 (m[0] + n[0], m[1] + n[1], m[2] + n[2], m[3] + n[3]);\r
+}\r
+\r
+mat4 __operator - (const mat4 m, const mat4 n) {\r
+    return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);\r
+}\r
+\r
+vec2 __operator + (const float a, const vec2 u) {\r
+    return vec2 (a + u.x, a + u.y);\r
+}\r
+\r
+vec2 __operator + (const vec2 v, const float b) {\r
+    return vec2 (v.x + b, v.y + b);\r
+}\r
+\r
+vec2 __operator - (const float a, const vec2 u) {\r
+    return vec2 (a - u.x, a - u.y);\r
+}\r
+\r
+vec2 __operator - (const vec2 v, const float b) {\r
+    return vec2 (v.x - b, v.y - b);\r
+}\r
+\r
+vec2 __operator * (const float a, const vec2 u) {\r
+    return vec2 (a * u.x, a * u.y);\r
+}\r
+\r
+vec2 __operator * (const vec2 v, const float b) {\r
+    return vec2 (v.x * b, v.y * b);\r
+}\r
+\r
+vec2 __operator / (const float a, const vec2 u) {\r
+    return vec2 (a / u.x, a / u.y);\r
+}\r
+\r
+vec2 __operator / (const vec2 v, const float b) {\r
+    return vec2 (v.x / b, v.y / b);\r
+}\r
+\r
+vec3 __operator + (const float a, const vec3 u) {\r
+    return vec3 (a + u.x, a + u.y, a + u.z);\r
+}\r
+\r
+vec3 __operator + (const vec3 v, const float b) {\r
+    return vec3 (v.x + b, v.y + b, v.z + b);\r
+}\r
+\r
+vec3 __operator - (const float a, const vec3 u) {\r
+    return vec3 (a - u.x, a - u.y, a - u.z);\r
+}\r
+\r
+vec3 __operator - (const vec3 v, const float b) {\r
+    return vec3 (v.x - b, v.y - b, v.z - b);\r
+}\r
+\r
+vec3 __operator * (const float a, const vec3 u) {\r
+    return vec3 (a * u.x, a * u.y, a * u.z);\r
+}\r
+\r
+vec3 __operator * (const vec3 v, const float b) {\r
+    return vec3 (v.x * b, v.y * b, v.z * b);\r
+}\r
+\r
+vec3 __operator / (const float a, const vec3 u) {\r
+    return vec3 (a / u.x, a / u.y, a / u.z);\r
+}\r
+\r
+vec3 __operator / (const vec3 v, const float b) {\r
+    return vec3 (v.x / b, v.y / b, v.z / b);\r
+}\r
+\r
+vec4 __operator + (const float a, const vec4 u) {\r
+    return vec4 (a + u.x, a + u.y, a + u.z, a + u.w);\r
+}\r
+\r
+vec4 __operator + (const vec4 v, const float b) {\r
+    return vec4 (v.x + b, v.y + b, v.z + b, v.w + b);\r
+}\r
+\r
+vec4 __operator - (const float a, const vec4 u) {\r
+    return vec4 (a - u.x, a - u.y, a - u.z, a - u.w);\r
+}\r
+\r
+vec4 __operator - (const vec4 v, const float b) {\r
+    return vec4 (v.x - b, v.y - b, v.z - b, v.w - b);\r
+}\r
+\r
+vec4 __operator * (const float a, const vec4 u) {\r
+    return vec4 (a * u.x, a * u.y, a * u.z, a * u.w);\r
+}\r
+\r
+vec4 __operator * (const vec4 v, const float b) {\r
+    return vec4 (v.x * b, v.y * b, v.z * b, v.w * b);\r
+}\r
+\r
+vec4 __operator / (const float a, const vec4 u) {\r
+    return vec4 (a / u.x, a / u.y, a / u.z, a / u.w);\r
+}\r
+\r
+vec4 __operator / (const vec4 v, const float b) {\r
+    return vec4 (v.x / b, v.y / b, v.z / b, v.w / b);\r
+}\r
+\r
+mat2 __operator + (const float a, const mat2 n) {\r
+    return mat2 (a + n[0], a + n[1]);\r
+}\r
+\r
+mat2 __operator + (const mat2 m, const float b) {\r
+    return mat2 (m[0] + b, m[1] + b);\r
+}\r
+\r
+mat2 __operator - (const float a, const mat2 n) {\r
+    return mat2 (a - n[0], a - n[1]);\r
+}\r
+\r
+mat2 __operator - (const mat2 m, const float b) {\r
+    return mat2 (m[0] - b, m[1] - b);\r
+}\r
+\r
+mat2 __operator * (const float a, const mat2 n) {\r
+    return mat2 (a * n[0], a * n[1]);\r
+}\r
+\r
+mat2 __operator * (const mat2 m, const float b) {\r
+    return mat2 (m[0] * b, m[1] * b);\r
+}\r
+\r
+mat2 __operator / (const float a, const mat2 n) {\r
+    return mat2 (a / n[0], a / n[1]);\r
+}\r
+\r
+mat2 __operator / (const mat2 m, const float b) {\r
+    return mat2 (m[0] / b, m[1] / b);\r
+}\r
+\r
+mat3 __operator + (const float a, const mat3 n) {\r
+    return mat3 (a + n[0], a + n[1], a + n[2]);\r
+}\r
+\r
+mat3 __operator + (const mat3 m, const float b) {\r
+    return mat3 (m[0] + b, m[1] + b, m[2] + b);\r
+}\r
+\r
+mat3 __operator - (const float a, const mat3 n) {\r
+    return mat3 (a - n[0], a - n[1], a - n[2]);\r
+}\r
+\r
+mat3 __operator - (const mat3 m, const float b) {\r
+    return mat3 (m[0] - b, m[1] - b, m[2] - b);\r
+}\r
+\r
+mat3 __operator * (const float a, const mat3 n) {\r
+    return mat3 (a * n[0], a * n[1], a * n[2]);\r
+}\r
+\r
+mat3 __operator * (const mat3 m, const float b) {\r
+    return mat3 (m[0] * b, m[1] * b, m[2] * b);\r
+}\r
+\r
+mat3 __operator / (const float a, const mat3 n) {\r
+    return mat3 (a / n[0], a / n[1], a / n[2]);\r
+}\r
+\r
+mat3 __operator / (const mat3 m, const float b) {\r
+    return mat3 (m[0] / b, m[1] / b, m[2] / b);\r
+}\r
+\r
+mat4 __operator + (const float a, const mat4 n) {\r
+    return mat4 (a + n[0], a + n[1], a + n[2], a + n[3]);\r
+}\r
+\r
+mat4 __operator + (const mat4 m, const float b) {\r
+    return mat4 (m[0] + b, m[1] + b, m[2] + b, m[3] + b);\r
+}\r
+\r
+mat4 __operator - (const float a, const mat4 n) {\r
+    return mat4 (a - n[0], a - n[1], a - n[2], a - n[3]);\r
+}\r
+\r
+mat4 __operator - (const mat4 m, const float b) {\r
+    return mat4 (m[0] - b, m[1] - b, m[2] - b, m[3] - b);\r
+}\r
+\r
+mat4 __operator * (const float a, const mat4 n) {\r
+    return mat4 (a * n[0], a * n[1], a * n[2], a * n[3]);\r
+}\r
+\r
+mat4 __operator * (const mat4 m, const float b) {\r
+    return mat4 (m[0] * b, m[1] * b, m[2] * b, m[3] * b);\r
+}\r
+\r
+mat4 __operator / (const float a, const mat4 n) {\r
+    return mat4 (a / n[0], a / n[1], a / n[2], a / n[3]);\r
+}\r
+\r
+mat4 __operator / (const mat4 m, const float b) {\r
+    return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);\r
+}\r
+\r
+ivec2 __operator + (const int a, const ivec2 u) {\r
+    return ivec2 (a + u.x, a + u.y);\r
+}\r
+\r
+ivec2 __operator + (const ivec2 v, const int b) {\r
+    return ivec2 (v.x + b, v.y + b);\r
+}\r
+\r
+ivec2 __operator - (const int a, const ivec2 u) {\r
+    return ivec2 (a - u.x, a - u.y);\r
+}\r
+\r
+ivec2 __operator - (const ivec2 v, const int b) {\r
+    return ivec2 (v.x - b, v.y - b);\r
+}\r
+\r
+ivec2 __operator * (const int a, const ivec2 u) {\r
+    return ivec2 (a * u.x, a * u.y);\r
+}\r
+\r
+ivec2 __operator * (const ivec2 v, const int b) {\r
+    return ivec2 (v.x * b, v.y * b);\r
+}\r
+\r
+ivec2 __operator / (const int a, const ivec2 u) {\r
+    return ivec2 (a / u.x, a / u.y);\r
+}\r
+\r
+ivec2 __operator / (const ivec2 v, const int b) {\r
+    return ivec2 (v.x / b, v.y / b);\r
+}\r
+\r
+ivec3 __operator + (const int a, const ivec3 u) {\r
+    return ivec3 (a + u.x, a + u.y, a + u.z);\r
+}\r
+\r
+ivec3 __operator + (const ivec3 v, const int b) {\r
+    return ivec3 (v.x + b, v.y + b, v.z + b);\r
+}\r
+\r
+ivec3 __operator - (const int a, const ivec3 u) {\r
+    return ivec3 (a - u.x, a - u.y, a - u.z);\r
+}\r
+\r
+ivec3 __operator - (const ivec3 v, const int b) {\r
+    return ivec3 (v.x - b, v.y - b, v.z - b);\r
+}\r
+\r
+ivec3 __operator * (const int a, const ivec3 u) {\r
+    return ivec3 (a * u.x, a * u.y, a * u.z);\r
+}\r
+\r
+ivec3 __operator * (const ivec3 v, const int b) {\r
+    return ivec3 (v.x * b, v.y * b, v.z * b);\r
+}\r
+\r
+ivec3 __operator / (const int a, const ivec3 u) {\r
+    return ivec3 (a / u.x, a / u.y, a / u.z);\r
+}\r
+\r
+ivec3 __operator / (const ivec3 v, const int b) {\r
+    return ivec3 (v.x / b, v.y / b, v.z / b);\r
+}\r
+\r
+ivec4 __operator + (const int a, const ivec4 u) {\r
+    return ivec4 (a + u.x, a + u.y, a + u.z, a + u.w);\r
+}\r
+\r
+ivec4 __operator + (const ivec4 v, const int b) {\r
+    return ivec4 (v.x + b, v.y + b, v.z + b, v.w + b);\r
+}\r
+\r
+ivec4 __operator - (const int a, const ivec4 u) {\r
+    return ivec4 (a - u.x, a - u.y, a - u.z, a - u.w);\r
+}\r
+\r
+ivec4 __operator - (const ivec4 v, const int b) {\r
+    return ivec4 (v.x - b, v.y - b, v.z - b, v.w - b);\r
+}\r
+\r
+ivec4 __operator * (const int a, const ivec4 u) {\r
+    return ivec4 (a * u.x, a * u.y, a * u.z, a * u.w);\r
+}\r
+\r
+ivec4 __operator * (const ivec4 v, const int b) {\r
+    return ivec4 (v.x * b, v.y * b, v.z * b, v.w * b);\r
+}\r
+\r
+ivec4 __operator / (const int a, const ivec4 u) {\r
+    return ivec4 (a / u.x, a / u.y, a / u.z, a / u.w);\r
+}\r
+\r
+ivec4 __operator / (const ivec4 v, const int b) {\r
+    return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b);\r
+}\r
+\r
+vec2 __operator * (const vec2 v, const vec2 u) {\r
+    return vec2 (v.x * u.x, v.y * u.y);\r
+}\r
+\r
+vec3 __operator * (const vec3 v, const vec3 u) {\r
+    return vec3 (v.x * u.x, v.y * u.y, v.z * u.z);\r
+}\r
+\r
+vec4 __operator * (const vec4 v, const vec4 u) {\r
+    return vec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);\r
+}\r
+\r
+ivec2 __operator * (const ivec2 v, const ivec2 u) {\r
+    return ivec2 (v.x * u.x, v.y * u.y);\r
+}\r
+\r
+ivec3 __operator * (const ivec3 v, const ivec3 u) {\r
+    return ivec3 (v.x * u.x, v.y * u.y, v.z * u.z);\r
+}\r
+\r
+ivec4 __operator * (const ivec4 v, const ivec4 u) {\r
+    return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);\r
+}\r
+\r
+vec2 __operator / (const vec2 v, const vec2 u) {\r
+    return vec2 (v.x / u.x, v.y / u.y);\r
+}\r
+\r
+vec3 __operator / (const vec3 v, const vec3 u) {\r
+    return vec3 (v.x / u.x, v.y / u.y, v.z / u.z);\r
+}\r
+\r
+vec4 __operator / (const vec4 v, const vec4 u) {\r
+    return vec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);\r
+}\r
+\r
+ivec2 __operator / (const ivec2 v, const ivec2 u) {\r
+    return ivec2 (v.x / u.x, v.y / u.y);\r
+}\r
+\r
+ivec3 __operator / (const ivec3 v, const ivec3 u) {\r
+    return ivec3 (v.x / u.x, v.y / u.y, v.z / u.z);\r
+}\r
+\r
+ivec4 __operator / (const ivec4 v, const ivec4 u) {\r
+    return ivec4 (v.x / u.x, v.y / u.y, v.z / u.z, v.w / u.w);\r
+}\r
+\r
+mat2 __operator / (const mat2 m, const mat2 n) {\r
+    return mat2 (m[0] / n[0], m[1] / n[1]);\r
+}\r
+\r
+mat3 __operator / (const mat3 m, const mat3 n) {\r
+    return mat3 (m[0] / n[0], m[1] / n[1], m[2] / n[2]);\r
+}\r
+\r
+mat4 __operator / (const mat4 m, const mat4 n) {\r
+    return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);\r
+}\r
+\r
+vec2 __operator - (const vec2 v) {\r
+    return vec2 (-v.x, -v.y);\r
+}\r
+\r
+vec3 __operator - (const vec3 v) {\r
+    return vec3 (-v.x, -v.y, -v.z);\r
+}\r
+\r
+vec4 __operator - (const vec4 v) {\r
+    return vec4 (-v.x, -v.y, -v.z, -v.w);\r
+}\r
+\r
+ivec2 __operator - (const ivec2 v) {\r
+    return ivec2 (-v.x, -v.y);\r
+}\r
+\r
+ivec3 __operator - (const ivec3 v) {\r
+    return ivec3 (-v.x, -v.y, -v.z);\r
+}\r
+\r
+ivec4 __operator - (const ivec4 v) {\r
+    return ivec4 (-v.x, -v.y, -v.z, -v.w);\r
+}\r
+\r
+mat2 __operator - (const mat2 m) {\r
+    return mat2 (-m[0], -m[1]);\r
+}\r
+\r
+mat3 __operator - (const mat3 m) {\r
+    return mat3 (-m[0], -m[1], -m[2]);\r
+}\r
+\r
+mat4 __operator - (const mat4 m) {\r
+    return mat4 (-m[0], -m[1], -m[2], -m[3]);\r
+}\r
+\r
+// \r
+// NOTE: postfix increment and decrement operators take additional dummy int parameter to\r
+//       distinguish their prototypes from prefix ones.\r
+// \r
+\r
+void __operator -- (inout float a) {\r
+    a -= 1.0;\r
+}\r
+\r
+void __operator -- (inout int a) {\r
+    a -= 1;\r
+}\r
+\r
+void __operator -- (inout vec2 v) {\r
+    --v.x, --v.y;\r
+}\r
+\r
+void __operator -- (inout vec3 v) {\r
+    --v.x, --v.y, --v.z;\r
+}\r
+\r
+void __operator -- (inout vec4 v) {\r
+    --v.x, --v.y, --v.z, --v.w;\r
+}\r
+\r
+void __operator -- (inout ivec2 v) {\r
+    --v.x, --v.y;\r
+}\r
+\r
+void __operator -- (inout ivec3 v) {\r
+    --v.x, --v.y, --v.z;\r
+}\r
+\r
+void __operator -- (inout ivec4 v) {\r
+    --v.x, --v.y, --v.z, --v.w;\r
+}\r
+\r
+void __operator -- (inout mat2 m) {\r
+    --m[0], --m[1];\r
+}\r
+\r
+void __operator -- (inout mat3 m) {\r
+    --m[0], --m[1], --m[2];\r
+}\r
+\r
+void __operator -- (inout mat4 m) {\r
+    --m[0], --m[1], --m[2], --m[3];\r
+}\r
+\r
+void __operator ++ (inout float a) {\r
+    a += 1.0;\r
+}\r
+\r
+void __operator ++ (inout int a) {\r
+    a += 1;\r
+}\r
+\r
+void __operator ++ (inout vec2 v) {\r
+    ++v.x, ++v.y;\r
+}\r
+\r
+void __operator ++ (inout vec3 v) {\r
+    ++v.x, ++v.y, ++v.z;\r
+}\r
+\r
+void __operator ++ (inout vec4 v) {\r
+    ++v.x, ++v.y, ++v.z, ++v.w;\r
+}\r
+\r
+void __operator ++ (inout ivec2 v) {\r
+    ++v.x, ++v.y;\r
+}\r
+\r
+void __operator ++ (inout ivec3 v) {\r
+    ++v.x, ++v.y, ++v.z;\r
+}\r
+\r
+void __operator ++ (inout ivec4 v) {\r
+    ++v.x, ++v.y, ++v.z, ++v.w;\r
+}\r
+\r
+void __operator ++ (inout mat2 m) {\r
+    ++m[0], ++m[1];\r
+}\r
+\r
+void __operator ++ (inout mat3 m) {\r
+    ++m[0], ++m[1], ++m[2];\r
+}\r
+\r
+void __operator ++ (inout mat4 m) {\r
+    ++m[0], ++m[1], ++m[2], ++m[3];\r
+}\r
+\r
+float __operator -- (inout float a, const int) {\r
+    float c;\r
+    c = a;\r
+    --a;\r
+    return c;\r
+}\r
+\r
+int __operator -- (inout int a, const int) {\r
+    int c;\r
+    c = a;\r
+    --a;\r
+    return c;\r
+}\r
+\r
+vec2 __operator -- (inout vec2 v, const int) {\r
+    return vec2 (v.x--, v.y--);\r
+}\r
+\r
+vec3 __operator -- (inout vec3 v, const int) {\r
+    return vec3 (v.x--, v.y--, v.z--);\r
+}\r
+\r
+vec4 __operator -- (inout vec4 v, const int) {\r
+    return vec4 (v.x--, v.y--, v.z--, v.w--);\r
+}\r
+\r
+ivec2 __operator -- (inout ivec2 v, const int) {\r
+    return ivec2 (v.x--, v.y--);\r
+}\r
+\r
+ivec3 __operator -- (inout ivec3 v, const int) {\r
+    return ivec3 (v.x--, v.y--, v.z--);\r
+}\r
+\r
+ivec4 __operator -- (inout ivec4 v, const int) {\r
+    return ivec4 (v.x--, v.y--, v.z--, v.w--);\r
+}\r
+\r
+mat2 __operator -- (inout mat2 m, const int) {\r
+    return mat2 (m[0]--, m[1]--);\r
+}\r
+\r
+mat3 __operator -- (inout mat3 m, const int) {\r
+    return mat3 (m[0]--, m[1]--, m[2]--);\r
+}\r
+\r
+mat4 __operator -- (inout mat4 m, const int) {\r
+    return mat4 (m[0]--, m[1]--, m[2]--, m[3]--);\r
+}\r
+\r
+float __operator ++ (inout float a, const int) {\r
+    float c;\r
+    c = a;\r
+    ++a;\r
+    return c;\r
+}\r
+\r
+int __operator ++ (inout int a, const int) {\r
+    int c;\r
+    c = a;\r
+    ++a;\r
+    return c;\r
+}\r
+\r
+vec2 __operator ++ (inout vec2 v, const int) {\r
+    return vec2 (v.x++, v.y++);\r
+}\r
+\r
+vec3 __operator ++ (inout vec3 v, const int) {\r
+    return vec3 (v.x++, v.y++, v.z++);\r
+}\r
+\r
+vec4 __operator ++ (inout vec4 v, const int) {\r
+    return vec4 (v.x++, v.y++, v.z++, v.w++);\r
+}\r
+\r
+ivec2 __operator ++ (inout ivec2 v, const int) {\r
+    return ivec2 (v.x++, v.y++);\r
+}\r
+\r
+ivec3 __operator ++ (inout ivec3 v, const int) {\r
+    return ivec3 (v.x++, v.y++, v.z++);\r
+}\r
+\r
+ivec4 __operator ++ (inout ivec4 v, const int) {\r
+    return ivec4 (v.x++, v.y++, v.z++, v.w++);\r
+}\r
+\r
+mat2 __operator ++ (inout mat2 m, const int) {\r
+    return mat2 (m[0]++, m[1]++);\r
+}\r
+\r
+mat3 __operator ++ (inout mat3 m, const int) {\r
+    return mat3 (m[0]++, m[1]++, m[2]++);\r
+}\r
+\r
+mat4 __operator ++ (inout mat4 m, const int) {\r
+    return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);\r
+}\r
+\r
+bool __operator < (const float a, const float b) {\r
+    bool c;\r
+    __asm float_less c, a, b;\r
+    return c;\r
+}\r
+\r
+bool __operator < (const int a, const int b) {\r
+       return float (a) < float (b);\r
+}\r
+\r
+bool __operator > (const float a, const float b) {\r
+    return b < a;\r
+}\r
+\r
+bool __operator > (const int a, const int b) {\r
+    return b < a;\r
+}\r
+\r
+bool __operator >= (const float a, const float b) {\r
+    return a > b || a == b;\r
+}\r
+\r
+bool __operator >= (const int a, const int b) {\r
+    return a > b || a == b;\r
+}\r
+\r
+bool __operator <= (const float a, const float b) {\r
+    return a < b || a == b;\r
+}\r
+\r
+bool __operator <= (const int a, const int b) {\r
+    return a < b || a == b;\r
+}\r
+\r
+//bool __operator == (const float a, const float b) {\r
+//    bool c;\r
+//    __asm float_equal c, a, b;\r
+//    return c;\r
+//}\r
+//\r
+//bool __operator == (const int a, const int b) {\r
+//     return float (a) == float (b);\r
+//}\r
+//\r
+//bool __operator == (const bool a, const bool b) {\r
+//    return float (a) == float (b);\r
+//}\r
+//\r
+//bool __operator == (const vec2 v, const vec2 u) {\r
+//    return v.x == u.x && v.y == u.y;\r
+//}\r
+//\r
+//bool __operator == (const vec3 v, const vec3 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z;\r
+//}\r
+//\r
+//bool __operator == (const vec4 v, const vec4 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\r
+//}\r
+//\r
+//bool __operator == (const ivec2 v, const ivec2 u) {\r
+//    return v.x == u.x && v.y == u.y;\r
+//}\r
+//\r
+//bool __operator == (const ivec3 v, const ivec3 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z;\r
+//}\r
+//\r
+//bool __operator == (const ivec4 v, const ivec4 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\r
+//}\r
+//\r
+//bool __operator == (const bvec2 v, const bvec2 u) {\r
+//    return v.x == u.x && v.y == u.y;\r
+//}\r
+//\r
+//bool __operator == (const bvec3 v, const bvec3 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z;\r
+//}\r
+//\r
+//bool __operator == (const bvec4 v, const bvec4 u) {\r
+//    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\r
+//}\r
+//\r
+//bool __operator == (const mat2 m, const mat2 n) {\r
+//    return m[0] == n[0] && m[1] == n[1];\r
+//}\r
+//\r
+//bool __operator == (const mat3 m, const mat3 n) {\r
+//    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];\r
+//}\r
+//\r
+//bool __operator == (const mat4 m, const mat4 n) {\r
+//    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];\r
+//}\r
+//\r
+//bool __operator != (const float a, const float b) {\r
+//    return !(a == b);\r
+//}\r
+//\r
+//bool __operator != (const int a, const int b) {\r
+//    return !(a == b);\r
+//}\r
+//\r
+//bool __operator != (const bool a, const bool b) {\r
+//    return !(a == b);\r
+//}\r
+//\r
+//bool __operator != (const vec2 v, const vec2 u) {\r
+//    return v.x != u.x || v.y != u.y;\r
+//}\r
+//\r
+//bool __operator != (const vec3 v, const vec3 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z;\r
+//}\r
+//\r
+//bool __operator != (const vec4 v, const vec4 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\r
+//}\r
+//\r
+//bool __operator != (const ivec2 v, const ivec2 u) {\r
+//    return v.x != u.x || v.y != u.y;\r
+//}\r
+//\r
+//bool __operator != (const ivec3 v, const ivec3 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z;\r
+//}\r
+//\r
+//bool __operator != (const ivec4 v, const ivec4 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\r
+//}\r
+//\r
+//bool __operator != (const bvec2 v, const bvec2 u) {\r
+//    return v.x != u.x || v.y != u.y;\r
+//}\r
+//\r
+//bool __operator != (const bvec3 v, const bvec3 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z;\r
+//}\r
+//\r
+//bool __operator != (const bvec4 v, const bvec4 u) {\r
+//    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\r
+//}\r
+//\r
+//bool __operator != (const mat2 m, const mat2 n) {\r
+//    return m[0] != n[0] || m[1] != n[1];\r
+//}\r
+//\r
+//bool __operator != (const mat3 m, const mat3 n) {\r
+//    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];\r
+//}\r
+//\r
+//bool __operator != (const mat4 m, const mat4 n) {\r
+//    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];\r
+//}\r
+\r
+bool __operator ^^ (const bool a, const bool b) {\r
+    return a != b;\r
+}\r
+\r
+// \r
+// These operators are handled internally by the compiler:\r
+// \r
+// bool __operator && (bool a, bool b) {\r
+//     return a ? b : false;\r
+// }\r
+// bool __operator || (bool a, bool b) {\r
+//     return a ? true : b;\r
+// }\r
+// \r
+\r
+bool __operator ! (const bool a) {\r
+    return a == false;\r
+}\r
 \r
index feed97b1f730a00af804acf28f192d18ceb49f95..c7f3d368a52db5b26f52aec16038109dbd885b30 100644 (file)
 "\n"\r
 "\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "int __constructor (const float _f) {\n"\r
 "    int _i;\n"\r
 "    __asm float_to_int _i, _f;\n"\r
 "    return _i;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "bool __constructor (const int _i) {\n"\r
 "    return _i != 0;\n"\r
 "}\n"\r
 "    return _f != 0.0;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "int __constructor (const bool _b) {\n"\r
 "    return _b ? 1 : 0;\n"\r
 "}\n"\r
 "    return _b ? 1.0 : 0.0;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "float __constructor (const int _i) {\n"\r
 "    float _f;\n"\r
 "    __asm int_to_float _f, _i;\n"\r
 "    return _f;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "bool __constructor (const bool _b) {\n"\r
 "    return _b;\n"\r
 "}\n"\r
 "    return _f;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "vec2 __constructor (const float _f) {\n"\r
 "    return vec2 (_f, _f);\n"\r
 "}\n"\r
 "    return bvec4 (_i, _i, _i, _i);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "mat2 __constructor (const float _f) {\n"\r
 "    return mat2 (\n"\r
 "        _f, .0,\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
-"void __operator = (out float a, const float b) {\n"\r
-"    __asm float_copy a, b;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out int a, const int b) {\n"\r
-"    __asm int_copy a, b;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out bool a, const bool b) {\n"\r
-"    __asm bool_copy a, b;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out vec2 v, const vec2 u) {\n"\r
-"    v.x = u.x, v.y = u.y;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out vec3 v, const vec3 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out vec4 v, const vec4 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out ivec2 v, const ivec2 u) {\n"\r
-"    v.x = u.x, v.y = u.y;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out ivec3 v, const ivec3 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out ivec4 v, const ivec4 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out bvec2 v, const bvec2 u) {\n"\r
-"    v.x = u.x, v.y = u.y;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out bvec3 v, const bvec3 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out bvec4 v, const bvec4 u) {\n"\r
-"    v.x = u.x, v.y = u.y, v.z = u.z, v.w = u.w;\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out mat2 m, const mat2 n) {\n"\r
-"    m[0] = n[0], m[1] = n[1];\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out mat3 m, const mat3 n) {\n"\r
-"    m[0] = n[0], m[1] = n[1], m[2] = n[2];\n"\r
-"}\n"\r
 "\n"\r
-"void __operator = (out mat4 m, const mat4 n) {\n"\r
-"    m[0] = n[0], m[1] = n[1], m[2] = n[2], m[3] = n[3];\n"\r
-"}\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "    __asm float_add a, a, b;\n"\r
 "}\n"\r
 "\n"\r
+"float __operator - (const float a) {\n"\r
+"    float c;\n"\r
+"    __asm float_negate c, a;\n"\r
+"    return c;\n"\r
+"}\n"\r
+"\n"\r
 "void __operator -= (inout float a, const float b) {\n"\r
 "    a += -b;\n"\r
 "}\n"\r
 "    __asm float_divide a, a, b;\n"\r
 "}\n"\r
 "\n"\r
-"void __operator += (inout int x, const int y) {\n"\r
-"    x = int (float (x) + float (y));\n"\r
+"float __operator + (const float a, const float b) {\n"\r
+"    float c;\n"\r
+"    c = a;\n"\r
+"    return c += b;\n"\r
 "}\n"\r
 "\n"\r
-"void __operator -= (inout int x, const int y) {\n"\r
-"    x += -y;\n"\r
+"void __operator += (inout int a, const int b) {\n"\r
+"    a = int (float (a) + float (b));\n"\r
 "}\n"\r
 "\n"\r
-"void __operator *= (inout int x, const int y) {\n"\r
-"    x = int (float (x) * float (y));\n"\r
+"int __operator - (const int a) {\n"\r
+"      return int (-float (a));\n"\r
 "}\n"\r
 "\n"\r
-"void __operator /= (inout int x, const int y) {\n"\r
-"    x = int (float (x) / float (y));\n"\r
+"void __operator -= (inout int a, const int b) {\n"\r
+"    a += -b;\n"\r
+"}\n"\r
+"\n"\r
+"float __operator * (const float a, const float b) {\n"\r
+"    float c;\n"\r
+"    c = a;\n"\r
+"    return c *= b;\n"\r
+"}\n"\r
+"\n"\r
+"void __operator *= (inout int a, const int b) {\n"\r
+"    a = int (float (a) * float (b));\n"\r
+"}\n"\r
+"\n"\r
+"float __operator / (const float a, const float b) {\n"\r
+"    float c;\n"\r
+"    c = a;\n"\r
+"    return c /= b;\n"\r
+"}\n"\r
+"\n"\r
+"void __operator /= (inout int a, const int b) {\n"\r
+"    a = int (float (a) / float (b));\n"\r
 "}\n"\r
 "\n"\r
 "void __operator += (inout vec2 v, const vec2 u) {\n"\r
 "    m[0] += n[0], m[1] += n[1];\n"\r
 "}\n"\r
 "\n"\r
-"void __operator -= (inout mat2 v, const mat2 n) {\n"\r
+"void __operator -= (inout mat2 m, const mat2 n) {\n"\r
 "    m[0] -= n[0], m[1] -= n[1];\n"\r
 "}\n"\r
 "\n"\r
+"vec2 __operator * (const mat2 m, const vec2 v) {\n"\r
+"    return vec2 (\n"\r
+"        v.x * m[0].x + v.y * m[1].x,\n"\r
+"        v.x * m[0].y + v.y * m[1].y\n"\r
+"    );\n"\r
+"}\n"\r
+"\n"\r
+"mat2 __operator * (const mat2 m, const mat2 n) {\n"\r
+"    return mat2 (m * n[0], m * n[1]);\n"\r
+"}\n"\r
+"\n"\r
 "void __operator *= (inout mat2 m, const mat2 n) {\n"\r
 "    m = m * n;\n"\r
 "}\n"\r
 "    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2];\n"\r
 "}\n"\r
 "\n"\r
+"vec3 __operator * (const mat3 m, const vec3 v) {\n"\r
+"    return vec3 (\n"\r
+"        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,\n"\r
+"        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,\n"\r
+"        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z\n"\r
+"    );\n"\r
+"}\n"\r
+"\n"\r
+"mat3 __operator * (const mat3 m, const mat3 n) {\n"\r
+"    return mat3 (m * n[0], m * n[1], m * n[2]);\n"\r
+"}\n"\r
+"\n"\r
 "void __operator *= (inout mat3 m, const mat3 n) {\n"\r
 "    m = m * n;\n"\r
 "}\n"\r
 "    m[0] -= n[0], m[1] -= n[1], m[2] -= n[2], m[3] -= n[3];\n"\r
 "}\n"\r
 "\n"\r
+"vec4 __operator * (const mat4 m, const vec4 v) {\n"\r
+"    return vec4 (\n"\r
+"        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,\n"\r
+"        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,\n"\r
+"        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,\n"\r
+"        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w\n"\r
+"    );\n"\r
+"}\n"\r
+"\n"\r
+"mat4 __operator * (const mat4 m, const mat4 n) {\n"\r
+"    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);\n"\r
+"}\n"\r
+"\n"\r
 "void __operator *= (inout mat4 m, const mat4 n) {\n"\r
 "    m = m * n;\n"\r
 "}\n"\r
 "    m[0] /= n[0], m[1] /= n[1], m[2] /= n[2], m[3] /= n[3];\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "void __operator += (inout vec2 v, const float a) {\n"\r
 "    v.x += a, v.y += a;\n"\r
 "}\n"\r
 "    m[0] /= a, m[1] /= a, m[2] /= a, m[3] /= a;\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
+"vec2 __operator * (const vec2 v, const mat2 m) {\n"\r
+"    return vec2 (\n"\r
+"        v.x * m[0].x + v.y * m[0].y,\n"\r
+"        v.x * m[1].x + v.y * m[1].y\n"\r
+"    );\n"\r
+"}\n"\r
 "\n"\r
 "void __operator *= (inout vec2 v, const mat2 m) {\n"\r
 "    v = v * m;\n"\r
 "}\n"\r
 "\n"\r
-"void __operator *= (inout vec3 v, const mat3 m) {\n"\r
-"    v = v * m;\n"\r
+"vec3 __operator * (const vec3 v, const mat3 m) {\n"\r
+"    return vec3 (\n"\r
+"        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,\n"\r
+"        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,\n"\r
+"        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z\n"\r
+"    );\n"\r
 "}\n"\r
 "\n"\r
-"void __operator *= (inout vec4 v, const mat4 m) {\n"\r
+"void __operator *= (inout vec3 v, const mat3 m) {\n"\r
 "    v = v * m;\n"\r
 "}\n"\r
 "\n"\r
+"vec4 __operator * (const vec4 v, const mat4 m) {\n"\r
+"    return vec4 (\n"\r
+"        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,\n"\r
+"        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,\n"\r
+"        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,\n"\r
+"        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w\n"\r
+"    );\n"\r
+"}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"float __operator + (const float a, const float b) {\n"\r
-"    float c = a;\n"\r
-"    return c += b;\n"\r
+"void __operator *= (inout vec4 v, const mat4 m) {\n"\r
+"    v = v * m;\n"\r
 "}\n"\r
 "\n"\r
 "float __operator - (const float a, const float b) {\n"\r
 "    return a + -b;\n"\r
 "}\n"\r
 "\n"\r
-"float __operator * (const float a, const float b) {\n"\r
-"    float c = a;\n"\r
-"    return c *= b;\n"\r
-"}\n"\r
-"\n"\r
-"float __operator / (const float a, const float b) {\n"\r
-"    float c = a;\n"\r
-"    return c /= b;\n"\r
-"}\n"\r
-"\n"\r
 "int __operator + (const int a, const int b) {\n"\r
-"    int c = a;\n"\r
+"    int c;\n"\r
+"    c = a;\n"\r
 "    return c += b;\n"\r
 "}\n"\r
 "\n"\r
-"int __operator - (const int x, const int y) {\n"\r
-"    return x + -y;\n"\r
+"int __operator - (const int a, const int b) {\n"\r
+"    return a + -b;\n"\r
 "}\n"\r
 "\n"\r
-"int __operator * (const int x, const int y) {\n"\r
-"    int z = x;\n"\r
-"    return z *= y;\n"\r
+"int __operator * (const int a, const int b) {\n"\r
+"    int c;\n"\r
+"    return (c = a) *= b;\n"\r
 "}\n"\r
 "\n"\r
-"int __operator / (const int x, const int y) {\n"\r
-"    int z = x;\n"\r
-"    return z /= y;\n"\r
+"int __operator / (const int a, const int b) {\n"\r
+"    int c;\n"\r
+"    return (c = a) /= b;\n"\r
 "}\n"\r
 "\n"\r
 "vec2 __operator + (const vec2 v, const vec2 u) {\n"\r
 "    return mat4 (m[0] - n[0], m[1] - n[1], m[2] - n[2], m[3] - n[3]);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "vec2 __operator + (const float a, const vec2 u) {\n"\r
 "    return vec2 (a + u.x, a + u.y);\n"\r
 "}\n"\r
 "    return mat4 (m[0] / b, m[1] / b, m[2] / b, m[3] / b);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "ivec2 __operator + (const int a, const ivec2 u) {\n"\r
 "    return ivec2 (a + u.x, a + u.y);\n"\r
 "}\n"\r
 "    return ivec4 (v.x / b, v.y / b, v.z / b, v.w / b);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"vec2 __operator * (const mat2 m, const vec2 v) {\n"\r
-"    return vec2 (\n"\r
-"        v.x * m[0].x + v.y * m[1].x,\n"\r
-"        v.x * m[0].y + v.y * m[1].y\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"vec2 __operator * (const vec2 v, const mat2 m) {\n"\r
-"    return vec2 (\n"\r
-"        v.x * m[0].x + v.y * m[0].y,\n"\r
-"        v.x * m[1].x + v.y * m[1].y\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"vec3 __operator * (const mat3 m, const vec3 v) {\n"\r
-"    return vec3 (\n"\r
-"        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x,\n"\r
-"        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y,\n"\r
-"        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"vec3 __operator * (const vec3 v, const mat3 m) {\n"\r
-"    return vec3 (\n"\r
-"        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z,\n"\r
-"        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z,\n"\r
-"        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"vec4 __operator * (const mat4 m, const vec4 v) {\n"\r
-"    return vec4 (\n"\r
-"        v.x * m[0].x + v.y * m[1].x + v.z * m[2].x + v.w * m[3].x,\n"\r
-"        v.x * m[0].y + v.y * m[1].y + v.z * m[2].y + v.w * m[3].y,\n"\r
-"        v.x * m[0].z + v.y * m[1].z + v.z * m[2].z + v.w * m[3].z,\n"\r
-"        v.x * m[0].w + v.y * m[1].w + v.z * m[2].w + v.w * m[3].w\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"vec4 __operator * (const vec4 v, const mat4 m) {\n"\r
-"    return vec4 (\n"\r
-"        v.x * m[0].x + v.y * m[0].y + v.z * m[0].z + v.w * m[0].w,\n"\r
-"        v.x * m[1].x + v.y * m[1].y + v.z * m[1].z + v.w * m[1].w,\n"\r
-"        v.x * m[2].x + v.y * m[2].y + v.z * m[2].z + v.w * m[2].w,\n"\r
-"        v.x * m[3].x + v.y * m[3].y + v.z * m[3].z + v.w * m[3].w\n"\r
-"    );\n"\r
-"}\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "vec2 __operator * (const vec2 v, const vec2 u) {\n"\r
 "    return vec2 (v.x * u.x, v.y * u.y);\n"\r
 "}\n"\r
 "    return ivec4 (v.x * u.x, v.y * u.y, v.z * u.z, v.w * u.w);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "vec2 __operator / (const vec2 v, const vec2 u) {\n"\r
 "    return vec2 (v.x / u.x, v.y / u.y);\n"\r
 "}\n"\r
 "    return mat4 (m[0] / n[0], m[1] / n[1], m[2] / n[2], m[3] / n[3]);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"mat2 __operator * (const mat2 m, const mat2 n) {\n"\r
-"    return mat2 (m * n[0], m * n[1]);\n"\r
-"}\n"\r
-"\n"\r
-"mat3 __operator * (const mat3 m, const mat3 n) {\n"\r
-"    return mat3 (m * n[0], m * n[1], m * n[2]);\n"\r
-"}\n"\r
-"\n"\r
-"mat4 __operator * (const mat4 m, const mat4 n) {\n"\r
-"    return mat4 (m * n[0], m * n[1], m * n[2], m * n[3]);\n"\r
-"}\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"float __operator - (const float a) {\n"\r
-"    float c;\n"\r
-"    __asm float_negate c, a;\n"\r
-"    return c;\n"\r
-"}\n"\r
-"\n"\r
-"int __operator - (const int a) {\n"\r
-"      return int (-float (a));\n"\r
-"}\n"\r
-"\n"\r
 "vec2 __operator - (const vec2 v) {\n"\r
 "    return vec2 (-v.x, -v.y);\n"\r
 "}\n"\r
 "    return mat4 (-m[0], -m[1], -m[2], -m[3]);\n"\r
 "}\n"\r
 "\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
 "void __operator -- (inout float a) {\n"\r
 "    a -= 1.0;\n"\r
 "}\n"\r
 "}\n"\r
 "\n"\r
 "float __operator -- (inout float a, const int) {\n"\r
-"    const float c = a;\n"\r
+"    float c;\n"\r
+"    c = a;\n"\r
 "    --a;\n"\r
 "    return c;\n"\r
 "}\n"\r
 "\n"\r
 "int __operator -- (inout int a, const int) {\n"\r
-"    const int c = a;\n"\r
+"    int c;\n"\r
+"    c = a;\n"\r
 "    --a;\n"\r
 "    return c;\n"\r
 "}\n"\r
 "}\n"\r
 "\n"\r
 "float __operator ++ (inout float a, const int) {\n"\r
-"    const float c = a;\n"\r
+"    float c;\n"\r
+"    c = a;\n"\r
 "    ++a;\n"\r
 "    return c;\n"\r
 "}\n"\r
 "\n"\r
 "int __operator ++ (inout int a, const int) {\n"\r
-"    const int c = a;\n"\r
+"    int c;\n"\r
+"    c = a;\n"\r
 "    ++a;\n"\r
 "    return c;\n"\r
 "}\n"\r
 "    return mat4 (m[0]++, m[1]++, m[2]++, m[3]++);\n"\r
 "}\n"\r
 "\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
-"\n"\r
 "bool __operator < (const float a, const float b) {\n"\r
 "    bool c;\n"\r
 "    __asm float_less c, a, b;\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
-"bool __operator == (const float a, const float b) {\n"\r
-"    bool c;\n"\r
-"    __asm float_equal c, a, b;\n"\r
-"    return c;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const int a, const int b) {\n"\r
-"      return float (a) == float (b);\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const bool a, const bool b) {\n"\r
-"    return float (a) == float (b);\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const vec2 v, const vec2 u) {\n"\r
-"    return v.x == u.x && v.y == u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const vec3 v, const vec3 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const vec4 v, const vec4 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const ivec2 v, const ivec2 u) {\n"\r
-"    return v.x == u.x && v.y == u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const ivec3 v, const ivec3 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const ivec4 v, const ivec4 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const bvec2 v, const bvec2 u) {\n"\r
-"    return v.x == u.x && v.y == u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const bvec3 v, const bvec3 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const bvec4 v, const bvec4 u) {\n"\r
-"    return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const mat2 m, const mat2 n) {\n"\r
-"    return m[0] == n[0] && m[1] == n[1];\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const mat3 m, const mat3 n) {\n"\r
-"    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2];\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator == (const mat4 m, const mat4 n) {\n"\r
-"    return m[0] == n[0] && m[1] == n[1] && m[2] == n[2] && m[3] == n[3];\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const float a, const float b) {\n"\r
-"    return !(a == b);\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const int a, const int b) {\n"\r
-"    return !(a == b);\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const bool a, const bool b) {\n"\r
-"    return !(a == b);\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const vec2 v, const vec2 u) {\n"\r
-"    return v.x != u.x || v.y != u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const vec3 v, const vec3 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const vec4 v, const vec4 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const ivec2 v, const ivec2 u) {\n"\r
-"    return v.x != u.x || v.y != u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const ivec3 v, const ivec3 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const ivec4 v, const ivec4 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const bvec2 v, const bvec2 u) {\n"\r
-"    return v.x != u.x || v.y != u.y;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const bvec3 v, const bvec3 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const bvec4 v, const bvec4 u) {\n"\r
-"    return v.x != u.x || v.y != u.y || v.z != u.z || v.w != u.w;\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const mat2 m, const mat2 n) {\n"\r
-"    return m[0] != n[0] || m[1] != n[1];\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const mat3 m, const mat3 n) {\n"\r
-"    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2];\n"\r
-"}\n"\r
 "\n"\r
-"bool __operator != (const mat4 m, const mat4 n) {\n"\r
-"    return m[0] != n[0] || m[1] != n[1] || m[2] != n[2] || m[3] != n[3];\n"\r
-"}\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
-"bool __operator ^^ (const bool a, const bool b) {\n"\r
-"    return a != b;\n"\r
-"}\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
 "\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"bool __operator ^^ (const bool a, const bool b) {\n"\r
+"    return a != b;\n"\r
+"}\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
+"\n"\r
 "bool __operator ! (const bool a) {\n"\r
 "    return a == false;\n"\r
 "}\n"\r
index 3e415325309dcb0a7700e62a660083842183fb4d..ac53ceea8770ffc153fa41ecc99655057a87ce8c 100755 (executable)
-2,1,0,5,1,1,1,0,9,95,102,0,0,0,1,3,2,0,5,1,95,105,0,0,
-0,4,102,108,111,97,116,95,116,111,95,105,110,116,0,18,95,105,0,0,18,95,102,0,
-0,0,8,18,95,105,0,0,0,1,0,1,1,1,1,0,5,95,105,0,0,0,1,8,
-18,95,105,0,16,8,48,0,39,0,0,1,0,1,1,1,1,0,9,95,102,0,0,0,
-1,8,18,95,102,0,17,48,0,48,0,0,39,0,0,1,0,5,1,1,1,0,1,95,
-98,0,0,0,1,8,18,95,98,0,16,10,49,0,16,8,48,0,31,0,0,1,0,9,
-1,1,1,0,1,95,98,0,0,0,1,8,18,95,98,0,17,49,0,48,0,0,17,48,
-0,48,0,0,31,0,0,1,0,9,1,1,1,0,5,95,105,0,0,0,1,3,2,0,
-9,1,95,102,0,0,0,4,105,110,116,95,116,111,95,102,108,111,97,116,0,18,95,102,
-0,0,18,95,105,0,0,0,8,18,95,102,0,0,0,1,0,1,1,1,1,0,1,95,
-98,0,0,0,1,8,18,95,98,0,0,0,1,0,5,1,1,1,0,5,95,105,0,0,
-0,1,8,18,95,105,0,0,0,1,0,9,1,1,1,0,9,95,102,0,0,0,1,8,
-18,95,102,0,0,0,1,0,10,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,
-99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,10,1,1,1,0,5,
-95,105,0,0,0,1,8,58,118,101,99,50,0,18,95,105,0,0,18,95,105,0,0,0,
-0,0,1,0,10,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,50,0,18,
-95,98,0,0,18,95,98,0,0,0,0,0,1,0,11,1,1,1,0,9,95,102,0,0,
-0,1,8,58,118,101,99,51,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,
-0,0,0,1,0,11,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,51,0,
-18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,11,1,1,1,
-0,1,95,98,0,0,0,1,8,58,118,101,99,51,0,18,95,98,0,0,18,95,98,0,
-0,18,95,98,0,0,0,0,0,1,0,12,1,1,1,0,9,95,102,0,0,0,1,8,
-58,118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,
-0,0,0,0,0,1,0,12,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,
-52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,
-0,1,0,12,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,52,0,18,95,
-98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,6,
-1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,50,0,18,95,105,0,0,
-18,95,105,0,0,0,0,0,1,0,6,1,1,1,0,9,95,102,0,0,0,1,8,58,
-105,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,6,1,1,
-1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,50,0,18,95,98,0,0,18,95,
-98,0,0,0,0,0,1,0,7,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,
-101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,
-7,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,51,0,18,95,102,0,
-0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,7,1,1,1,0,1,95,98,
-0,0,0,1,8,58,105,118,101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95,
-98,0,0,0,0,0,1,0,8,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,
-101,99,52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,
-0,0,0,1,0,8,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,52,
-0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,
-1,0,8,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,52,0,18,95,
-98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2,
-1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,50,0,18,95,98,0,0,
-18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,9,95,102,0,0,0,1,8,58,
-98,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,2,1,1,
-1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,50,0,18,95,105,0,0,18,95,
-105,0,0,0,0,0,1,0,3,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,
-101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,
-3,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,51,0,18,95,102,0,
-0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,3,1,1,1,0,5,95,105,
-0,0,0,1,8,58,98,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95,
-105,0,0,0,0,0,1,0,4,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,
-101,99,52,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,
-0,0,0,1,0,4,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,52,
-0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,
-1,0,4,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,52,0,18,95,
-105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,13,
-1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,50,0,18,95,102,0,0,17,
-0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,13,1,1,
-1,0,5,95,105,0,0,0,1,8,58,109,97,116,50,0,18,95,105,0,0,17,0,48,
-0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,13,1,1,1,0,
-1,95,98,0,0,0,1,8,58,109,97,116,50,0,18,95,98,0,0,17,0,48,0,0,
-0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,14,1,1,1,0,9,95,
-102,0,0,0,1,8,58,109,97,116,51,0,18,95,102,0,0,17,0,48,0,0,0,17,
-0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,
-48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,14,1,1,1,
-0,5,95,105,0,0,0,1,8,58,109,97,116,51,0,18,95,105,0,0,17,0,48,0,
-0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0,48,0,0,
-0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,14,
-1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,51,0,18,95,98,0,0,17,
-0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0,
-48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,
-1,0,15,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,52,0,18,95,102,
-0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,
-0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,
-0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,
-17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,15,1,
-1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,52,0,18,95,105,0,0,17,0,
-48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,
-105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,
-0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,
-0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,15,1,1,1,0,1,
-95,98,0,0,0,1,8,58,109,97,116,52,0,18,95,98,0,0,17,0,48,0,0,0,
-17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,
-0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,
-95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,
-48,0,0,0,18,95,98,0,0,0,0,0,1,0,0,2,1,1,0,1,9,97,0,0,
-1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,99,111,112,121,0,18,97,0,
-0,18,98,0,0,0,0,1,0,0,2,1,1,0,1,5,97,0,0,1,1,0,5,98,
-0,0,0,1,4,105,110,116,95,99,111,112,121,0,18,97,0,0,18,98,0,0,0,0,
-1,0,0,2,1,1,0,1,1,97,0,0,1,1,0,1,98,0,0,0,1,4,98,111,
-111,108,95,99,111,112,121,0,18,97,0,0,18,98,0,0,0,0,1,0,0,2,1,1,
-0,1,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18,117,
-0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,0,0,1,0,0,
-2,1,1,0,1,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,
-0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,
-0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2,1,1,0,1,12,118,
-0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,
-20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0,59,122,0,18,117,0,
-59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20,19,0,0,1,0,0,
-2,1,1,0,1,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,
-0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,0,0,
-1,0,0,2,1,1,0,1,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,
-0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,
-19,18,118,0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2,1,1,0,
-1,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,
-59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0,59,122,0,
-18,117,0,59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20,19,0,0,
-1,0,0,2,1,1,0,1,2,118,0,0,1,1,0,2,117,0,0,0,1,9,18,118,
-0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,
-19,0,0,1,0,0,2,1,1,0,1,3,118,0,0,1,1,0,3,117,0,0,0,1,
-9,18,118,0,59,120,0,18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,
-121,0,20,19,18,118,0,59,122,0,18,117,0,59,122,0,20,19,0,0,1,0,0,2,
-1,1,0,1,4,118,0,0,1,1,0,4,117,0,0,0,1,9,18,118,0,59,120,0,
-18,117,0,59,120,0,20,18,118,0,59,121,0,18,117,0,59,121,0,20,19,18,118,0,
-59,122,0,18,117,0,59,122,0,20,19,18,118,0,59,119,0,18,117,0,59,119,0,20,
-19,0,0,1,0,0,2,1,1,0,1,13,109,0,0,1,1,0,13,110,0,0,0,1,
-9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,20,18,109,0,16,10,49,
-0,57,18,110,0,16,10,49,0,57,20,19,0,0,1,0,0,2,1,1,0,1,14,109,
-0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,
-8,48,0,57,20,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,20,19,18,
-109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,20,19,0,0,1,0,0,2,1,
-1,0,1,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,
-57,18,110,0,16,8,48,0,57,20,18,109,0,16,10,49,0,57,18,110,0,16,10,49,
-0,57,20,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,20,19,18,109,
-0,16,10,51,0,57,18,110,0,16,10,51,0,57,20,19,0,0,1,0,0,2,2,1,
-0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,97,100,
-100,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,0,2,3,1,0,2,
-9,97,0,0,1,1,0,9,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0,
-1,0,0,2,4,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108,
-111,97,116,95,109,117,108,116,105,112,108,121,0,18,97,0,0,18,97,0,0,18,98,0,
-0,0,0,1,0,0,2,5,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,
-4,102,108,111,97,116,95,100,105,118,105,100,101,0,18,97,0,0,18,97,0,0,18,98,
-0,0,0,0,1,0,0,2,2,1,0,2,5,120,0,0,1,1,0,5,121,0,0,0,
-1,9,18,120,0,58,105,110,116,0,58,102,108,111,97,116,0,18,120,0,0,0,58,102,
-108,111,97,116,0,18,121,0,0,0,46,0,0,20,0,0,1,0,0,2,3,1,0,2,
-5,120,0,0,1,1,0,5,121,0,0,0,1,9,18,120,0,18,121,0,54,21,0,0,
-1,0,0,2,4,1,0,2,5,120,0,0,1,1,0,5,121,0,0,0,1,9,18,120,
-0,58,105,110,116,0,58,102,108,111,97,116,0,18,120,0,0,0,58,102,108,111,97,116,
-0,18,121,0,0,0,48,0,0,20,0,0,1,0,0,2,5,1,0,2,5,120,0,0,
-1,1,0,5,121,0,0,0,1,9,18,120,0,58,105,110,116,0,58,102,108,111,97,116,
-0,18,120,0,0,0,58,102,108,111,97,116,0,18,121,0,0,0,49,0,0,20,0,0,
-1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,
-0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,
-19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,
-9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,
-121,0,22,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,10,117,0,
-0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,
-117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0,0,1,1,0,
-10,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,
-121,0,18,117,0,59,121,0,24,19,0,0,1,0,0,2,2,1,0,2,11,118,0,0,
-1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,
-118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,
-0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,11,117,0,0,
-0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,
-0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,0,0,1,0,
-0,2,4,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,
-120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,
-118,0,59,122,0,18,117,0,59,122,0,23,19,0,0,1,0,0,2,5,1,0,2,11,
-118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,
-0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117,
-0,59,122,0,24,19,0,0,1,0,0,2,2,1,0,2,12,118,0,0,1,1,0,12,
-117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,
-0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18,
-118,0,59,119,0,18,117,0,59,119,0,21,19,0,0,1,0,0,2,3,1,0,2,12,
-118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,
-0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117,
-0,59,122,0,22,19,18,118,0,59,119,0,18,117,0,59,119,0,22,19,0,0,1,0,
-0,2,4,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,
-120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,
-118,0,59,122,0,18,117,0,59,122,0,23,19,18,118,0,59,119,0,18,117,0,59,119,
-0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,12,117,0,0,
-0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,
-0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,18,118,0,59,
-119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1,0,2,6,118,0,0,
-1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,
-118,0,59,121,0,18,117,0,59,121,0,21,19,0,0,1,0,0,2,3,1,0,2,6,
-118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,
-0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,0,0,1,0,0,2,4,1,
-0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,
-0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0,
-2,5,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,
-0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,0,0,
-1,0,0,2,2,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,
-0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,
-19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0,
-2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,
-59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,
-18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,7,118,0,0,1,1,
-0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,
-59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,23,
-19,0,0,1,0,0,2,5,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,
-9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,
-121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,0,0,1,0,0,2,
-2,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,
-18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,
-59,122,0,18,117,0,59,122,0,21,19,18,118,0,59,119,0,18,117,0,59,119,0,21,
-19,0,0,1,0,0,2,3,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,
-9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,
-121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,18,118,0,59,119,0,
-18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,8,118,0,0,1,1,
-0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,
-59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,23,
-19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0,
-2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,
-59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,
-18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0,
-1,0,0,2,2,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,
-0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,
-110,0,16,10,49,0,57,21,19,0,0,1,0,0,2,3,1,0,2,13,118,0,0,1,
-1,0,13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,
-57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,0,0,1,0,
-0,2,4,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,18,
-109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,
-13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,
-18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,0,0,1,0,0,2,
-2,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,
-0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0,16,10,
-49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,0,
-0,1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,
-109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,
-18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,
-0,57,22,19,0,0,1,0,0,2,4,1,0,2,14,109,0,0,1,1,0,14,110,0,
-0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,
-2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,
-110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,
-24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,0,0,1,0,
-0,2,2,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,
-8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0,
-16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,
-19,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,21,19,0,0,1,0,0,
-2,3,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,
-48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16,
-10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,22,19,
-18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,22,19,0,0,1,0,0,2,
-4,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,18,109,0,
-18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,15,110,
-0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,
-0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,18,109,0,16,10,50,0,57,
-18,110,0,16,10,50,0,57,24,19,18,109,0,16,10,51,0,57,18,110,0,16,10,51,
-0,57,24,19,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,9,97,0,
-0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,
-19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,
-9,18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,0,0,
-1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,
-0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,0,0,1,0,0,
-2,5,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,
-0,18,97,0,24,18,118,0,59,121,0,18,97,0,24,19,0,0,1,0,0,2,2,1,
-0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,
-0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0,59,122,0,18,97,0,21,19,
-0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,
-18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,
-59,122,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,11,118,0,0,1,1,
-0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0,
-18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,0,0,1,0,0,2,5,1,
-0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,
-0,24,18,118,0,59,121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,
-0,0,1,0,0,2,2,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,
-18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0,
-59,122,0,18,97,0,21,19,18,118,0,59,119,0,18,97,0,21,19,0,0,1,0,0,
-2,3,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,
-0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97,
-0,22,19,18,118,0,59,119,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,
-12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,
-18,118,0,59,121,0,18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,18,118,
-0,59,119,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,
-1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59,121,
-0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,18,118,0,59,119,0,18,
-97,0,24,19,0,0,1,0,0,2,2,1,0,2,13,109,0,0,1,1,0,9,97,0,
-0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57,
-18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,9,97,
-0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0,
-57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,9,
-97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23,18,109,0,16,10,49,
-0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,
-9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,
-49,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,14,109,0,0,1,1,
-0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,
-10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0,57,18,97,0,21,19,0,0,
-1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,
-0,16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,
-109,0,16,10,50,0,57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,14,109,
-0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23,
-18,109,0,16,10,49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0,
-23,19,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,
-1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,
-0,24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,
-0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,
-18,97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0,
-57,18,97,0,21,19,18,109,0,16,10,51,0,57,18,97,0,21,19,0,0,1,0,0,
-2,3,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,
-48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16,
-10,50,0,57,18,97,0,22,19,18,109,0,16,10,51,0,57,18,97,0,22,19,0,0,
-1,0,0,2,4,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,
-0,16,8,48,0,57,18,97,0,23,18,109,0,16,10,49,0,57,18,97,0,23,19,18,
-109,0,16,10,50,0,57,18,97,0,23,19,18,109,0,16,10,51,0,57,18,97,0,23,
-19,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,
-9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0,
-24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,18,109,0,16,10,51,0,57,18,
-97,0,24,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,13,109,0,
-0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,0,2,4,1,0,
-2,11,118,0,0,1,1,0,14,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0,
-48,20,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,15,109,0,0,0,
-1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,9,2,29,1,1,0,9,
-97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2,18,97,0,0,
-0,8,18,99,0,18,98,0,21,0,0,1,0,9,2,30,1,1,0,9,97,0,0,1,
-1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,54,46,0,0,1,0,9,2,24,
-1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2,
-18,97,0,0,0,8,18,99,0,18,98,0,23,0,0,1,0,9,2,25,1,1,0,9,
-97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,2,18,97,0,0,
-0,8,18,99,0,18,98,0,24,0,0,1,0,5,2,29,1,1,0,5,97,0,0,1,
-1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,2,18,97,0,0,0,8,18,99,
-0,18,98,0,21,0,0,1,0,5,2,30,1,1,0,5,120,0,0,1,1,0,5,121,
-0,0,0,1,8,18,120,0,18,121,0,54,46,0,0,1,0,5,2,24,1,1,0,5,
-120,0,0,1,1,0,5,121,0,0,0,1,3,2,0,5,1,122,0,2,18,120,0,0,
-0,8,18,122,0,18,121,0,23,0,0,1,0,5,2,25,1,1,0,5,120,0,0,1,
-1,0,5,121,0,0,0,1,3,2,0,5,1,122,0,2,18,120,0,0,0,8,18,122,
-0,18,121,0,24,0,0,1,0,10,2,29,1,1,0,10,118,0,0,1,1,0,10,117,
-0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,46,
-0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,30,1,
-1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,
-0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,
-47,0,0,0,0,1,0,11,2,29,1,1,0,11,118,0,0,1,1,0,11,117,0,0,
-0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,46,0,18,
-118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59,122,
-0,46,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,11,117,0,
-0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,
-18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,
-122,0,47,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1,0,12,117,
-0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,46,
-0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,
-59,122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0,
-12,2,30,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,
-52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,
-0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59,
-119,0,18,117,0,59,119,0,47,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0,
-0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,
-18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,
-0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,
-105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,
-121,0,18,117,0,59,121,0,47,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0,
-0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,
-18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,
-0,59,122,0,18,117,0,59,122,0,46,0,0,0,0,1,0,7,2,30,1,1,0,7,
-118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,
-120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,
-18,118,0,59,122,0,18,117,0,59,122,0,47,0,0,0,0,1,0,8,2,29,1,1,
-0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,
-0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,
-46,0,18,118,0,59,122,0,18,117,0,59,122,0,46,0,18,118,0,59,119,0,18,117,
-0,59,119,0,46,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,1,1,0,
-8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,
-120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,
-18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59,119,0,47,0,0,0,
-0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,
-109,97,116,50,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,
-109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0,13,2,
-30,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,
-18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49,
-0,57,18,110,0,16,10,49,0,57,47,0,0,0,0,1,0,14,2,29,1,1,0,14,
-109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,
-48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0,
-16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46,
-0,0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,
-1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,
-47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16,
-10,50,0,57,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0,15,2,29,1,1,
-0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,
-16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,
-110,0,16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,
-57,46,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,46,0,0,0,0,
-1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,
-97,116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109,
-0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16,10,50,0,57,
-18,110,0,16,10,50,0,57,47,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,
-0,57,47,0,0,0,0,1,0,10,2,29,1,1,0,9,97,0,0,1,1,0,10,117,
-0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18,97,
-0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,29,1,1,0,10,118,0,0,
-1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,
-0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,10,2,30,1,1,
-0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,
-18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0,0,1,0,
-10,2,30,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,
-50,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,
-0,0,0,1,0,10,2,24,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1,
-8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,
-59,121,0,48,0,0,0,0,1,0,10,2,24,1,1,0,10,118,0,0,1,1,0,9,
-98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18,
-118,0,59,121,0,18,98,0,48,0,0,0,0,1,0,10,2,25,1,1,0,9,97,0,
-0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,
-120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,10,2,25,1,
-1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,
-0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,0,0,0,1,
-0,11,2,29,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,
-99,51,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46,
-0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,11,2,29,1,1,0,11,
-118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,
-0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,18,118,0,59,122,0,18,
-98,0,46,0,0,0,0,1,0,11,2,30,1,1,0,9,97,0,0,1,1,0,11,117,
-0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97,
-0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47,0,0,0,0,1,
-0,11,2,30,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,
-99,51,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,
-0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,11,2,24,1,1,0,9,
-97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,
-0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0,18,117,0,59,
-122,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,9,98,
-0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118,
-0,59,121,0,18,98,0,48,0,18,118,0,59,122,0,18,98,0,48,0,0,0,0,1,
-0,11,2,25,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,
-99,51,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,
-0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0,11,2,25,1,1,0,11,
-118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,
-0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,
-98,0,49,0,0,0,0,1,0,12,2,29,1,1,0,9,97,0,0,1,1,0,12,117,
-0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,
-0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,
-117,0,59,119,0,46,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1,
-0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,
-0,18,118,0,59,121,0,18,98,0,46,0,18,118,0,59,122,0,18,98,0,46,0,18,
-118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,12,2,30,1,1,0,9,97,0,
-0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,
-120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,
-47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,12,2,30,1,1,0,
-12,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,
-120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,
-18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,12,2,24,
-1,1,0,9,97,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,
-97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0,
-18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,
-12,2,24,1,1,0,12,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,
-52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,
-18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,
-0,1,0,12,2,25,1,1,0,9,97,0,0,1,1,0,12,117,0,0,0,1,8,58,
-118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,
-0,49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,
-0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1,1,0,9,98,0,0,0,
-1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,
-0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,
-98,0,49,0,0,0,0,1,0,13,2,29,1,1,0,9,97,0,0,1,1,0,13,110,
-0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,46,0,
-18,97,0,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0,13,2,29,1,1,0,
-13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,
-8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,0,0,
-0,1,0,13,2,30,1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1,8,58,
-109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0,
-16,10,49,0,57,47,0,0,0,0,1,0,13,2,30,1,1,0,13,109,0,0,1,1,
-0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98,
-0,47,0,18,109,0,16,10,49,0,57,18,98,0,47,0,0,0,0,1,0,13,2,24,
-1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,
-97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48,
-0,0,0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,
-1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,
-16,10,49,0,57,18,98,0,48,0,0,0,0,1,0,13,2,25,1,1,0,9,97,0,
-0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,
-8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,0,0,0,1,0,
-13,2,25,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,
-50,0,18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,
-98,0,49,0,0,0,0,1,0,14,2,29,1,1,0,9,97,0,0,1,1,0,14,110,
-0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,46,0,
-18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18,110,0,16,10,50,0,57,
-46,0,0,0,0,1,0,14,2,29,1,1,0,14,109,0,0,1,1,0,9,98,0,0,
-0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,
-0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98,0,46,0,
-0,0,0,1,0,14,2,30,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,
-8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,
-110,0,16,10,49,0,57,47,0,18,97,0,18,110,0,16,10,50,0,57,47,0,0,0,
-0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,
-109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49,
-0,57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,0,0,0,1,
-0,14,2,24,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,
-116,51,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10,
-49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,14,
-2,24,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,
-0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98,
-0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,0,0,0,1,0,14,2,25,
-1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,
-97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,
-0,18,97,0,18,110,0,16,10,50,0,57,49,0,0,0,0,1,0,14,2,25,1,1,
-0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,18,109,0,
-16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18,
-109,0,16,10,50,0,57,18,98,0,49,0,0,0,0,1,0,15,2,29,1,1,0,9,
-97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,
-0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,
-18,110,0,16,10,50,0,57,46,0,18,97,0,18,110,0,16,10,51,0,57,46,0,0,
-0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,
-58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10,
-49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98,0,46,0,18,109,0,
-16,10,51,0,57,18,98,0,46,0,0,0,0,1,0,15,2,30,1,1,0,9,97,0,
-0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,
-8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18,97,0,18,110,
-0,16,10,50,0,57,47,0,18,97,0,18,110,0,16,10,51,0,57,47,0,0,0,0,
-1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,
-97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49,0,
-57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,18,109,0,16,10,
-51,0,57,18,98,0,47,0,0,0,0,1,0,15,2,24,1,1,0,9,97,0,0,1,
-1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,
-0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48,0,18,97,0,18,110,0,16,
-10,50,0,57,48,0,18,97,0,18,110,0,16,10,51,0,57,48,0,0,0,0,1,0,
-15,2,24,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,
-52,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,
-98,0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,18,109,0,16,10,51,0,
-57,18,98,0,48,0,0,0,0,1,0,15,2,25,1,1,0,9,97,0,0,1,1,0,
-15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57,
-49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18,110,0,16,10,50,
-0,57,49,0,18,97,0,18,110,0,16,10,51,0,57,49,0,0,0,0,1,0,15,2,
-25,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0,
-18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,
-49,0,18,109,0,16,10,50,0,57,18,98,0,49,0,18,109,0,16,10,51,0,57,18,
-98,0,49,0,0,0,0,1,0,6,2,29,1,1,0,5,97,0,0,1,1,0,6,117,
-0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18,
-97,0,18,117,0,59,121,0,46,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0,
-0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,
-18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,6,2,30,
-1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,
-18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0,
-0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,
-105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,
-98,0,47,0,0,0,0,1,0,6,2,24,1,1,0,5,97,0,0,1,1,0,6,117,
-0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18,
-97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,6,2,24,1,1,0,6,118,0,
-0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,
-18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,0,0,0,1,0,6,2,25,
-1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,
-18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,
-0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,
-105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,
-98,0,49,0,0,0,0,1,0,7,2,29,1,1,0,5,97,0,0,1,1,0,7,117,
-0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,46,0,18,
-97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,
-1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,
-118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,
-0,46,0,18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,7,2,30,1,1,
-0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,
-0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,
-117,0,59,122,0,47,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1,
-0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,
-47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0,
-0,0,0,1,0,7,2,24,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,
-8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,
-0,59,121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,7,2,
-24,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51,
-0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,
-118,0,59,122,0,18,98,0,48,0,0,0,0,1,0,7,2,25,1,1,0,5,97,0,
-0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,
-59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122,
-0,49,0,0,0,0,1,0,7,2,25,1,1,0,7,118,0,0,1,1,0,5,98,0,
-0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18,118,
-0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1,
-0,8,2,29,1,1,0,5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,
-101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,
-46,0,18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0,
-0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1,
-8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,
-0,18,98,0,46,0,18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18,
-98,0,46,0,0,0,0,1,0,8,2,30,1,1,0,5,97,0,0,1,1,0,8,117,
-0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18,
-97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47,0,18,97,0,
-18,117,0,59,119,0,47,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,1,
-1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,
-0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,
-0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,8,2,24,1,1,0,5,
-97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,
-117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,18,97,0,18,117,0,
-59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,8,2,24,
-1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,
-18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118,
-0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1,
-0,8,2,25,1,1,0,5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,
-101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,
-49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0,
-0,0,0,1,0,8,2,25,1,1,0,8,118,0,0,1,1,0,5,98,0,0,0,1,
-8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,
-0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,
-98,0,49,0,0,0,0,1,0,10,2,24,1,1,0,13,109,0,0,1,1,0,10,118,
-0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,109,0,16,8,48,0,
-57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,
-0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,
-0,18,109,0,16,10,49,0,57,59,121,0,48,46,0,0,0,0,1,0,10,2,24,1,
-1,0,10,118,0,0,1,1,0,13,109,0,0,0,1,8,58,118,101,99,50,0,18,118,
-0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,
-0,16,8,48,0,57,59,121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,
-0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,
-46,0,0,0,0,1,0,11,2,24,1,1,0,14,109,0,0,1,1,0,11,118,0,0,
-0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,
-120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,
-0,59,122,0,18,109,0,16,10,50,0,57,59,120,0,48,46,0,18,118,0,59,120,0,
-18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,
-0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,121,0,
-48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0,
-59,121,0,18,109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,122,0,18,109,
-0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,11,2,24,1,1,0,11,
-118,0,0,1,1,0,14,109,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,
-0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8,
-48,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,8,48,0,57,59,122,
-0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118,
-0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,
-109,0,16,10,49,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,
-50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0,
-48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0,
-0,1,0,12,2,24,1,1,0,15,109,0,0,1,1,0,12,118,0,0,0,1,8,58,
-118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,
-118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59,122,0,
-18,109,0,16,10,50,0,57,59,120,0,48,46,18,118,0,59,119,0,18,109,0,16,10,
-51,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,
-121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,
-0,59,122,0,18,109,0,16,10,50,0,57,59,121,0,48,46,18,118,0,59,119,0,18,
-109,0,16,10,51,0,57,59,121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,
-48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,122,0,
-48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,
-59,119,0,18,109,0,16,10,51,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,
-109,0,16,8,48,0,57,59,119,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,
-57,59,119,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,119,0,48,
-46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,
-1,0,12,2,24,1,1,0,12,118,0,0,1,1,0,15,109,0,0,0,1,8,58,118,
-101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,
-0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0,18,
-109,0,16,8,48,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,8,48,
-0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,
-0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,
-59,122,0,18,109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,
-0,16,10,49,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,50,
-0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0,48,
-46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59,
-119,0,18,109,0,16,10,50,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,
-0,16,10,51,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,51,0,57,
-59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,51,0,57,59,122,0,48,46,
-18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,
-0,10,2,24,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,
-99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,
-117,0,59,121,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,
-0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,
-120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18,118,0,59,122,0,
-18,117,0,59,122,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1,
-1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,
-59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18,118,0,59,122,
-0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0,
-0,0,1,0,6,2,24,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,
-58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,
-59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118,
-0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,
-0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,18,
-118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,8,2,24,1,1,0,
-8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,
-59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,
-0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,
-59,119,0,48,0,0,0,0,1,0,10,2,25,1,1,0,10,118,0,0,1,1,0,10,
-117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,
-49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,11,2,25,
-1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,
-118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,
-0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,12,2,
-25,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,
-18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,
-121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0,
-18,117,0,59,119,0,49,0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1,
-1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,
-0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,
-0,7,2,25,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,
-101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,
-18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,
-0,1,0,8,2,25,1,1,0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,
-105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,
-121,0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,
-18,118,0,59,119,0,18,117,0,59,119,0,49,0,0,0,0,1,0,13,2,25,1,1,
-0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,
-16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,
-110,0,16,10,49,0,57,49,0,0,0,0,1,0,14,2,25,1,1,0,14,109,0,0,
-1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,
-18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,
-0,57,49,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,49,0,0,0,
-0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,
-109,97,116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,
-109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,18,109,0,16,10,50,0,
-57,18,110,0,16,10,50,0,57,49,0,18,109,0,16,10,51,0,57,18,110,0,16,10,
-51,0,57,49,0,0,0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,13,
-110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,18,110,0,16,8,48,0,57,48,
-0,18,109,0,18,110,0,16,10,49,0,57,48,0,0,0,0,1,0,14,2,24,1,1,
-0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,
-18,110,0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,18,
-109,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,15,2,24,1,1,0,15,
-109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,18,110,
-0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,18,109,0,
-18,110,0,16,10,50,0,57,48,0,18,109,0,18,110,0,16,10,51,0,57,48,0,0,
-0,0,1,0,9,2,30,1,1,0,9,97,0,0,0,1,3,2,0,9,1,99,0,0,
-0,4,102,108,111,97,116,95,110,101,103,97,116,101,0,18,99,0,0,18,97,0,0,0,
-8,18,99,0,0,0,1,0,5,2,30,1,1,0,5,97,0,0,0,1,8,58,105,110,
-116,0,58,102,108,111,97,116,0,18,97,0,0,0,54,0,0,0,0,1,0,10,2,30,
-1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,54,0,
-18,118,0,59,121,0,54,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,0,
-1,8,58,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,
-18,118,0,59,122,0,54,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,0,
-1,8,58,118,101,99,52,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,
-18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0,1,0,6,2,30,
-1,1,0,6,118,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,54,
-0,18,118,0,59,121,0,54,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,
-0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,
-54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,
-0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,54,0,18,118,0,59,121,
-0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0,1,0,
-13,2,30,1,1,0,13,109,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,
-48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,0,0,0,1,0,14,2,30,1,
-1,0,14,109,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,54,
-0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0,0,0,0,
-1,0,15,2,30,1,1,0,15,109,0,0,0,1,8,58,109,97,116,52,0,18,109,0,
-16,8,48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,
-57,54,0,18,109,0,16,10,51,0,57,54,0,0,0,0,1,0,0,2,28,1,0,2,
-9,97,0,0,0,1,9,18,97,0,17,49,0,48,0,0,22,0,0,1,0,0,2,28,
-1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,22,0,0,1,0,0,2,
-28,1,0,2,10,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,
-52,19,0,0,1,0,0,2,28,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120,
-0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,
-28,1,0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,
-52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2,
-28,1,0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,
-52,19,0,0,1,0,0,2,28,1,0,2,7,118,0,0,0,1,9,18,118,0,59,120,
-0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,
-28,1,0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,
-52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2,
-28,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,
-10,49,0,57,52,19,0,0,1,0,0,2,28,1,0,2,14,109,0,0,0,1,9,18,
-109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50,
-0,57,52,19,0,0,1,0,0,2,28,1,0,2,15,109,0,0,0,1,9,18,109,0,
-16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50,0,57,
-52,19,18,109,0,16,10,51,0,57,52,19,0,0,1,0,0,2,27,1,0,2,9,97,
-0,0,0,1,9,18,97,0,17,49,0,48,0,0,21,0,0,1,0,0,2,27,1,0,
-2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,21,0,0,1,0,0,2,27,1,
-0,2,10,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,
-0,0,1,0,0,2,27,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120,0,51,
-18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1,
-0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,
-18,118,0,59,122,0,51,19,18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1,
-0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,
-0,0,1,0,0,2,27,1,0,2,7,118,0,0,0,1,9,18,118,0,59,120,0,51,
-18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1,
-0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,
-18,118,0,59,122,0,51,19,18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1,
-0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16,10,49,
-0,57,51,19,0,0,1,0,0,2,27,1,0,2,14,109,0,0,0,1,9,18,109,0,
-16,8,48,0,57,51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57,
-51,19,0,0,1,0,0,2,27,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8,
-48,0,57,51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57,51,19,
-18,109,0,16,10,51,0,57,51,19,0,0,1,0,9,2,28,1,0,2,9,97,0,0,
-1,1,0,5,0,0,0,1,3,2,1,9,1,99,0,2,18,97,0,0,0,9,18,97,
-0,52,0,8,18,99,0,0,0,1,0,5,2,28,1,0,2,5,97,0,0,1,1,0,
-5,0,0,0,1,3,2,1,5,1,99,0,2,18,97,0,0,0,9,18,97,0,52,0,
-8,18,99,0,0,0,1,0,10,2,28,1,0,2,10,118,0,0,1,1,0,5,0,0,
-0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,
-0,0,0,0,1,0,11,2,28,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,
-8,58,118,101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,
-118,0,59,122,0,61,0,0,0,0,1,0,12,2,28,1,0,2,12,118,0,0,1,1,
-0,5,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0,
-59,121,0,61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,
-1,0,6,2,28,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,
-101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1,
-0,7,2,28,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,
-99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122,
-0,61,0,0,0,0,1,0,8,2,28,1,0,2,8,118,0,0,1,1,0,5,0,0,
-0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,
-61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,13,
-2,28,1,0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0,
-18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,0,0,0,1,
-0,14,2,28,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,
-51,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,18,109,
-0,16,10,50,0,57,61,0,0,0,0,1,0,15,2,28,1,0,2,15,109,0,0,1,
-1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,61,0,
-18,109,0,16,10,49,0,57,61,0,18,109,0,16,10,50,0,57,61,0,18,109,0,16,
-10,51,0,57,61,0,0,0,0,1,0,9,2,27,1,0,2,9,97,0,0,1,1,0,
-5,0,0,0,1,3,2,1,9,1,99,0,2,18,97,0,0,0,9,18,97,0,51,0,
-8,18,99,0,0,0,1,0,5,2,27,1,0,2,5,97,0,0,1,1,0,5,0,0,
-0,1,3,2,1,5,1,99,0,2,18,97,0,0,0,9,18,97,0,51,0,8,18,99,
-0,0,0,1,0,10,2,27,1,0,2,10,118,0,0,1,1,0,5,0,0,0,1,8,
-58,118,101,99,50,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0,
-0,1,0,11,2,27,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118,
-101,99,51,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,
-122,0,60,0,0,0,0,1,0,12,2,27,1,0,2,12,118,0,0,1,1,0,5,0,
-0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,
-60,0,18,118,0,59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,6,
-2,27,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,50,
-0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0,0,1,0,7,2,
-27,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0,
-18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0,
-0,0,0,1,0,8,2,27,1,0,2,8,118,0,0,1,1,0,5,0,0,0,1,8,
-58,105,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,
-118,0,59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,13,2,27,1,
-0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0,18,109,0,
-16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,0,0,0,1,0,14,2,
-27,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18,
-109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109,0,16,10,
-50,0,57,60,0,0,0,0,1,0,15,2,27,1,0,2,15,109,0,0,1,1,0,5,
-0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,60,0,18,109,0,
-16,10,49,0,57,60,0,18,109,0,16,10,50,0,57,60,0,18,109,0,16,10,51,0,
-57,60,0,0,0,0,1,0,1,2,18,1,1,0,9,97,0,0,1,1,0,9,98,0,
-0,0,1,3,2,0,1,1,99,0,0,0,4,102,108,111,97,116,95,108,101,115,115,0,
-18,99,0,0,18,97,0,0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,18,
-1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,58,102,108,111,97,116,0,
-18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,40,0,0,1,0,1,2,
-19,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,98,0,18,97,0,
-40,0,0,1,0,1,2,19,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,
-8,18,98,0,18,97,0,40,0,0,1,0,1,2,21,1,1,0,9,97,0,0,1,1,
-0,9,98,0,0,0,1,8,18,97,0,18,98,0,41,18,97,0,18,98,0,38,32,0,
-0,1,0,1,2,21,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,
-97,0,18,98,0,41,18,97,0,18,98,0,38,32,0,0,1,0,1,2,20,1,1,0,
-9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,
-18,98,0,38,32,0,0,1,0,1,2,20,1,1,0,5,97,0,0,1,1,0,5,98,
-0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0,38,32,0,0,1,0,
-1,2,16,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,1,1,
-99,0,0,0,4,102,108,111,97,116,95,101,113,117,97,108,0,18,99,0,0,18,97,0,
-0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,16,1,1,0,5,97,0,0,
-1,1,0,5,98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58,102,
-108,111,97,116,0,18,98,0,0,0,38,0,0,1,0,1,2,16,1,1,0,1,97,0,
-0,1,1,0,1,98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58,
-102,108,111,97,116,0,18,98,0,0,0,38,0,0,1,0,1,2,16,1,1,0,10,118,
-0,0,1,1,0,10,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,
-38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1,0,1,2,16,1,1,
-0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,
-59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,
-18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0,12,118,0,0,1,1,
-0,12,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,38,18,118,0,
-59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18,117,0,59,122,0,38,
-34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1,0,1,2,16,1,1,
-0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,
-59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1,0,1,2,
-16,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,18,118,0,59,120,0,
-18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,
-59,122,0,18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0,8,118,0,
-0,1,1,0,8,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,38,
-18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18,117,0,59,
-122,0,38,34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1,0,1,2,
-16,1,1,0,2,118,0,0,1,1,0,2,117,0,0,0,1,8,18,118,0,59,120,0,
-18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,0,0,1,
-0,1,2,16,1,1,0,3,118,0,0,1,1,0,3,117,0,0,0,1,8,18,118,0,
-59,120,0,18,117,0,59,120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,
-18,118,0,59,122,0,18,117,0,59,122,0,38,34,0,0,1,0,1,2,16,1,1,0,
-4,118,0,0,1,1,0,4,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,
-120,0,38,18,118,0,59,121,0,18,117,0,59,121,0,38,34,18,118,0,59,122,0,18,
-117,0,59,122,0,38,34,18,118,0,59,119,0,18,117,0,59,119,0,38,34,0,0,1,
-0,1,2,16,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,18,109,0,
-16,8,48,0,57,18,110,0,16,8,48,0,57,38,18,109,0,16,10,49,0,57,18,110,
-0,16,10,49,0,57,38,34,0,0,1,0,1,2,16,1,1,0,14,109,0,0,1,1,
-0,14,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,
-38,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,38,34,18,109,0,16,10,
-50,0,57,18,110,0,16,10,50,0,57,38,34,0,0,1,0,1,2,16,1,1,0,15,
-109,0,0,1,1,0,15,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,
-16,8,48,0,57,38,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,38,34,
-18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,38,34,18,109,0,16,10,51,
-0,57,18,110,0,16,10,51,0,57,38,34,0,0,1,0,1,2,17,1,1,0,9,97,
-0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,38,56,0,0,1,0,
-1,2,17,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,
-98,0,38,56,0,0,1,0,1,2,17,1,1,0,1,97,0,0,1,1,0,1,98,0,
-0,0,1,8,18,97,0,18,98,0,38,56,0,0,1,0,1,2,17,1,1,0,10,118,
-0,0,1,1,0,10,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,
-39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1,0,1,2,17,1,1,
-0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,
-59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,
-18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0,12,118,0,0,1,1,
-0,12,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,39,18,118,0,
-59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18,117,0,59,122,0,39,
-32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1,0,1,2,17,1,1,
-0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,
-59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1,0,1,2,
-17,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,18,118,0,59,120,0,
-18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,
-59,122,0,18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0,8,118,0,
-0,1,1,0,8,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,120,0,39,
-18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18,117,0,59,
-122,0,39,32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1,0,1,2,
-17,1,1,0,2,118,0,0,1,1,0,2,117,0,0,0,1,8,18,118,0,59,120,0,
-18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,0,0,1,
-0,1,2,17,1,1,0,3,118,0,0,1,1,0,3,117,0,0,0,1,8,18,118,0,
-59,120,0,18,117,0,59,120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,
-18,118,0,59,122,0,18,117,0,59,122,0,39,32,0,0,1,0,1,2,17,1,1,0,
-4,118,0,0,1,1,0,4,117,0,0,0,1,8,18,118,0,59,120,0,18,117,0,59,
-120,0,39,18,118,0,59,121,0,18,117,0,59,121,0,39,32,18,118,0,59,122,0,18,
-117,0,59,122,0,39,32,18,118,0,59,119,0,18,117,0,59,119,0,39,32,0,0,1,
-0,1,2,17,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,18,109,0,
-16,8,48,0,57,18,110,0,16,8,48,0,57,39,18,109,0,16,10,49,0,57,18,110,
-0,16,10,49,0,57,39,32,0,0,1,0,1,2,17,1,1,0,14,109,0,0,1,1,
-0,14,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,
-39,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,39,32,18,109,0,16,10,
-50,0,57,18,110,0,16,10,50,0,57,39,32,0,0,1,0,1,2,17,1,1,0,15,
-109,0,0,1,1,0,15,110,0,0,0,1,8,18,109,0,16,8,48,0,57,18,110,0,
-16,8,48,0,57,39,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,39,32,
-18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,39,32,18,109,0,16,10,51,
-0,57,18,110,0,16,10,51,0,57,39,32,0,0,1,0,1,2,12,1,1,0,1,97,
-0,0,1,1,0,1,98,0,0,0,1,8,18,97,0,18,98,0,39,0,0,1,0,1,
-2,32,1,1,0,1,97,0,0,0,1,8,18,97,0,15,2,48,0,38,0,0,0
\ No newline at end of file
+2,1,0,5,1,1,1,0,9,95,102,0,0,0,1,3,2,0,5,1,95,105,0,0,0,4,102,108,111,97,116,95,116,111,95,105,110,
+116,0,18,95,105,0,0,18,95,102,0,0,0,8,18,95,105,0,0,0,1,0,1,1,1,1,0,5,95,105,0,0,0,1,8,18,95,105,0,
+16,8,48,0,39,0,0,1,0,1,1,1,1,0,9,95,102,0,0,0,1,8,18,95,102,0,17,48,0,48,0,0,39,0,0,1,0,5,1,1,1,0,1,
+95,98,0,0,0,1,8,18,95,98,0,16,10,49,0,16,8,48,0,31,0,0,1,0,9,1,1,1,0,1,95,98,0,0,0,1,8,18,95,98,0,
+17,49,0,48,0,0,17,48,0,48,0,0,31,0,0,1,0,9,1,1,1,0,5,95,105,0,0,0,1,3,2,0,9,1,95,102,0,0,0,4,105,
+110,116,95,116,111,95,102,108,111,97,116,0,18,95,102,0,0,18,95,105,0,0,0,8,18,95,102,0,0,0,1,0,1,1,
+1,1,0,1,95,98,0,0,0,1,8,18,95,98,0,0,0,1,0,5,1,1,1,0,5,95,105,0,0,0,1,8,18,95,105,0,0,0,1,0,9,1,1,1,
+0,9,95,102,0,0,0,1,8,18,95,102,0,0,0,1,0,10,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,50,0,18,95,102,
+0,0,18,95,102,0,0,0,0,0,1,0,10,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,50,0,18,95,105,0,0,18,95,
+105,0,0,0,0,0,1,0,10,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,50,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,
+0,11,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,51,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,
+1,0,11,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,
+0,1,0,11,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,51,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,
+1,0,12,1,1,1,0,9,95,102,0,0,0,1,8,58,118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,
+95,102,0,0,0,0,0,1,0,12,1,1,1,0,5,95,105,0,0,0,1,8,58,118,101,99,52,0,18,95,105,0,0,18,95,105,0,0,
+18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,12,1,1,1,0,1,95,98,0,0,0,1,8,58,118,101,99,52,0,18,95,98,0,0,
+18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,6,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,50,
+0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,6,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,50,0,18,95,
+102,0,0,18,95,102,0,0,0,0,0,1,0,6,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,50,0,18,95,98,0,0,18,
+95,98,0,0,0,0,0,1,0,7,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,51,0,18,95,105,0,0,18,95,105,0,0,
+18,95,105,0,0,0,0,0,1,0,7,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,51,0,18,95,102,0,0,18,95,102,
+0,0,18,95,102,0,0,0,0,0,1,0,7,1,1,1,0,1,95,98,0,0,0,1,8,58,105,118,101,99,51,0,18,95,98,0,0,18,95,
+98,0,0,18,95,98,0,0,0,0,0,1,0,8,1,1,1,0,5,95,105,0,0,0,1,8,58,105,118,101,99,52,0,18,95,105,0,0,18,
+95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,8,1,1,1,0,9,95,102,0,0,0,1,8,58,105,118,101,99,52,
+0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,8,1,1,1,0,1,95,98,0,0,0,1,8,58,
+105,118,101,99,52,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,1,95,98,
+0,0,0,1,8,58,98,118,101,99,50,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,2,1,1,1,0,9,95,102,0,0,0,1,8,58,
+98,118,101,99,50,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,2,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101,
+99,50,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,3,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,51,0,18,
+95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,3,1,1,1,0,9,95,102,0,0,0,1,8,58,98,118,101,99,51,0,18,
+95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,3,1,1,1,0,5,95,105,0,0,0,1,8,58,98,118,101,99,51,0,
+18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,0,4,1,1,1,0,1,95,98,0,0,0,1,8,58,98,118,101,99,52,
+0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,18,95,98,0,0,0,0,0,1,0,4,1,1,1,0,9,95,102,0,0,0,1,8,58,98,
+118,101,99,52,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,18,95,102,0,0,0,0,0,1,0,4,1,1,1,0,5,95,
+105,0,0,0,1,8,58,98,118,101,99,52,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,18,95,105,0,0,0,0,0,1,
+0,13,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,50,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,
+102,0,0,0,0,0,1,0,13,1,1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,50,0,18,95,105,0,0,17,0,48,0,0,0,17,0,
+48,0,0,0,18,95,105,0,0,0,0,0,1,0,13,1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,50,0,18,95,98,0,0,17,0,
+48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,14,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,51,0,18,
+95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,
+48,0,0,0,18,95,102,0,0,0,0,0,1,0,14,1,1,1,0,5,95,105,0,0,0,1,8,58,109,97,116,51,0,18,95,105,0,0,17,
+0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,
+95,105,0,0,0,0,0,1,0,14,1,1,1,0,1,95,98,0,0,0,1,8,58,109,97,116,51,0,18,95,98,0,0,17,0,48,0,0,0,17,
+0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,
+1,0,15,1,1,1,0,9,95,102,0,0,0,1,8,58,109,97,116,52,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,
+48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,
+102,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,102,0,0,0,0,0,1,0,15,1,1,1,0,
+5,95,105,0,0,0,1,8,58,109,97,116,52,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,
+48,0,0,0,18,95,105,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,17,0,
+48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,105,0,0,0,0,0,1,0,15,1,1,1,0,1,95,98,0,0,0,
+1,8,58,109,97,116,52,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,
+98,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,17,0,48,0,0,0,17,0,48,0,
+0,0,17,0,48,0,0,0,17,0,48,0,0,0,18,95,98,0,0,0,0,0,1,0,0,2,2,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,
+102,108,111,97,116,95,97,100,100,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,9,2,30,1,1,0,9,97,0,0,0,1,
+3,2,0,9,1,99,0,0,0,4,102,108,111,97,116,95,110,101,103,97,116,101,0,18,99,0,0,18,97,0,0,0,8,18,99,0,
+0,0,1,0,0,2,3,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0,1,0,0,2,4,1,0,2,9,97,0,
+0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,109,117,108,116,105,112,108,121,0,18,97,0,0,18,97,0,0,
+18,98,0,0,0,0,1,0,0,2,5,1,0,2,9,97,0,0,1,1,0,9,98,0,0,0,1,4,102,108,111,97,116,95,100,105,118,105,
+100,101,0,18,97,0,0,18,97,0,0,18,98,0,0,0,0,1,0,9,2,29,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,
+99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,21,0,0,1,0,0,2,2,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0,
+1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0,
+0,46,0,0,20,0,0,1,0,5,2,30,1,1,0,5,97,0,0,0,1,8,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0,
+0,54,0,0,0,0,1,0,0,2,3,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0,1,9,18,97,0,18,98,0,54,21,0,0,1,0,9,2,24,1,1,
+0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,23,0,0,1,
+0,0,2,4,1,0,2,5,97,0,0,1,1,0,5,98,0,0,0,1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97,
+0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,48,0,0,20,0,0,1,0,9,2,25,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,
+1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,99,0,18,98,0,24,0,0,1,0,0,2,5,1,0,2,5,97,0,0,1,1,0,
+5,98,0,0,0,1,9,18,97,0,58,105,110,116,0,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0,
+18,98,0,0,0,49,0,0,20,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18,
+117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,10,
+117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,0,0,
+1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,
+59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0,0,1,1,0,10,117,0,0,0,1,9,18,118,0,59,
+120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,0,0,1,0,0,2,2,1,0,2,11,118,0,0,
+1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,
+21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,
+9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,
+0,18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,
+18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,
+23,19,0,0,1,0,0,2,5,1,0,2,11,118,0,0,1,1,0,11,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,
+18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59,122,0,24,19,0,0,1,0,0,2,2,1,
+0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,
+117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18,118,0,59,119,0,18,117,0,59,119,0,
+21,19,0,0,1,0,0,2,3,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,
+18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,18,118,0,59,119,
+0,18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,9,18,118,0,59,120,0,
+18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,18,117,0,59,122,0,
+23,19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,12,117,0,0,0,1,
+9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,
+0,18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1,0,2,6,118,0,0,1,
+1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,118,0,59,121,0,18,117,0,59,121,0,21,
+19,0,0,1,0,0,2,3,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,
+118,0,59,121,0,18,117,0,59,121,0,22,19,0,0,1,0,0,2,4,1,0,2,6,118,0,0,1,1,0,6,117,0,0,0,1,9,18,118,0,
+59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,0,0,1,0,0,2,5,1,0,2,6,118,0,
+0,1,1,0,6,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,
+24,19,0,0,1,0,0,2,2,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,21,18,
+118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,0,0,1,0,0,2,3,1,0,
+2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,
+59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,22,19,0,0,1,0,0,2,4,1,0,2,7,118,0,0,1,1,0,7,117,
+0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,
+59,122,0,18,117,0,59,122,0,23,19,0,0,1,0,0,2,5,1,0,2,7,118,0,0,1,1,0,7,117,0,0,0,1,9,18,118,0,59,
+120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,18,118,0,59,122,0,18,117,0,59,
+122,0,24,19,0,0,1,0,0,2,2,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,
+21,18,118,0,59,121,0,18,117,0,59,121,0,21,19,18,118,0,59,122,0,18,117,0,59,122,0,21,19,18,118,0,59,
+119,0,18,117,0,59,119,0,21,19,0,0,1,0,0,2,3,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,18,118,0,59,120,0,
+18,117,0,59,120,0,22,18,118,0,59,121,0,18,117,0,59,121,0,22,19,18,118,0,59,122,0,18,117,0,59,122,0,
+22,19,18,118,0,59,119,0,18,117,0,59,119,0,22,19,0,0,1,0,0,2,4,1,0,2,8,118,0,0,1,1,0,8,117,0,0,0,1,9,
+18,118,0,59,120,0,18,117,0,59,120,0,23,18,118,0,59,121,0,18,117,0,59,121,0,23,19,18,118,0,59,122,0,
+18,117,0,59,122,0,23,19,18,118,0,59,119,0,18,117,0,59,119,0,23,19,0,0,1,0,0,2,5,1,0,2,8,118,0,0,1,1,
+0,8,117,0,0,0,1,9,18,118,0,59,120,0,18,117,0,59,120,0,24,18,118,0,59,121,0,18,117,0,59,121,0,24,19,
+18,118,0,59,122,0,18,117,0,59,122,0,24,19,18,118,0,59,119,0,18,117,0,59,119,0,24,19,0,0,1,0,0,2,2,1,
+0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,
+49,0,57,18,110,0,16,10,49,0,57,21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,
+16,8,48,0,57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,0,0,1,0,
+10,2,24,1,1,0,13,109,0,0,1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,109,0,16,8,
+48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18,
+109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,0,0,0,0,1,0,
+13,2,24,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,18,110,0,16,8,48,0,57,
+48,0,18,109,0,18,110,0,16,10,49,0,57,48,0,0,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,
+18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,13,110,0,0,0,1,9,18,109,0,16,
+8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,24,19,0,0,1,0,0,2,
+2,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,
+16,10,49,0,57,18,110,0,16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,0,0,
+1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,22,18,
+109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,22,
+19,0,0,1,0,11,2,24,1,1,0,14,109,0,0,1,1,0,11,118,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,
+109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59,
+122,0,18,109,0,16,10,50,0,57,59,120,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,121,0,48,
+18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,
+121,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10,
+49,0,57,59,122,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,14,2,24,
+1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,18,110,0,16,8,48,0,57,48,0,18,
+109,0,18,110,0,16,10,49,0,57,48,0,18,109,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,0,2,4,1,0,2,14,109,
+0,0,1,1,0,14,110,0,0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,14,
+110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,110,0,16,10,
+49,0,57,24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,0,0,1,0,0,2,2,1,0,2,15,109,0,0,1,
+1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,21,18,109,0,16,10,49,0,57,18,110,0,
+16,10,49,0,57,21,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,21,19,18,109,0,16,10,51,0,57,18,
+110,0,16,10,51,0,57,21,19,0,0,1,0,0,2,3,1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,
+57,18,110,0,16,8,48,0,57,22,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,22,19,18,109,0,16,10,50,0,
+57,18,110,0,16,10,50,0,57,22,19,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,22,19,0,0,1,0,12,2,24,
+1,1,0,15,109,0,0,1,1,0,12,118,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,
+59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,120,0,48,46,18,118,0,59,122,0,18,109,0,16,
+10,50,0,57,59,120,0,48,46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,120,0,48,46,0,18,118,0,59,120,
+0,18,109,0,16,8,48,0,57,59,121,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,
+0,59,122,0,18,109,0,16,10,50,0,57,59,121,0,48,46,18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,121,0,
+48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,122,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,
+57,59,122,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,
+0,16,10,51,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,119,0,48,18,118,0,59,
+121,0,18,109,0,16,10,49,0,57,59,119,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,119,0,48,46,
+18,118,0,59,119,0,18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,0,15,2,24,1,1,0,15,109,0,0,1,1,0,
+15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,18,110,0,16,8,48,0,57,48,0,18,109,0,18,110,0,16,10,49,
+0,57,48,0,18,109,0,18,110,0,16,10,50,0,57,48,0,18,109,0,18,110,0,16,10,51,0,57,48,0,0,0,0,1,0,0,2,4,
+1,0,2,15,109,0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,18,109,0,18,110,0,48,20,0,0,1,0,0,2,5,1,0,2,15,109,
+0,0,1,1,0,15,110,0,0,0,1,9,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,24,18,109,0,16,10,49,0,57,18,
+110,0,16,10,49,0,57,24,19,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,24,19,18,109,0,16,10,51,0,
+57,18,110,0,16,10,51,0,57,24,19,0,0,1,0,0,2,2,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,
+0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,10,118,0,0,1,1,0,9,97,0,0,0,1,9,18,
+118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,9,97,
+0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,10,118,0,
+0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59,121,0,18,97,0,24,19,0,0,1,0,0,2,2,1,
+0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18,
+118,0,59,122,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,
+18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,11,
+118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,23,18,118,0,59,121,0,18,97,0,23,19,18,118,0,
+59,122,0,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,11,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,
+0,24,18,118,0,59,121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,12,118,0,0,
+1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,21,18,118,0,59,121,0,18,97,0,21,19,18,118,0,59,122,0,
+18,97,0,21,19,18,118,0,59,119,0,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,
+18,118,0,59,120,0,18,97,0,22,18,118,0,59,121,0,18,97,0,22,19,18,118,0,59,122,0,18,97,0,22,19,18,118,
+0,59,119,0,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,
+97,0,23,18,118,0,59,121,0,18,97,0,23,19,18,118,0,59,122,0,18,97,0,23,19,18,118,0,59,119,0,18,97,0,
+23,19,0,0,1,0,0,2,5,1,0,2,12,118,0,0,1,1,0,9,97,0,0,0,1,9,18,118,0,59,120,0,18,97,0,24,18,118,0,59,
+121,0,18,97,0,24,19,18,118,0,59,122,0,18,97,0,24,19,18,118,0,59,119,0,18,97,0,24,19,0,0,1,0,0,2,2,1,
+0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57,18,97,0,
+21,19,0,0,1,0,0,2,3,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,22,18,109,0,
+16,10,49,0,57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,
+57,18,97,0,23,18,109,0,16,10,49,0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,13,109,0,0,1,1,0,9,97,0,0,0,
+1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,14,
+109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19,
+18,109,0,16,10,50,0,57,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,
+16,8,48,0,57,18,97,0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16,10,50,0,57,18,97,0,22,19,0,
+0,1,0,0,2,4,1,0,2,14,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,23,18,109,0,16,10,
+49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,14,109,0,0,1,1,0,9,
+97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24,18,109,0,16,10,49,0,57,18,97,0,24,19,18,109,0,16,10,
+50,0,57,18,97,0,24,19,0,0,1,0,0,2,2,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,
+97,0,21,18,109,0,16,10,49,0,57,18,97,0,21,19,18,109,0,16,10,50,0,57,18,97,0,21,19,18,109,0,16,10,51,
+0,57,18,97,0,21,19,0,0,1,0,0,2,3,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,
+0,22,18,109,0,16,10,49,0,57,18,97,0,22,19,18,109,0,16,10,50,0,57,18,97,0,22,19,18,109,0,16,10,51,0,
+57,18,97,0,22,19,0,0,1,0,0,2,4,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,
+23,18,109,0,16,10,49,0,57,18,97,0,23,19,18,109,0,16,10,50,0,57,18,97,0,23,19,18,109,0,16,10,51,0,57,
+18,97,0,23,19,0,0,1,0,0,2,5,1,0,2,15,109,0,0,1,1,0,9,97,0,0,0,1,9,18,109,0,16,8,48,0,57,18,97,0,24,
+18,109,0,16,10,49,0,57,18,97,0,24,19,18,109,0,16,10,50,0,57,18,97,0,24,19,18,109,0,16,10,51,0,57,18,
+97,0,24,19,0,0,1,0,10,2,24,1,1,0,10,118,0,0,1,1,0,13,109,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,
+120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,0,18,
+118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,
+48,46,0,0,0,0,1,0,0,2,4,1,0,2,10,118,0,0,1,1,0,13,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0,
+0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,14,109,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,109,0,
+16,8,48,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0,
+18,109,0,16,8,48,0,57,59,122,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,49,0,57,59,120,0,48,18,118,
+0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,49,0,57,59,122,0,
+48,46,0,18,118,0,59,120,0,18,109,0,16,10,50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,
+57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,0,0,0,0,1,0,0,2,4,1,0,2,
+11,118,0,0,1,1,0,14,109,0,0,0,1,9,18,118,0,18,118,0,18,109,0,48,20,0,0,1,0,12,2,24,1,1,0,12,118,0,0,
+1,1,0,15,109,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,109,0,16,8,48,0,57,59,120,0,48,18,
+118,0,59,121,0,18,109,0,16,8,48,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,8,48,0,57,59,122,
+0,48,46,18,118,0,59,119,0,18,109,0,16,8,48,0,57,59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,
+49,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,49,0,57,59,121,0,48,46,18,118,0,59,122,0,18,
+109,0,16,10,49,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,10,49,0,57,59,119,0,48,46,0,18,118,
+0,59,120,0,18,109,0,16,10,50,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,10,50,0,57,59,121,0,48,
+46,18,118,0,59,122,0,18,109,0,16,10,50,0,57,59,122,0,48,46,18,118,0,59,119,0,18,109,0,16,10,50,0,57,
+59,119,0,48,46,0,18,118,0,59,120,0,18,109,0,16,10,51,0,57,59,120,0,48,18,118,0,59,121,0,18,109,0,16,
+10,51,0,57,59,121,0,48,46,18,118,0,59,122,0,18,109,0,16,10,51,0,57,59,122,0,48,46,18,118,0,59,119,0,
+18,109,0,16,10,51,0,57,59,119,0,48,46,0,0,0,0,1,0,0,2,4,1,0,2,12,118,0,0,1,1,0,15,109,0,0,0,1,9,18,
+118,0,18,118,0,18,109,0,48,20,0,0,1,0,9,2,30,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,54,
+46,0,0,1,0,5,2,29,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,8,18,
+99,0,18,98,0,21,0,0,1,0,5,2,30,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,54,46,0,0,1,0,5,
+2,24,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,8,18,99,0,18,97,0,20,18,98,0,23,0,0,1,0,5,
+2,25,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,3,2,0,5,1,99,0,0,0,8,18,99,0,18,97,0,20,18,98,0,24,0,0,1,0,
+10,2,29,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,
+120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,1,1,0,10,117,
+0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,
+121,0,47,0,0,0,0,1,0,11,2,29,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,
+120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59,
+122,0,46,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,
+120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,
+122,0,47,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,
+120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,117,0,59,
+122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,1,1,0,12,117,
+0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,
+121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59,119,0,47,0,0,0,0,
+1,0,6,2,29,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,
+59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,0,0,0,1,0,6,2,30,1,1,0,6,118,0,0,1,1,0,6,117,
+0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,
+0,59,121,0,47,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,
+118,0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,0,18,
+117,0,59,122,0,46,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,
+18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,
+18,117,0,59,122,0,47,0,0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,
+0,18,118,0,59,120,0,18,117,0,59,120,0,46,0,18,118,0,59,121,0,18,117,0,59,121,0,46,0,18,118,0,59,122,
+0,18,117,0,59,122,0,46,0,18,118,0,59,119,0,18,117,0,59,119,0,46,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,
+1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,47,0,18,118,0,59,
+121,0,18,117,0,59,121,0,47,0,18,118,0,59,122,0,18,117,0,59,122,0,47,0,18,118,0,59,119,0,18,117,0,59,
+119,0,47,0,0,0,0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,
+8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,0,0,0,1,0,
+13,2,30,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,110,0,
+16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,0,0,0,1,0,14,2,29,1,1,0,14,109,
+0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,
+109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46,0,
+0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,
+18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,16,10,50,0,
+57,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,
+116,52,0,18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,46,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,
+0,57,46,0,18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,46,0,18,109,0,16,10,51,0,57,18,110,0,16,10,
+51,0,57,46,0,0,0,0,1,0,15,2,30,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,109,0,
+16,8,48,0,57,18,110,0,16,8,48,0,57,47,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,47,0,18,109,0,
+16,10,50,0,57,18,110,0,16,10,50,0,57,47,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,47,0,0,0,0,
+1,0,10,2,29,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,
+18,97,0,18,117,0,59,121,0,46,0,0,0,0,1,0,10,2,29,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,
+99,50,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,10,2,30,1,1,0,9,97,
+0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,
+121,0,47,0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,
+120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,0,0,0,1,0,10,2,24,1,1,0,9,97,0,0,1,1,0,10,117,0,0,
+0,1,8,58,118,101,99,50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,10,
+2,24,1,1,0,10,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18,118,
+0,59,121,0,18,98,0,48,0,0,0,0,1,0,10,2,25,1,1,0,9,97,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,
+18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,10,2,25,1,1,0,10,118,0,0,1,
+1,0,9,98,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,
+0,0,0,1,0,11,2,29,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120,
+0,46,0,18,97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,11,2,29,1,1,0,11,118,
+0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,
+0,46,0,18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,11,2,30,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,
+118,101,99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,
+122,0,47,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,
+120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,11,2,24,
+1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,
+117,0,59,121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,9,98,0,
+0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118,0,
+59,122,0,18,98,0,48,0,0,0,0,1,0,11,2,25,1,1,0,9,97,0,0,1,1,0,11,117,0,0,0,1,8,58,118,101,99,51,0,18,
+97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0,
+11,2,25,1,1,0,11,118,0,0,1,1,0,9,98,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18,
+118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1,0,12,2,29,1,1,0,9,97,0,0,1,1,0,
+12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46,0,
+18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0,0,0,0,1,0,12,2,29,1,1,0,12,118,0,0,1,
+1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,
+18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,12,2,30,1,1,0,9,97,0,0,1,1,
+0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,
+18,97,0,18,117,0,59,122,0,47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,1,
+1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,
+18,118,0,59,122,0,18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,12,2,24,1,1,0,9,97,0,0,1,1,
+0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,
+18,97,0,18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1,
+1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,
+18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1,0,12,2,25,1,1,0,9,97,0,0,1,1,
+0,12,117,0,0,0,1,8,58,118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,
+18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1,
+1,0,9,98,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,
+18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,98,0,49,0,0,0,0,1,0,13,2,29,1,1,0,9,97,0,0,1,1,
+0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,
+0,57,46,0,0,0,0,1,0,13,2,29,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,
+48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,0,0,0,1,0,13,2,30,1,1,0,9,97,0,0,1,1,0,13,
+110,0,0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,
+47,0,0,0,0,1,0,13,2,30,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,
+57,18,98,0,47,0,18,109,0,16,10,49,0,57,18,98,0,47,0,0,0,0,1,0,13,2,24,1,1,0,9,97,0,0,1,1,0,13,110,0,
+0,0,1,8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,0,16,10,49,0,57,48,0,0,
+0,0,1,0,13,2,24,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,
+98,0,48,0,18,109,0,16,10,49,0,57,18,98,0,48,0,0,0,0,1,0,13,2,25,1,1,0,9,97,0,0,1,1,0,13,110,0,0,0,1,
+8,58,109,97,116,50,0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,0,0,0,1,
+0,13,2,25,1,1,0,13,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,18,98,0,49,
+0,18,109,0,16,10,49,0,57,18,98,0,49,0,0,0,0,1,0,14,2,29,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,
+109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18,
+110,0,16,10,50,0,57,46,0,0,0,0,1,0,14,2,29,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,
+18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,18,98,
+0,46,0,0,0,0,1,0,14,2,30,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0,
+16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18,97,0,18,110,0,16,10,50,0,57,47,0,0,0,0,1,0,
+14,2,30,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,47,0,
+18,109,0,16,10,49,0,57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,0,0,0,1,0,14,2,24,1,1,0,9,
+97,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,48,0,18,97,0,18,110,
+0,16,10,49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,0,0,0,1,0,14,2,24,1,1,0,14,109,0,0,1,1,0,9,
+98,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98,0,
+48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,0,0,0,1,0,14,2,25,1,1,0,9,97,0,0,1,1,0,14,110,0,0,0,1,8,58,
+109,97,116,51,0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18,
+110,0,16,10,50,0,57,49,0,0,0,0,1,0,14,2,25,1,1,0,14,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,51,0,
+18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18,109,0,16,10,50,0,57,18,98,
+0,49,0,0,0,0,1,0,15,2,29,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,
+16,8,48,0,57,46,0,18,97,0,18,110,0,16,10,49,0,57,46,0,18,97,0,18,110,0,16,10,50,0,57,46,0,18,97,0,
+18,110,0,16,10,51,0,57,46,0,0,0,0,1,0,15,2,29,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,
+52,0,18,109,0,16,8,48,0,57,18,98,0,46,0,18,109,0,16,10,49,0,57,18,98,0,46,0,18,109,0,16,10,50,0,57,
+18,98,0,46,0,18,109,0,16,10,51,0,57,18,98,0,46,0,0,0,0,1,0,15,2,30,1,1,0,9,97,0,0,1,1,0,15,110,0,0,
+0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57,47,0,18,97,0,18,110,0,16,10,49,0,57,47,0,18,
+97,0,18,110,0,16,10,50,0,57,47,0,18,97,0,18,110,0,16,10,51,0,57,47,0,0,0,0,1,0,15,2,30,1,1,0,15,109,
+0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,47,0,18,109,0,16,10,49,0,
+57,18,98,0,47,0,18,109,0,16,10,50,0,57,18,98,0,47,0,18,109,0,16,10,51,0,57,18,98,0,47,0,0,0,0,1,0,
+15,2,24,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,18,97,0,18,110,0,16,8,48,0,57,48,0,
+18,97,0,18,110,0,16,10,49,0,57,48,0,18,97,0,18,110,0,16,10,50,0,57,48,0,18,97,0,18,110,0,16,10,51,0,
+57,48,0,0,0,0,1,0,15,2,24,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,
+0,57,18,98,0,48,0,18,109,0,16,10,49,0,57,18,98,0,48,0,18,109,0,16,10,50,0,57,18,98,0,48,0,18,109,0,
+16,10,51,0,57,18,98,0,48,0,0,0,0,1,0,15,2,25,1,1,0,9,97,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,
+0,18,97,0,18,110,0,16,8,48,0,57,49,0,18,97,0,18,110,0,16,10,49,0,57,49,0,18,97,0,18,110,0,16,10,50,
+0,57,49,0,18,97,0,18,110,0,16,10,51,0,57,49,0,0,0,0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,9,98,0,0,0,1,
+8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,18,98,0,49,0,18,109,0,16,10,49,0,57,18,98,0,49,0,18,109,
+0,16,10,50,0,57,18,98,0,49,0,18,109,0,16,10,51,0,57,18,98,0,49,0,0,0,0,1,0,6,2,29,1,1,0,5,97,0,0,1,
+1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,
+46,0,0,0,0,1,0,6,2,29,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,
+18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,0,0,0,1,0,6,2,30,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,
+58,105,118,101,99,50,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,0,0,0,1,0,6,2,
+30,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,47,0,18,
+118,0,59,121,0,18,98,0,47,0,0,0,0,1,0,6,2,24,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,
+50,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,121,0,48,0,0,0,0,1,0,6,2,24,1,1,0,6,118,0,0,
+1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,
+0,48,0,0,0,0,1,0,6,2,25,1,1,0,5,97,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,97,0,18,117,
+0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,5,98,0,0,0,1,
+8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,121,0,18,98,0,49,0,0,0,0,1,0,7,
+2,29,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,46,0,18,
+97,0,18,117,0,59,121,0,46,0,18,97,0,18,117,0,59,122,0,46,0,0,0,0,1,0,7,2,29,1,1,0,7,118,0,0,1,1,0,5,
+98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,0,
+18,118,0,59,122,0,18,98,0,46,0,0,0,0,1,0,7,2,30,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,
+99,51,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,47,0,18,97,0,18,117,0,59,122,0,47,
+0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,
+98,0,47,0,18,118,0,59,121,0,18,98,0,47,0,18,118,0,59,122,0,18,98,0,47,0,0,0,0,1,0,7,2,24,1,1,0,5,97,
+0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,
+121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,
+105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,0,18,98,0,48,0,18,118,0,59,122,0,
+18,98,0,48,0,0,0,0,1,0,7,2,25,1,1,0,5,97,0,0,1,1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,97,0,
+18,117,0,59,120,0,49,0,18,97,0,18,117,0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,0,0,0,1,0,7,2,
+25,1,1,0,7,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,98,0,49,0,18,
+118,0,59,121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,0,0,0,1,0,8,2,29,1,1,0,5,97,0,0,1,1,0,8,
+117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,46,0,18,97,0,18,117,0,59,121,0,46,0,
+18,97,0,18,117,0,59,122,0,46,0,18,97,0,18,117,0,59,119,0,46,0,0,0,0,1,0,8,2,29,1,1,0,8,118,0,0,1,1,
+0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,46,0,18,118,0,59,121,0,18,98,0,46,
+0,18,118,0,59,122,0,18,98,0,46,0,18,118,0,59,119,0,18,98,0,46,0,0,0,0,1,0,8,2,30,1,1,0,5,97,0,0,1,1,
+0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,47,0,18,97,0,18,117,0,59,121,0,
+47,0,18,97,0,18,117,0,59,122,0,47,0,18,97,0,18,117,0,59,119,0,47,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,
+1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,47,0,18,118,0,59,121,0,18,98,
+0,47,0,18,118,0,59,122,0,18,98,0,47,0,18,118,0,59,119,0,18,98,0,47,0,0,0,0,1,0,8,2,24,1,1,0,5,97,0,
+0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,48,0,18,97,0,18,117,0,59,
+121,0,48,0,18,97,0,18,117,0,59,122,0,48,0,18,97,0,18,117,0,59,119,0,48,0,0,0,0,1,0,8,2,24,1,1,0,8,
+118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,48,0,18,118,0,59,121,
+0,18,98,0,48,0,18,118,0,59,122,0,18,98,0,48,0,18,118,0,59,119,0,18,98,0,48,0,0,0,0,1,0,8,2,25,1,1,0,
+5,97,0,0,1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,97,0,18,117,0,59,120,0,49,0,18,97,0,18,117,
+0,59,121,0,49,0,18,97,0,18,117,0,59,122,0,49,0,18,97,0,18,117,0,59,119,0,49,0,0,0,0,1,0,8,2,25,1,1,
+0,8,118,0,0,1,1,0,5,98,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,98,0,49,0,18,118,0,59,
+121,0,18,98,0,49,0,18,118,0,59,122,0,18,98,0,49,0,18,118,0,59,119,0,18,98,0,49,0,0,0,0,1,0,10,2,24,
+1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,
+18,118,0,59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,11,2,24,1,1,0,11,118,0,0,1,1,0,11,117,0,0,0,1,8,
+58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,
+0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,12,2,24,1,1,0,12,118,0,0,1,1,0,12,117,0,0,0,1,
+8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,
+48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0,0,0,1,0,6,
+2,24,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,18,117,0,59,120,
+0,48,0,18,118,0,59,121,0,18,117,0,59,121,0,48,0,0,0,0,1,0,7,2,24,1,1,0,7,118,0,0,1,1,0,7,117,0,0,0,
+1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,59,
+121,0,48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,0,0,0,1,0,8,2,24,1,1,0,8,118,0,0,1,1,0,8,117,0,
+0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,48,0,18,118,0,59,121,0,18,117,0,
+59,121,0,48,0,18,118,0,59,122,0,18,117,0,59,122,0,48,0,18,118,0,59,119,0,18,117,0,59,119,0,48,0,0,0,
+0,1,0,10,2,25,1,1,0,10,118,0,0,1,1,0,10,117,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,18,117,0,
+59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,11,2,25,1,1,0,11,118,0,0,1,1,0,11,
+117,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,
+0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,12,2,25,1,1,0,12,118,0,0,1,1,0,
+12,117,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,
+117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0,18,117,0,59,119,0,49,
+0,0,0,0,1,0,6,2,25,1,1,0,6,118,0,0,1,1,0,6,117,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,
+18,117,0,59,120,0,49,0,18,118,0,59,121,0,18,117,0,59,121,0,49,0,0,0,0,1,0,7,2,25,1,1,0,7,118,0,0,1,
+1,0,7,117,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,121,
+0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,0,0,0,1,0,8,2,25,1,1,0,8,118,0,0,
+1,1,0,8,117,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,18,117,0,59,120,0,49,0,18,118,0,59,
+121,0,18,117,0,59,121,0,49,0,18,118,0,59,122,0,18,117,0,59,122,0,49,0,18,118,0,59,119,0,18,117,0,59,
+119,0,49,0,0,0,0,1,0,13,2,25,1,1,0,13,109,0,0,1,1,0,13,110,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,
+8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,0,0,0,1,0,
+14,2,25,1,1,0,14,109,0,0,1,1,0,14,110,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,18,110,0,
+16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,18,109,0,16,10,50,0,57,18,110,
+0,16,10,50,0,57,49,0,0,0,0,1,0,15,2,25,1,1,0,15,109,0,0,1,1,0,15,110,0,0,0,1,8,58,109,97,116,52,0,
+18,109,0,16,8,48,0,57,18,110,0,16,8,48,0,57,49,0,18,109,0,16,10,49,0,57,18,110,0,16,10,49,0,57,49,0,
+18,109,0,16,10,50,0,57,18,110,0,16,10,50,0,57,49,0,18,109,0,16,10,51,0,57,18,110,0,16,10,51,0,57,49,
+0,0,0,0,1,0,10,2,30,1,1,0,10,118,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,54,0,18,118,0,59,
+121,0,54,0,0,0,0,1,0,11,2,30,1,1,0,11,118,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,54,0,18,
+118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,12,2,30,1,1,0,12,118,0,0,0,1,8,58,118,101,99,
+52,0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,
+0,0,1,0,6,2,30,1,1,0,6,118,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,54,0,18,118,0,59,121,
+0,54,0,0,0,0,1,0,7,2,30,1,1,0,7,118,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,54,0,18,118,
+0,59,121,0,54,0,18,118,0,59,122,0,54,0,0,0,0,1,0,8,2,30,1,1,0,8,118,0,0,0,1,8,58,105,118,101,99,52,
+0,18,118,0,59,120,0,54,0,18,118,0,59,121,0,54,0,18,118,0,59,122,0,54,0,18,118,0,59,119,0,54,0,0,0,0,
+1,0,13,2,30,1,1,0,13,109,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,54,0,18,109,0,16,10,49,
+0,57,54,0,0,0,0,1,0,14,2,30,1,1,0,14,109,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,54,0,18,
+109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0,0,0,0,1,0,15,2,30,1,1,0,15,109,0,0,0,1,8,58,
+109,97,116,52,0,18,109,0,16,8,48,0,57,54,0,18,109,0,16,10,49,0,57,54,0,18,109,0,16,10,50,0,57,54,0,
+18,109,0,16,10,51,0,57,54,0,0,0,0,1,0,0,2,28,1,0,2,9,97,0,0,0,1,9,18,97,0,17,49,0,48,0,0,22,0,0,1,0,
+0,2,28,1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,22,0,0,1,0,0,2,28,1,0,2,10,118,0,0,0,1,9,18,118,0,59,
+120,0,52,18,118,0,59,121,0,52,19,0,0,1,0,0,2,28,1,0,2,11,118,0,0,0,1,9,18,118,0,59,120,0,52,18,118,
+0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,28,1,0,2,12,118,0,0,0,1,9,18,118,0,59,120,0,52,
+18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,0,0,2,28,1,0,2,6,118,
+0,0,0,1,9,18,118,0,59,120,0,52,18,118,0,59,121,0,52,19,0,0,1,0,0,2,28,1,0,2,7,118,0,0,0,1,9,18,118,
+0,59,120,0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,0,0,1,0,0,2,28,1,0,2,8,118,0,0,0,1,9,
+18,118,0,59,120,0,52,18,118,0,59,121,0,52,19,18,118,0,59,122,0,52,19,18,118,0,59,119,0,52,19,0,0,1,
+0,0,2,28,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,0,0,1,0,0,2,
+28,1,0,2,14,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,19,18,109,0,16,10,50,0,
+57,52,19,0,0,1,0,0,2,28,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8,48,0,57,52,18,109,0,16,10,49,0,57,52,
+19,18,109,0,16,10,50,0,57,52,19,18,109,0,16,10,51,0,57,52,19,0,0,1,0,0,2,27,1,0,2,9,97,0,0,0,1,9,18,
+97,0,17,49,0,48,0,0,21,0,0,1,0,0,2,27,1,0,2,5,97,0,0,0,1,9,18,97,0,16,10,49,0,21,0,0,1,0,0,2,27,1,0,
+2,10,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,0,0,1,0,0,2,27,1,0,2,11,118,0,0,0,1,
+9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,0,2,27,1,0,2,12,118,
+0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,18,118,0,59,119,0,51,
+19,0,0,1,0,0,2,27,1,0,2,6,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,0,0,1,0,0,2,27,
+1,0,2,7,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,0,0,1,0,
+0,2,27,1,0,2,8,118,0,0,0,1,9,18,118,0,59,120,0,51,18,118,0,59,121,0,51,19,18,118,0,59,122,0,51,19,
+18,118,0,59,119,0,51,19,0,0,1,0,0,2,27,1,0,2,13,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16,
+10,49,0,57,51,19,0,0,1,0,0,2,27,1,0,2,14,109,0,0,0,1,9,18,109,0,16,8,48,0,57,51,18,109,0,16,10,49,0,
+57,51,19,18,109,0,16,10,50,0,57,51,19,0,0,1,0,0,2,27,1,0,2,15,109,0,0,0,1,9,18,109,0,16,8,48,0,57,
+51,18,109,0,16,10,49,0,57,51,19,18,109,0,16,10,50,0,57,51,19,18,109,0,16,10,51,0,57,51,19,0,0,1,0,9,
+2,28,1,0,2,9,97,0,0,1,1,0,5,0,0,0,1,3,2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,52,0,8,18,
+99,0,0,0,1,0,5,2,28,1,0,2,5,97,0,0,1,1,0,5,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,
+97,0,52,0,8,18,99,0,0,0,1,0,10,2,28,1,0,2,10,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,50,0,18,118,0,
+59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1,0,11,2,28,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118,
+101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122,0,61,0,0,0,0,1,0,12,2,28,
+1,0,2,12,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,52,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,
+18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,6,2,28,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,
+105,118,101,99,50,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,0,0,0,1,0,7,2,28,1,0,2,7,118,0,0,
+1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0,18,118,0,59,120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,
+122,0,61,0,0,0,0,1,0,8,2,28,1,0,2,8,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,
+120,0,61,0,18,118,0,59,121,0,61,0,18,118,0,59,122,0,61,0,18,118,0,59,119,0,61,0,0,0,0,1,0,13,2,28,1,
+0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,50,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,
+57,61,0,0,0,0,1,0,14,2,28,1,0,2,14,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,
+57,61,0,18,109,0,16,10,49,0,57,61,0,18,109,0,16,10,50,0,57,61,0,0,0,0,1,0,15,2,28,1,0,2,15,109,0,0,
+1,1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109,0,16,8,48,0,57,61,0,18,109,0,16,10,49,0,57,61,0,18,109,
+0,16,10,50,0,57,61,0,18,109,0,16,10,51,0,57,61,0,0,0,0,1,0,9,2,27,1,0,2,9,97,0,0,1,1,0,5,0,0,0,1,3,
+2,0,9,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,51,0,8,18,99,0,0,0,1,0,5,2,27,1,0,2,5,97,0,0,1,1,
+0,5,0,0,0,1,3,2,0,5,1,99,0,0,0,9,18,99,0,18,97,0,20,0,9,18,97,0,51,0,8,18,99,0,0,0,1,0,10,2,27,1,0,
+2,10,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,50,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,0,0,
+0,1,0,11,2,27,1,0,2,11,118,0,0,1,1,0,5,0,0,0,1,8,58,118,101,99,51,0,18,118,0,59,120,0,60,0,18,118,0,
+59,121,0,60,0,18,118,0,59,122,0,60,0,0,0,0,1,0,12,2,27,1,0,2,12,118,0,0,1,1,0,5,0,0,0,1,8,58,118,
+101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0,18,118,0,59,119,0,
+60,0,0,0,0,1,0,6,2,27,1,0,2,6,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,50,0,18,118,0,59,120,0,60,
+0,18,118,0,59,121,0,60,0,0,0,0,1,0,7,2,27,1,0,2,7,118,0,0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,51,0,
+18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,59,122,0,60,0,0,0,0,1,0,8,2,27,1,0,2,8,118,0,
+0,1,1,0,5,0,0,0,1,8,58,105,118,101,99,52,0,18,118,0,59,120,0,60,0,18,118,0,59,121,0,60,0,18,118,0,
+59,122,0,60,0,18,118,0,59,119,0,60,0,0,0,0,1,0,13,2,27,1,0,2,13,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,
+116,50,0,18,109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,0,0,0,1,0,14,2,27,1,0,2,14,109,0,0,
+1,1,0,5,0,0,0,1,8,58,109,97,116,51,0,18,109,0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109,
+0,16,10,50,0,57,60,0,0,0,0,1,0,15,2,27,1,0,2,15,109,0,0,1,1,0,5,0,0,0,1,8,58,109,97,116,52,0,18,109,
+0,16,8,48,0,57,60,0,18,109,0,16,10,49,0,57,60,0,18,109,0,16,10,50,0,57,60,0,18,109,0,16,10,51,0,57,
+60,0,0,0,0,1,0,1,2,18,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,3,2,0,1,1,99,0,0,0,4,102,108,111,97,116,95,
+108,101,115,115,0,18,99,0,0,18,97,0,0,18,98,0,0,0,8,18,99,0,0,0,1,0,1,2,18,1,1,0,5,97,0,0,1,1,0,5,
+98,0,0,0,1,8,58,102,108,111,97,116,0,18,97,0,0,0,58,102,108,111,97,116,0,18,98,0,0,0,40,0,0,1,0,1,2,
+19,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,98,0,18,97,0,40,0,0,1,0,1,2,19,1,1,0,5,97,0,0,1,1,0,5,98,
+0,0,0,1,8,18,98,0,18,97,0,40,0,0,1,0,1,2,21,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,41,
+18,97,0,18,98,0,38,32,0,0,1,0,1,2,21,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,41,18,97,0,
+18,98,0,38,32,0,0,1,0,1,2,20,1,1,0,9,97,0,0,1,1,0,9,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0,
+38,32,0,0,1,0,1,2,20,1,1,0,5,97,0,0,1,1,0,5,98,0,0,0,1,8,18,97,0,18,98,0,40,18,97,0,18,98,0,38,32,0,
+0,1,0,1,2,12,1,1,0,1,97,0,0,1,1,0,1,98,0,0,0,1,8,18,97,0,18,98,0,39,0,0,1,0,1,2,32,1,1,0,1,97,0,0,0,
+1,8,18,97,0,15,2,48,0,38,0,0,0
\ No newline at end of file