// Callback functions
///////////////////////////////////////////////////////////////////////////////////////////////////
+/**
+***************************************************************************************************
+* @brief channel setting structure
+***************************************************************************************************
+*/
+typedef union _ADDR_CHANNEL_SETTING
+{
+ struct
+ {
+ UINT_8 valid : 1; ///< Indicate whehter this channel setting is valid
+ UINT_8 channel : 2; ///< 0 for x channel, 1 for y channel, 2 for z channel
+ UINT_8 index : 5; ///< Channel index
+ };
+ UINT_8 value; ///< Value
+} ADDR_CHANNEL_SETTING;
+
+/**
+***************************************************************************************************
+* @brief address equation key structure
+***************************************************************************************************
+*/
+typedef union _ADDR_EQUATION_KEY
+{
+ struct
+ {
+ UINT_32 log2ElementBytes : 3; ///< Log2 of Bytes per pixel
+ UINT_32 tileMode : 5; ///< Tile mode
+ UINT_32 microTileType : 3; ///< Micro tile type
+ UINT_32 pipeConfig : 5; ///< pipe config
+ UINT_32 numBanks : 5; ///< Number of banks
+ UINT_32 bankWidth : 4; ///< Bank width
+ UINT_32 bankHeight : 4; ///< Bank height
+ UINT_32 macroAspectRatio : 3; ///< Macro tile aspect ratio
+ } fields;
+ UINT_32 value;
+} ADDR_EQUATION_KEY;
+
+/**
+***************************************************************************************************
+* @brief address equation structure
+***************************************************************************************************
+*/
+#define ADDR_MAX_EQUATION_BIT 20u
+
+// Invalid equation index
+#define ADDR_INVALID_EQUATION_INDEX 0xFFFFFFFF
+
+typedef struct _ADDR_EQUATION
+{
+ ADDR_CHANNEL_SETTING addr[ADDR_MAX_EQUATION_BIT]; ///< addr setting
+ ///< each bit is result of addr ^ xor ^ xor2
+ ADDR_CHANNEL_SETTING xor1[ADDR_MAX_EQUATION_BIT]; ///< xor setting
+ ADDR_CHANNEL_SETTING xor2[ADDR_MAX_EQUATION_BIT]; ///< xor2 setting
+ UINT_32 numBits; ///< The number of bits in equation
+ BOOL_32 stackedDepthSlices; ///< TRUE if depth slices are treated as being
+ ///< stacked vertically prior to swizzling
+} ADDR_EQUATION;
+
+
/**
***************************************************************************************************
* @brief Alloc system memory flags.
*/
typedef struct _ADDR_CREATE_OUTPUT
{
- UINT_32 size; ///< Size of this structure in bytes
+ UINT_32 size; ///< Size of this structure in bytes
- ADDR_HANDLE hLib; ///< Address lib handle
+ ADDR_HANDLE hLib; ///< Address lib handle
+
+ UINT_32 numEquations; ///< Number of equations in the table
+ const ADDR_EQUATION* pEquationTable; ///< Pointer to the equation table
} ADDR_CREATE_OUTPUT;
/**
{
struct
{
- UINT_32 color : 1; ///< Flag indicates this is a color buffer
- UINT_32 depth : 1; ///< Flag indicates this is a depth/stencil buffer
- UINT_32 stencil : 1; ///< Flag indicates this is a stencil buffer
- UINT_32 texture : 1; ///< Flag indicates this is a texture
- UINT_32 cube : 1; ///< Flag indicates this is a cubemap
- UINT_32 volume : 1; ///< Flag indicates this is a volume texture
- UINT_32 fmask : 1; ///< Flag indicates this is an fmask
- UINT_32 cubeAsArray : 1; ///< Flag indicates if treat cubemap as arrays
- UINT_32 compressZ : 1; ///< Flag indicates z buffer is compressed
- UINT_32 overlay : 1; ///< Flag indicates this is an overlay surface
- UINT_32 noStencil : 1; ///< Flag indicates this depth has no separate stencil
- UINT_32 display : 1; ///< Flag indicates this should match display controller req.
- UINT_32 opt4Space : 1; ///< Flag indicates this surface should be optimized for space
- /// i.e. save some memory but may lose performance
- UINT_32 prt : 1; ///< Flag for partially resident texture
- UINT_32 qbStereo : 1; ///< Quad buffer stereo surface
- UINT_32 pow2Pad : 1; ///< SI: Pad to pow2, must set for mipmap (include level0)
- UINT_32 interleaved : 1; ///< Special flag for interleaved YUV surface padding
- UINT_32 tcCompatible : 1; ///< Flag indicates surface needs to be shader readable
- UINT_32 dispTileType : 1; ///< NI: force display Tiling for 128 bit shared resoruce
- UINT_32 dccCompatible : 1; ///< VI: whether to support dcc fast clear
- UINT_32 czDispCompatible: 1; ///< SI+: CZ family has a HW bug needs special alignment.
- /// This flag indicates we need to follow the alignment with
- /// CZ families or other ASICs under PX configuration + CZ.
- UINT_32 nonSplit : 1; ///< CI: depth texture should not be split
- UINT_32 disableLinearOpt: 1; ///< Disable tile mode optimization to linear
- UINT_32 reserved : 9; ///< Reserved bits
+ UINT_32 color : 1; ///< Flag indicates this is a color buffer
+ UINT_32 depth : 1; ///< Flag indicates this is a depth/stencil buffer
+ UINT_32 stencil : 1; ///< Flag indicates this is a stencil buffer
+ UINT_32 texture : 1; ///< Flag indicates this is a texture
+ UINT_32 cube : 1; ///< Flag indicates this is a cubemap
+ UINT_32 volume : 1; ///< Flag indicates this is a volume texture
+ UINT_32 fmask : 1; ///< Flag indicates this is an fmask
+ UINT_32 cubeAsArray : 1; ///< Flag indicates if treat cubemap as arrays
+ UINT_32 compressZ : 1; ///< Flag indicates z buffer is compressed
+ UINT_32 overlay : 1; ///< Flag indicates this is an overlay surface
+ UINT_32 noStencil : 1; ///< Flag indicates this depth has no separate stencil
+ UINT_32 display : 1; ///< Flag indicates this should match display controller req.
+ UINT_32 opt4Space : 1; ///< Flag indicates this surface should be optimized for space
+ /// i.e. save some memory but may lose performance
+ UINT_32 prt : 1; ///< Flag for partially resident texture
+ UINT_32 qbStereo : 1; ///< Quad buffer stereo surface
+ UINT_32 pow2Pad : 1; ///< SI: Pad to pow2, must set for mipmap (include level0)
+ UINT_32 interleaved : 1; ///< Special flag for interleaved YUV surface padding
+ UINT_32 tcCompatible : 1; ///< Flag indicates surface needs to be shader readable
+ UINT_32 dispTileType : 1; ///< NI: force display Tiling for 128 bit shared resoruce
+ UINT_32 dccCompatible : 1; ///< VI: whether to support dcc fast clear
+ UINT_32 czDispCompatible : 1; ///< SI+: CZ family has a HW bug needs special alignment.
+ /// This flag indicates we need to follow the
+ /// alignment with CZ families or other ASICs under
+ /// PX configuration + CZ.
+ UINT_32 nonSplit : 1; ///< CI: depth texture should not be split
+ UINT_32 disableLinearOpt : 1; ///< Disable tile mode optimization to linear
+ UINT_32 needEquation : 1; ///< Make the surface tile setting equation compatible.
+ /// This flag indicates we need to override tile
+ /// mode to PRT_* tile mode to disable slice rotation,
+ /// which is needed by swizzle pattern equation.
+ UINT_32 reserved : 8; ///< Reserved bits
};
UINT_32 value;
UINT_32 numSlices; ///< Number of surface slices or depth
UINT_32 slice; ///< Slice index
UINT_32 mipLevel; ///< Current mipmap level
+ UINT_32 numMipLevels; ///< Number of mips in mip chain
ADDR_SURFACE_FLAGS flags; ///< Surface type flags
UINT_32 numFrags; ///< Number of fragments, leave it zero or the same as
/// number of samples for normal AA; Set it to the
UINT_32 last2DLevel : 1; ///< TRUE if this is the last 2D(3D) tiled
///< Only meaningful when create flag checkLast2DLevel is set
UINT_32 tcCompatible : 1; ///< If the surface can be shader compatible
- UINT_32 reserved :30; ///< Reserved bits
+ UINT_32 reserved :30; ///< Reserved bits
};
+ UINT_32 equationIndex; ///< Equation index in the equation table;
+
+ UINT_32 blockWidth; ///< Width in element inside one block(1D->Micro, 2D->Macro)
+ UINT_32 blockHeight; ///< Height in element inside one block(1D->Micro, 2D->Macro)
+ UINT_32 blockSlices; ///< Slice number inside one block(1D->Micro, 2D->Macro)
+
/// Stereo info
ADDR_QBSTEREOINFO* pStereoInfo;///< Stereo information, needed when .qbStereo flag is TRUE
} ADDR_COMPUTE_SURFACE_INFO_OUTPUT;
}
}
+/**
+***************************************************************************************************
+* InitChannel
+*
+* @brief
+* Get channel initialization value
+***************************************************************************************************
+*/
+static inline ADDR_CHANNEL_SETTING InitChannel(
+ UINT_32 valid, ///< [in] valid setting
+ UINT_32 channel, ///< [in] channel setting
+ UINT_32 index) ///< [in] index setting
+{
+ ADDR_CHANNEL_SETTING t;
+ t.valid = valid;
+ t.channel = channel;
+ t.index = index;
+
+ return t;
+}
+
#endif // __ADDR_COMMON_H__
pCreateOut->hLib = pLib;
+ if ((pLib != NULL) &&
+ (returnCode == ADDR_OK))
+ {
+ pCreateOut->numEquations =
+ pLib->HwlGetEquationTableInfo(&pCreateOut->pEquationTable);
+ }
+
if ((pLib == NULL) &&
(returnCode == ADDR_OK))
{
/// Pure Virtual function for Hwl converting chip family
virtual AddrChipFamily HwlConvertChipFamily(UINT_32 uChipFamily, UINT_32 uChipRevision) = 0;
+ /// Get equation table pointer and number of equations
+ virtual UINT_32 HwlGetEquationTableInfo(const ADDR_EQUATION** ppEquationTable) const
+ {
+ *ppEquationTable = NULL;
+
+ return 0;
+ }
+
//
// Misc helper
//
if (returnCode == ADDR_OK)
{
+ // HWL layer may override tile mode if necessary
+ HwlOverrideTileMode(&localIn);
+
AddrTileMode tileMode = localIn.tileMode;
- AddrTileType tileType = localIn.tileType;
- // HWL layer may override tile mode if necessary
- if (HwlOverrideTileMode(&localIn, &tileMode, &tileType))
- {
- localIn.tileMode = tileMode;
- localIn.tileType = tileType;
- }
// Optimize tile mode if possible
if (OptimizeTileMode(&localIn, &tileMode))
{
* AddrLib1::Thickness
*
* @brief
-* Compute surface thickness
+* Get tile mode thickness
*
* @return
-* Surface thickness
+* Tile mode thickness
***************************************************************************************************
*/
UINT_32 AddrLib1::Thickness(
return pipe;
}
+/**
+***************************************************************************************************
+* AddrLib1::ComputeMicroTileEquation
+*
+* @brief
+* Compute micro tile equation
+*
+* @return
+* If equation can be computed
+*
+***************************************************************************************************
+*/
+ADDR_E_RETURNCODE AddrLib1::ComputeMicroTileEquation(
+ UINT_32 log2BytesPP, ///< [in] log2 of bytes per pixel
+ AddrTileMode tileMode, ///< [in] tile mode
+ AddrTileType microTileType, ///< [in] pixel order in display/non-display mode
+ ADDR_EQUATION* pEquation ///< [out] equation
+ ) const
+{
+ ADDR_E_RETURNCODE retCode = ADDR_OK;
+
+ for (UINT_32 i = 0; i < log2BytesPP; i++)
+ {
+ pEquation->addr[i].valid = 1;
+ pEquation->addr[i].channel = 0;
+ pEquation->addr[i].index = i;
+ }
+
+ ADDR_CHANNEL_SETTING* pixelBit = &pEquation->addr[log2BytesPP];
+
+ ADDR_CHANNEL_SETTING x0 = InitChannel(1, 0, log2BytesPP + 0);
+ ADDR_CHANNEL_SETTING x1 = InitChannel(1, 0, log2BytesPP + 1);
+ ADDR_CHANNEL_SETTING x2 = InitChannel(1, 0, log2BytesPP + 2);
+ ADDR_CHANNEL_SETTING y0 = InitChannel(1, 1, 0);
+ ADDR_CHANNEL_SETTING y1 = InitChannel(1, 1, 1);
+ ADDR_CHANNEL_SETTING y2 = InitChannel(1, 1, 2);
+ ADDR_CHANNEL_SETTING z0 = InitChannel(1, 2, 0);
+ ADDR_CHANNEL_SETTING z1 = InitChannel(1, 2, 1);
+ ADDR_CHANNEL_SETTING z2 = InitChannel(1, 2, 2);
+
+ UINT_32 thickness = Thickness(tileMode);
+ UINT_32 bpp = 1 << (log2BytesPP + 3);
+
+ if (microTileType != ADDR_THICK)
+ {
+ if (microTileType == ADDR_DISPLAYABLE)
+ {
+ switch (bpp)
+ {
+ case 8:
+ pixelBit[0] = x0;
+ pixelBit[1] = x1;
+ pixelBit[2] = x2;
+ pixelBit[3] = y1;
+ pixelBit[4] = y0;
+ pixelBit[5] = y2;
+ break;
+ case 16:
+ pixelBit[0] = x0;
+ pixelBit[1] = x1;
+ pixelBit[2] = x2;
+ pixelBit[3] = y0;
+ pixelBit[4] = y1;
+ pixelBit[5] = y2;
+ break;
+ case 32:
+ pixelBit[0] = x0;
+ pixelBit[1] = x1;
+ pixelBit[2] = y0;
+ pixelBit[3] = x2;
+ pixelBit[4] = y1;
+ pixelBit[5] = y2;
+ break;
+ case 64:
+ pixelBit[0] = x0;
+ pixelBit[1] = y0;
+ pixelBit[2] = x1;
+ pixelBit[3] = x2;
+ pixelBit[4] = y1;
+ pixelBit[5] = y2;
+ break;
+ case 128:
+ pixelBit[0] = y0;
+ pixelBit[1] = x0;
+ pixelBit[2] = x1;
+ pixelBit[3] = x2;
+ pixelBit[4] = y1;
+ pixelBit[5] = y2;
+ break;
+ default:
+ ADDR_ASSERT_ALWAYS();
+ break;
+ }
+ }
+ else if (microTileType == ADDR_NON_DISPLAYABLE || microTileType == ADDR_DEPTH_SAMPLE_ORDER)
+ {
+ pixelBit[0] = x0;
+ pixelBit[1] = y0;
+ pixelBit[2] = x1;
+ pixelBit[3] = y1;
+ pixelBit[4] = x2;
+ pixelBit[5] = y2;
+ }
+ else if (microTileType == ADDR_ROTATED)
+ {
+ ADDR_ASSERT(thickness == 1);
+
+ switch (bpp)
+ {
+ case 8:
+ pixelBit[0] = y0;
+ pixelBit[1] = y1;
+ pixelBit[2] = y2;
+ pixelBit[3] = x1;
+ pixelBit[4] = x0;
+ pixelBit[5] = x2;
+ break;
+ case 16:
+ pixelBit[0] = y0;
+ pixelBit[1] = y1;
+ pixelBit[2] = y2;
+ pixelBit[3] = x0;
+ pixelBit[4] = x1;
+ pixelBit[5] = x2;
+ break;
+ case 32:
+ pixelBit[0] = y0;
+ pixelBit[1] = y1;
+ pixelBit[2] = x0;
+ pixelBit[3] = y2;
+ pixelBit[4] = x1;
+ pixelBit[5] = x2;
+ break;
+ case 64:
+ pixelBit[0] = y0;
+ pixelBit[1] = x0;
+ pixelBit[2] = y1;
+ pixelBit[3] = x1;
+ pixelBit[4] = x2;
+ pixelBit[5] = y2;
+ break;
+ default:
+ retCode = ADDR_NOTSUPPORTED;
+ break;
+ }
+ }
+
+ if (thickness > 1)
+ {
+ pixelBit[6] = z0;
+ pixelBit[7] = z1;
+ pEquation->numBits = 8 + log2BytesPP;
+ }
+ else
+ {
+ pEquation->numBits = 6 + log2BytesPP;
+ }
+ }
+ else // ADDR_THICK
+ {
+ ADDR_ASSERT(thickness > 1);
+
+ switch (bpp)
+ {
+ case 8:
+ case 16:
+ pixelBit[0] = x0;
+ pixelBit[1] = y0;
+ pixelBit[2] = x1;
+ pixelBit[3] = y1;
+ pixelBit[4] = z0;
+ pixelBit[5] = z1;
+ break;
+ case 32:
+ pixelBit[0] = x0;
+ pixelBit[1] = y0;
+ pixelBit[2] = x1;
+ pixelBit[3] = z0;
+ pixelBit[4] = y1;
+ pixelBit[5] = z1;
+ break;
+ case 64:
+ case 128:
+ pixelBit[0] = y0;
+ pixelBit[1] = x0;
+ pixelBit[2] = z0;
+ pixelBit[3] = x1;
+ pixelBit[4] = y1;
+ pixelBit[5] = z1;
+ break;
+ default:
+ ADDR_ASSERT_ALWAYS();
+ break;
+ }
+
+ pixelBit[6] = x2;
+ pixelBit[7] = y2;
+ pEquation->numBits = 8 + log2BytesPP;
+ }
+
+ if (thickness == 8)
+ {
+ pixelBit[8] = z2;
+ pEquation->numBits = 9 + log2BytesPP;
+ }
+
+ // stackedDepthSlices is used for addressing mode that a tile block contains multiple slices,
+ // which is not supported by our address lib
+ pEquation->stackedDepthSlices = FALSE;
+
+ return retCode;
+}
+
/**
***************************************************************************************************
* AddrLib1::ComputePixelIndexWithinMicroTile
virtual BOOL_32 HwlDegradeBaseLevel(
const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn) const = 0;
- virtual BOOL_32 HwlOverrideTileMode(
- const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn,
- AddrTileMode* pTileMode,
- AddrTileType* pTileType) const
+ virtual VOID HwlOverrideTileMode(ADDR_COMPUTE_SURFACE_INFO_INPUT* pInOut) const
{
- // not supported in hwl layer, FALSE for not-overrided
- return FALSE;
+ // not supported in hwl layer
}
AddrTileMode DegradeLargeThickTile(AddrTileMode tileMode, UINT_32 bpp) const;
UINT_32* pX, UINT_32* pY, UINT_32* pSlice, UINT_32* pSample,
AddrTileType microTileType, BOOL_32 isDepthSampleOrder) const;
+ ADDR_E_RETURNCODE ComputeMicroTileEquation(
+ UINT_32 bpp, AddrTileMode tileMode,
+ AddrTileType microTileType, ADDR_EQUATION* pEquation) const;
+
UINT_32 ComputePixelIndexWithinMicroTile(
UINT_32 x, UINT_32 y, UINT_32 z,
UINT_32 bpp, AddrTileMode tileMode, AddrTileType microTileType) const;
UINT_32 ComputePipeFromAddr(
UINT_64 addr, UINT_32 numPipes) const;
+ virtual ADDR_E_RETURNCODE ComputePipeEquation(
+ UINT_32 log2BytesPP, UINT_32 threshX, UINT_32 threshY, ADDR_TILEINFO* pTileInfo, ADDR_EQUATION* pEquation) const
+ {
+ return ADDR_NOTSUPPORTED;
+ }
+
/// Pure Virtual function for Hwl computing pipe from coord
virtual UINT_32 ComputePipeFromCoord(
UINT_32 x, UINT_32 y, UINT_32 slice, AddrTileMode tileMode,
valid = InitMacroTileCfgTable(pRegValue->pMacroTileConfig, pRegValue->noOfMacroEntries);
}
+ if (valid)
+ {
+ InitEquationTable();
+ }
+
return valid;
}
}
else
{
- const ADDR_TILECONFIG* pCfgTable = GetTileSetting(index);
+ const AddrTileConfig* pCfgTable = GetTileSetting(index);
if (pInfo != NULL)
{
* Override THICK to THIN, for specific formats on CI
*
* @return
-* Suitable tile mode
+* N/A
*
***************************************************************************************************
*/
-BOOL_32 CiAddrLib::HwlOverrideTileMode(
- const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn, ///< [in] input structure
- AddrTileMode* pTileMode, ///< [in/out] pointer to the tile mode
- AddrTileType* pTileType ///< [in/out] pointer to the tile type
+VOID CiAddrLib::HwlOverrideTileMode(
+ ADDR_COMPUTE_SURFACE_INFO_INPUT* pInOut ///< [in/out] input output structure
) const
{
- BOOL_32 bOverrided = FALSE;
- AddrTileMode tileMode = *pTileMode;
+ AddrTileMode tileMode = pInOut->tileMode;
+ AddrTileType tileType = pInOut->tileType;
// currently, all CI/VI family do not
// support ADDR_TM_PRT_2D_TILED_THICK,ADDR_TM_PRT_3D_TILED_THICK and
// tile_thickness = (array_mode == XTHICK) ? 8 : ((array_mode == THICK) ? 4 : 1)
if (thickness > 1)
{
- switch (pIn->format)
+ switch (pInOut->format)
{
// see //gfxip/gcB/devel/cds/src/verif/tc/models/csim/tcp.cpp
// tcpError("Thick micro tiling is not supported for format...
}
// Switch tile type from thick to thin
- if (tileMode != *pTileMode)
+ if (tileMode != pInOut->tileMode)
{
// see tileIndex: 13-18
- *pTileType = ADDR_NON_DISPLAYABLE;
+ tileType = ADDR_NON_DISPLAYABLE;
}
break;
}
}
- if (tileMode != *pTileMode)
+ // Override 2D/3D macro tile mode to PRT_* tile mode if
+ // client driver requests this surface is equation compatible
+ if ((pInOut->flags.needEquation == TRUE) &&
+ (pInOut->numSamples <= 1) &&
+ (IsMacroTiled(tileMode) == TRUE) &&
+ (IsPrtTileMode(tileMode) == FALSE))
{
- *pTileMode = tileMode;
- bOverrided = TRUE;
+ UINT_32 thickness = Thickness(tileMode);
+
+ if (thickness == 1)
+ {
+ tileMode = ADDR_TM_PRT_TILED_THIN1;
+ }
+ else
+ {
+ static const UINT_32 PrtTileBytes = 0x10000;
+ // First prt thick tile index in the tile mode table
+ static const UINT_32 PrtThickTileIndex = 22;
+ ADDR_TILEINFO tileInfo = {0};
+
+ HwlComputeMacroModeIndex(PrtThickTileIndex,
+ pInOut->flags,
+ pInOut->bpp,
+ pInOut->numSamples,
+ &tileInfo);
+
+ UINT_32 macroTileBytes = ((pInOut->bpp) >> 3) * 64 * pInOut->numSamples *
+ thickness * HwlGetPipes(&tileInfo) *
+ tileInfo.banks * tileInfo.bankWidth *
+ tileInfo.bankHeight;
+
+ if (macroTileBytes <= PrtTileBytes)
+ {
+ tileMode = ADDR_TM_PRT_TILED_THICK;
+ }
+ else
+ {
+ tileMode = ADDR_TM_PRT_TILED_THIN1;
+ }
+ }
}
- return bOverrided;
+ if (tileMode != pInOut->tileMode)
+ {
+ pInOut->tileMode = tileMode;
+ pInOut->tileType = tileType;
+ }
}
/**
{
inTileType = ADDR_NON_DISPLAYABLE;
}
- else if ((m_allowNonDispThickModes == FALSE) || (inTileType != ADDR_NON_DISPLAYABLE))
+ else if ((m_allowNonDispThickModes == FALSE) ||
+ (inTileType != ADDR_NON_DISPLAYABLE) ||
+ // There is no PRT_THICK + THIN entry in tile mode table except Bonaire
+ (IsPrtTileMode(tileMode) == TRUE))
{
inTileType = ADDR_THICK;
}
pOut->tcCompatible = FALSE;
}
- if (flags.depth && (flags.nonSplit || flags.tcCompatible))
+ if (flags.depth && (flags.nonSplit || flags.tcCompatible || flags.needEquation))
{
// Texure readable depth surface should not be split
switch (tileSize)
{
if (IsMacroTiled(tileMode))
{
- UINT_32 tileIndex = static_cast<UINT_32>(pOut->tileIndex);
+ INT_32 tileIndex = pOut->tileIndex;
if ((tileIndex == TileIndexInvalid) && (IsTileInfoAllZero(pTileInfo) == FALSE))
{
if (tileIndex != TileIndexInvalid)
{
- ADDR_ASSERT(tileIndex < TileTableSize);
+ ADDR_ASSERT(static_cast<UINT_32>(tileIndex) < TileTableSize);
// Non-depth entries store a split factor
UINT_32 sampleSplit = m_tileTable[tileIndex].info.tileSplitBytes;
UINT_32 tileBytes1x = BITS_TO_BYTES(bpp * MicroTilePixels * thickness);
*/
VOID CiAddrLib::ReadGbTileMode(
UINT_32 regValue, ///< [in] GB_TILE_MODE register
- ADDR_TILECONFIG* pCfg ///< [out] output structure
+ AddrTileConfig* pCfg ///< [out] output structure
) const
{
GB_TILE_MODE gbTileMode;
return ADDR_OK;
}
+
virtual AddrTileMode HwlDegradeThickTileMode(
AddrTileMode baseTileMode, UINT_32 numSlices, UINT_32* pBytesPerTile) const;
- virtual BOOL_32 HwlOverrideTileMode(
- const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn,
- AddrTileMode* pTileMode,
- AddrTileType* pTileType) const;
+ virtual VOID HwlOverrideTileMode(ADDR_COMPUTE_SURFACE_INFO_INPUT* pInOut) const;
virtual ADDR_E_RETURNCODE HwlComputeDccInfo(
const ADDR_COMPUTE_DCCINFO_INPUT* pIn,
private:
VOID ReadGbTileMode(
- UINT_32 regValue, ADDR_TILECONFIG* pCfg) const;
+ UINT_32 regValue, AddrTileConfig* pCfg) const;
VOID ReadGbMacroTileCfg(
UINT_32 regValue, ADDR_TILEINFO* pCfg) const;
pOut->pTileInfo,
&pOut->baseAlign,
&pOut->pitchAlign,
- &pOut->heightAlign);
+ &pOut->heightAlign,
+ &pOut->blockWidth,
+ &pOut->blockHeight);
if (valid)
{
expHeight,
expNumSlices,
numSamples,
- pOut->pitchAlign,
- pOut->heightAlign,
+ pOut->blockWidth,
+ pOut->blockHeight,
pOut->pTileInfo);
if (!IsMacroTiled(expTileMode)) // Downgraded to micro-tiled
{
return ComputeSurfaceInfoMicroTiled(pIn, pOut, padDims, expTileMode);
}
- else
+ else if (microTileThickness != Thickness(expTileMode))
{
- if (microTileThickness != Thickness(expTileMode))
- {
- //
- // Re-compute if thickness changed since bank-height may be changed!
- //
- return ComputeSurfaceInfoMacroTiled(pIn, pOut, padDims, expTileMode);
- }
+ //
+ // Re-compute if thickness changed since bank-height may be changed!
+ //
+ return ComputeSurfaceInfoMacroTiled(pIn, pOut, padDims, expTileMode);
}
}
pOut->pTileInfo,
&pOut->baseAlign,
&pOut->pitchAlign,
- &pOut->heightAlign);
+ &pOut->heightAlign,
+ &pOut->blockWidth,
+ &pOut->blockHeight);
}
//
}
}
- //
- // Compute the size of a slice.
- //
- bytesPerSlice = BITS_TO_BYTES(static_cast<UINT_64>(paddedPitch) *
- paddedHeight * NextPow2(pIn->bpp) * numSamples);
+ if ((pIn->flags.needEquation == TRUE) &&
+ (m_chipFamily == ADDR_CHIP_FAMILY_SI) &&
+ (pIn->numMipLevels > 1) &&
+ (pIn->mipLevel == 0))
+ {
+ BOOL_32 convertTo1D = FALSE;
+
+ ADDR_ASSERT(Thickness(expTileMode) == 1);
+
+ for (UINT_32 i = 1; i < pIn->numMipLevels; i++)
+ {
+ UINT_32 mipPitch = Max(1u, paddedPitch >> i);
+ UINT_32 mipHeight = Max(1u, pIn->height >> i);
+ UINT_32 mipSlices = pIn->flags.volume ?
+ Max(1u, pIn->numSlices >> i) : pIn->numSlices;
+ expTileMode = ComputeSurfaceMipLevelTileMode(expTileMode,
+ pIn->bpp,
+ mipPitch,
+ mipHeight,
+ mipSlices,
+ numSamples,
+ pOut->blockWidth,
+ pOut->blockHeight,
+ pOut->pTileInfo);
+
+ if (IsMacroTiled(expTileMode))
+ {
+ if (PowTwoAlign(mipPitch, pOut->blockWidth) !=
+ PowTwoAlign(mipPitch, pOut->pitchAlign))
+ {
+ convertTo1D = TRUE;
+ break;
+ }
+ }
+ else
+ {
+ break;
+ }
+ }
+
+ if (convertTo1D)
+ {
+ return ComputeSurfaceInfoMicroTiled(pIn, pOut, padDims, ADDR_TM_1D_TILED_THIN1);
+ }
+ }
pOut->pitch = paddedPitch;
// Put this check right here to workaround special mipmap cases which the original height
pOut->depth = expNumSlices;
+ //
+ // Compute the size of a slice.
+ //
+ bytesPerSlice = BITS_TO_BYTES(static_cast<UINT_64>(paddedPitch) *
+ paddedHeight * NextPow2(pIn->bpp) * numSamples);
+
pOut->surfSize = bytesPerSlice * expNumSlices;
pOut->tileMode = expTileMode;
ADDR_TILEINFO* pTileInfo, ///< [in/out] bank structure.
UINT_32* pBaseAlign, ///< [out] base address alignment in bytes
UINT_32* pPitchAlign, ///< [out] pitch alignment in pixels
- UINT_32* pHeightAlign ///< [out] height alignment in pixels
+ UINT_32* pHeightAlign, ///< [out] height alignment in pixels
+ UINT_32* pMacroTileWidth, ///< [out] macro tile width in pixels
+ UINT_32* pMacroTileHeight ///< [out] macro tile height in pixels
) const
{
BOOL_32 valid = SanityCheckMacroTiled(pTileInfo);
pTileInfo->macroAspectRatio;
*pPitchAlign = macroTileWidth;
+ *pMacroTileWidth = macroTileWidth;
AdjustPitchAlignment(flags, pPitchAlign);
pTileInfo->macroAspectRatio;
*pHeightAlign = macroTileHeight;
+ *pMacroTileHeight = macroTileHeight;
//
// Compute base alignment
UINT_32 baseAlign;
UINT_32 pitchAlign;
UINT_32 heightAlign;
+ UINT_32 macroTileWidth;
+ UINT_32 macroTileHeight;
ADDR_ASSERT(pIn->pTileInfo);
ADDR_TILEINFO tileInfo = *pIn->pTileInfo;
&tileInfo,
&baseAlign,
&pitchAlign,
- &heightAlign);
+ &heightAlign,
+ ¯oTileWidth,
+ ¯oTileHeight);
if (valid)
{
- degrade = (pIn->width < pitchAlign || pIn->height < heightAlign);
+ degrade = ((pIn->width < macroTileWidth) || (pIn->height < macroTileHeight));
// Check whether 2D tiling still has too much footprint
if (degrade == FALSE)
{
return addr;
}
+/**
+***************************************************************************************************
+* EgBasedAddrLib::ComputeMacroTileEquation
+*
+* @brief
+* Computes the address equation in macro tile
+* @return
+* If equation can be computed
+***************************************************************************************************
+*/
+ADDR_E_RETURNCODE EgBasedAddrLib::ComputeMacroTileEquation(
+ UINT_32 log2BytesPP, ///< [in] log2 of bytes per pixel
+ AddrTileMode tileMode, ///< [in] tile mode
+ AddrTileType microTileType, ///< [in] micro tiling type
+ ADDR_TILEINFO* pTileInfo, ///< [in] bank structure
+ ADDR_EQUATION* pEquation ///< [out] Equation for addressing in macro tile
+ ) const
+{
+ ADDR_E_RETURNCODE retCode;
+
+ // Element equation within a tile
+ retCode = ComputeMicroTileEquation(log2BytesPP, tileMode, microTileType, pEquation);
+
+ if (retCode == ADDR_OK)
+ {
+ // Tile equesiton with signle pipe bank
+ UINT_32 numPipes = HwlGetPipes(pTileInfo);
+ UINT_32 numPipeBits = Log2(numPipes);
+
+ for (UINT_32 i = 0; i < Log2(pTileInfo->bankWidth); i++)
+ {
+ pEquation->addr[pEquation->numBits].valid = 1;
+ pEquation->addr[pEquation->numBits].channel = 0;
+ pEquation->addr[pEquation->numBits].index = i + log2BytesPP + 3 + numPipeBits;
+ pEquation->numBits++;
+ }
+
+ for (UINT_32 i = 0; i < Log2(pTileInfo->bankHeight); i++)
+ {
+ pEquation->addr[pEquation->numBits].valid = 1;
+ pEquation->addr[pEquation->numBits].channel = 1;
+ pEquation->addr[pEquation->numBits].index = i + 3;
+ pEquation->numBits++;
+ }
+
+ ADDR_EQUATION equation;
+ memset(&equation, 0, sizeof(ADDR_EQUATION));
+
+ UINT_32 thresholdX = 32;
+ UINT_32 thresholdY = 32;
+
+ if (IsPrtNoRotationTileMode(tileMode))
+ {
+ UINT_32 macroTilePitch =
+ (MicroTileWidth * pTileInfo->bankWidth * numPipes) * pTileInfo->macroAspectRatio;
+ UINT_32 macroTileHeight =
+ (MicroTileHeight * pTileInfo->bankHeight * pTileInfo->banks) /
+ pTileInfo->macroAspectRatio;
+ thresholdX = Log2(macroTilePitch);
+ thresholdY = Log2(macroTileHeight);
+ }
+
+ // Pipe equation
+ retCode = ComputePipeEquation(log2BytesPP, thresholdX, thresholdY, pTileInfo, &equation);
+
+ if (retCode == ADDR_OK)
+ {
+ UINT_32 pipeBitStart = Log2(m_pipeInterleaveBytes);
+
+ if (pEquation->numBits > pipeBitStart)
+ {
+ UINT_32 numLeftShift = pEquation->numBits - pipeBitStart;
+
+ for (UINT_32 i = 0; i < numLeftShift; i++)
+ {
+ pEquation->addr[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->addr[pEquation->numBits - i - 1];
+ pEquation->xor1[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->xor1[pEquation->numBits - i - 1];
+ pEquation->xor2[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->xor2[pEquation->numBits - i - 1];
+ }
+ }
+
+ for (UINT_32 i = 0; i < equation.numBits; i++)
+ {
+ pEquation->addr[pipeBitStart + i] = equation.addr[i];
+ pEquation->xor1[pipeBitStart + i] = equation.xor1[i];
+ pEquation->xor2[pipeBitStart + i] = equation.xor2[i];
+ pEquation->numBits++;
+ }
+
+ // Bank equation
+ memset(&equation, 0, sizeof(ADDR_EQUATION));
+
+ retCode = ComputeBankEquation(log2BytesPP, thresholdX, thresholdY,
+ pTileInfo, &equation);
+
+ if (retCode == ADDR_OK)
+ {
+ UINT_32 bankBitStart = pipeBitStart + numPipeBits + Log2(m_bankInterleave);
+
+ if (pEquation->numBits > bankBitStart)
+ {
+ UINT_32 numLeftShift = pEquation->numBits - bankBitStart;
+
+ for (UINT_32 i = 0; i < numLeftShift; i++)
+ {
+ pEquation->addr[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->addr[pEquation->numBits - i - 1];
+ pEquation->xor1[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->xor1[pEquation->numBits - i - 1];
+ pEquation->xor2[pEquation->numBits + equation.numBits - i - 1] =
+ pEquation->xor2[pEquation->numBits - i - 1];
+ }
+ }
+
+ for (UINT_32 i = 0; i < equation.numBits; i++)
+ {
+ pEquation->addr[bankBitStart + i] = equation.addr[i];
+ pEquation->xor1[bankBitStart + i] = equation.xor1[i];
+ pEquation->xor2[bankBitStart + i] = equation.xor2[i];
+ pEquation->numBits++;
+ }
+ }
+ }
+ }
+
+ return retCode;
+}
+
/**
***************************************************************************************************
* EgBasedAddrLib::ComputeSurfaceAddrFromCoordMicroTiled
ADDR_TILEINFO* pTileInfo) const;
/// Addressing functions
+ virtual ADDR_E_RETURNCODE ComputeBankEquation(
+ UINT_32 log2BytesPP, UINT_32 threshX, UINT_32 threshY,
+ ADDR_TILEINFO* pTileInfo, ADDR_EQUATION* pEquation) const
+ {
+ return ADDR_NOTSUPPORTED;
+ }
+
UINT_32 ComputeBankFromCoord(
UINT_32 x, UINT_32 y, UINT_32 slice,
AddrTileMode tileMode, UINT_32 bankSwizzle, UINT_32 tileSpitSlice,
UINT_32 pitch, UINT_32 height, UINT_32 bpp,
BOOL_32 isLinear, UINT_32 numSlices, UINT_64* sliceBytes, UINT_32 baseAlign) const;
+ ADDR_E_RETURNCODE ComputeMacroTileEquation(
+ UINT_32 log2BytesPP, AddrTileMode tileMode, AddrTileType microTileType,
+ ADDR_TILEINFO* pTileInfo, ADDR_EQUATION* pEquation) const;
+
// Static functions
static BOOL_32 IsTileInfoAllZero(ADDR_TILEINFO* pTileInfo);
static UINT_32 ComputeFmaskNumPlanesFromNumSamples(UINT_32 numSamples);
AddrTileMode tileMode, UINT_32 bpp, ADDR_SURFACE_FLAGS flags,
UINT_32 mipLevel, UINT_32 numSamples,
ADDR_TILEINFO* pTileInfo,
- UINT_32* pBaseAlign, UINT_32* pPitchAlign, UINT_32* pHeightAlign) const;
+ UINT_32* pBaseAlign, UINT_32* pPitchAlign, UINT_32* pHeightAlign,
+ UINT_32* pMacroTileWidth, UINT_32* pMacroTileHeight) const;
/// Surface addressing functions
UINT_64 DispatchComputeSurfaceAddrFromCoord(
*/
SiAddrLib::SiAddrLib(const AddrClient* pClient) :
EgBasedAddrLib(pClient),
- m_noOfEntries(0)
+ m_noOfEntries(0),
+ m_numEquations(0)
{
m_class = SI_ADDRLIB;
memset(&m_settings, 0, sizeof(m_settings));
return numPipes;
}
+/**
+***************************************************************************************************
+* SiAddrLib::ComputeBankEquation
+*
+* @brief
+* Compute bank equation
+*
+* @return
+* If equation can be computed
+***************************************************************************************************
+*/
+ADDR_E_RETURNCODE SiAddrLib::ComputeBankEquation(
+ UINT_32 log2BytesPP, ///< [in] log2 of bytes per pixel
+ UINT_32 threshX, ///< [in] threshold for x channel
+ UINT_32 threshY, ///< [in] threshold for y channel
+ ADDR_TILEINFO* pTileInfo, ///< [in] tile info
+ ADDR_EQUATION* pEquation ///< [out] bank equation
+ ) const
+{
+ ADDR_E_RETURNCODE retCode = ADDR_OK;
+
+ UINT_32 pipes = HwlGetPipes(pTileInfo);
+ UINT_32 bankXStart = 3 + Log2(pipes) + Log2(pTileInfo->bankWidth);
+ UINT_32 bankYStart = 3 + Log2(pTileInfo->bankHeight);
+
+ ADDR_CHANNEL_SETTING x3 = InitChannel(1, 0, log2BytesPP + bankXStart);
+ ADDR_CHANNEL_SETTING x4 = InitChannel(1, 0, log2BytesPP + bankXStart + 1);
+ ADDR_CHANNEL_SETTING x5 = InitChannel(1, 0, log2BytesPP + bankXStart + 2);
+ ADDR_CHANNEL_SETTING x6 = InitChannel(1, 0, log2BytesPP + bankXStart + 3);
+ ADDR_CHANNEL_SETTING y3 = InitChannel(1, 1, bankYStart);
+ ADDR_CHANNEL_SETTING y4 = InitChannel(1, 1, bankYStart + 1);
+ ADDR_CHANNEL_SETTING y5 = InitChannel(1, 1, bankYStart + 2);
+ ADDR_CHANNEL_SETTING y6 = InitChannel(1, 1, bankYStart + 3);
+
+ x3.value = (threshX > bankXStart) ? x3.value : 0;
+ x4.value = (threshX > bankXStart + 1) ? x4.value : 0;
+ x5.value = (threshX > bankXStart + 2) ? x5.value : 0;
+ x6.value = (threshX > bankXStart + 3) ? x6.value : 0;
+ y3.value = (threshY > bankYStart) ? y3.value : 0;
+ y4.value = (threshY > bankYStart + 1) ? y4.value : 0;
+ y5.value = (threshY > bankYStart + 2) ? y5.value : 0;
+ y6.value = (threshY > bankYStart + 3) ? y6.value : 0;
+
+ switch (pTileInfo->banks)
+ {
+ case 16:
+ pEquation->addr[0] = y6;
+ pEquation->xor1[0] = x3;
+ pEquation->addr[1] = y5;
+ pEquation->xor1[1] = y6;
+ pEquation->xor2[1] = x4;
+ pEquation->addr[2] = y4;
+ pEquation->xor1[2] = x5;
+ pEquation->addr[3] = y3;
+ pEquation->xor1[3] = x6;
+ pEquation->numBits = 4;
+ break;
+ case 8:
+ pEquation->addr[0] = y5;
+ pEquation->xor1[0] = x3;
+ pEquation->addr[1] = y4;
+ pEquation->xor1[1] = y5;
+ pEquation->xor2[1] = x4;
+ pEquation->addr[2] = y3;
+ pEquation->xor1[2] = x5;
+ pEquation->numBits = 3;
+ break;
+ case 4:
+ pEquation->addr[0] = y4;
+ pEquation->xor1[0] = x3;
+ pEquation->addr[1] = y3;
+ pEquation->xor1[1] = x4;
+ pEquation->numBits = 2;
+ break;
+ case 2:
+ pEquation->addr[0] = y3;
+ pEquation->xor1[0] = x3;
+ pEquation->numBits = 1;
+ break;
+ default:
+ pEquation->numBits = 0;
+ retCode = ADDR_NOTSUPPORTED;
+ ADDR_ASSERT_ALWAYS();
+ break;
+ }
+
+ for (UINT_32 i = 0; i < pEquation->numBits; i++)
+ {
+ if (pEquation->addr[i].value == 0)
+ {
+ if (pEquation->xor1[i].value == 0)
+ {
+ // 00X -> X00
+ pEquation->addr[i].value = pEquation->xor2[i].value;
+ pEquation->xor2[i].value = 0;
+ }
+ else
+ {
+ pEquation->addr[i].value = pEquation->xor1[i].value;
+
+ if (pEquation->xor2[i].value != 0)
+ {
+ // 0XY -> XY0
+ pEquation->xor1[i].value = pEquation->xor2[i].value;
+ pEquation->xor2[i].value = 0;
+ }
+ else
+ {
+ // 0X0 -> X00
+ pEquation->xor1[i].value = 0;
+ }
+ }
+ }
+ else if (pEquation->xor1[i].value == 0)
+ {
+ if (pEquation->xor2[i].value != 0)
+ {
+ // X0Y -> XY0
+ pEquation->xor1[i].value = pEquation->xor2[i].value;
+ pEquation->xor2[i].value = 0;
+ }
+ }
+ }
+
+ if ((pTileInfo->bankWidth == 1) &&
+ ((pTileInfo->pipeConfig == ADDR_PIPECFG_P4_32x32) ||
+ (pTileInfo->pipeConfig == ADDR_PIPECFG_P8_32x64_32x32)))
+ {
+ retCode = ADDR_NOTSUPPORTED;
+ }
+
+ return retCode;
+}
+
+/**
+***************************************************************************************************
+* SiAddrLib::ComputePipeEquation
+*
+* @brief
+* Compute pipe equation
+*
+* @return
+* If equation can be computed
+***************************************************************************************************
+*/
+ADDR_E_RETURNCODE SiAddrLib::ComputePipeEquation(
+ UINT_32 log2BytesPP, ///< [in] Log2 of bytes per pixel
+ UINT_32 threshX, ///< [in] Threshold for X channel
+ UINT_32 threshY, ///< [in] Threshold for Y channel
+ ADDR_TILEINFO* pTileInfo, ///< [in] Tile info
+ ADDR_EQUATION* pEquation ///< [out] Pipe configure
+ ) const
+{
+ ADDR_E_RETURNCODE retCode = ADDR_OK;
+
+ ADDR_CHANNEL_SETTING* pAddr = pEquation->addr;
+ ADDR_CHANNEL_SETTING* pXor1 = pEquation->xor1;
+ ADDR_CHANNEL_SETTING* pXor2 = pEquation->xor2;
+
+ ADDR_CHANNEL_SETTING x3 = InitChannel(1, 0, 3 + log2BytesPP);
+ ADDR_CHANNEL_SETTING x4 = InitChannel(1, 0, 4 + log2BytesPP);
+ ADDR_CHANNEL_SETTING x5 = InitChannel(1, 0, 5 + log2BytesPP);
+ ADDR_CHANNEL_SETTING x6 = InitChannel(1, 0, 6 + log2BytesPP);
+ ADDR_CHANNEL_SETTING y3 = InitChannel(1, 1, 3);
+ ADDR_CHANNEL_SETTING y4 = InitChannel(1, 1, 4);
+ ADDR_CHANNEL_SETTING y5 = InitChannel(1, 1, 5);
+ ADDR_CHANNEL_SETTING y6 = InitChannel(1, 1, 6);
+
+ x3.value = (threshX > 3) ? x3.value : 0;
+ x4.value = (threshX > 4) ? x4.value : 0;
+ x5.value = (threshX > 5) ? x5.value : 0;
+ x6.value = (threshX > 6) ? x6.value : 0;
+ y3.value = (threshY > 3) ? y3.value : 0;
+ y4.value = (threshY > 4) ? y4.value : 0;
+ y5.value = (threshY > 5) ? y5.value : 0;
+ y6.value = (threshY > 6) ? y6.value : 0;
+
+ switch (pTileInfo->pipeConfig)
+ {
+ case ADDR_PIPECFG_P2:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pEquation->numBits = 1;
+ break;
+ case ADDR_PIPECFG_P4_8x16:
+ pAddr[0] = x4;
+ pXor1[0] = y3;
+ pAddr[1] = x3;
+ pXor1[1] = y4;
+ pEquation->numBits = 2;
+ break;
+ case ADDR_PIPECFG_P4_16x16:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x4;
+ pXor1[1] = y4;
+ pEquation->numBits = 2;
+ break;
+ case ADDR_PIPECFG_P4_16x32:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x4;
+ pXor1[1] = y5;
+ pEquation->numBits = 2;
+ break;
+ case ADDR_PIPECFG_P4_32x32:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x5;
+ pAddr[1] = x5;
+ pXor1[1] = y5;
+ pEquation->numBits = 2;
+ break;
+ case ADDR_PIPECFG_P8_16x16_8x16:
+ pAddr[0] = x4;
+ pXor1[0] = y3;
+ pXor2[0] = x5;
+ pAddr[1] = x3;
+ pXor1[1] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_16x32_8x16:
+ pAddr[0] = x4;
+ pXor1[0] = y3;
+ pXor2[0] = x5;
+ pAddr[1] = x3;
+ pXor1[1] = y4;
+ pAddr[2] = x4;
+ pXor1[2] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_16x32_16x16:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x5;
+ pXor1[1] = y4;
+ pAddr[2] = x4;
+ pXor1[2] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_32x32_8x16:
+ pAddr[0] = x4;
+ pXor1[0] = y3;
+ pXor2[0] = x5;
+ pAddr[1] = x3;
+ pXor1[1] = y4;
+ pAddr[2] = x5;
+ pXor1[2] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_32x32_16x16:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x4;
+ pXor1[1] = y4;
+ pAddr[2] = x5;
+ pXor1[2] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_32x32_16x32:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x4;
+ pXor1[1] = y6;
+ pAddr[2] = x5;
+ pXor1[2] = y5;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P8_32x64_32x32:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x5;
+ pAddr[1] = x6;
+ pXor1[1] = y5;
+ pAddr[2] = x5;
+ pXor1[2] = y6;
+ pEquation->numBits = 3;
+ break;
+ case ADDR_PIPECFG_P16_32x32_8x16:
+ pAddr[0] = x4;
+ pXor1[0] = y3;
+ pAddr[1] = x3;
+ pXor1[1] = y4;
+ pAddr[2] = x5;
+ pXor1[2] = y6;
+ pAddr[3] = x6;
+ pXor1[3] = y5;
+ pEquation->numBits = 4;
+ break;
+ case ADDR_PIPECFG_P16_32x32_16x16:
+ pAddr[0] = x3;
+ pXor1[0] = y3;
+ pXor2[0] = x4;
+ pAddr[1] = x4;
+ pXor1[1] = y4;
+ pAddr[2] = x5;
+ pXor1[2] = y6;
+ pAddr[3] = x6;
+ pXor1[3] = y5;
+ pEquation->numBits = 4;
+ break;
+ default:
+ ADDR_UNHANDLED_CASE();
+ pEquation->numBits = 0;
+ retCode = ADDR_NOTSUPPORTED;
+ break;
+ }
+
+ for (UINT_32 i = 0; i < pEquation->numBits; i++)
+ {
+ if (pAddr[i].value == 0)
+ {
+ if (pXor1[i].value == 0)
+ {
+ pAddr[i].value = pXor2[i].value;
+ }
+ else
+ {
+ pAddr[i].value = pXor1[i].value;
+ pXor1[i].value = 0;
+ }
+ }
+ }
+
+ return retCode;
+}
+
/**
***************************************************************************************************
* SiAddrLib::ComputePipeFromCoord
valid = InitTileSettingTable(pRegValue->pTileConfig, pRegValue->noOfEntries);
+ if (valid)
+ {
+ InitEquationTable();
+ }
+
m_maxSamples = 16;
}
{
pOut->tileIndex = pIn->tileIndex;
- return EgBasedAddrLib::HwlComputeSurfaceInfo(pIn,pOut);
+ ADDR_E_RETURNCODE retCode = EgBasedAddrLib::HwlComputeSurfaceInfo(pIn, pOut);
+
+ UINT_32 tileIndex = static_cast<UINT_32>(pOut->tileIndex);
+
+ if ((pIn->flags.needEquation == TRUE) &&
+ (pIn->numSamples <= 1) &&
+ (tileIndex < TileTableSize))
+ {
+ pOut->equationIndex = m_equationLookupTable[Log2(pIn->bpp >> 3)][tileIndex];
+
+ if (pOut->equationIndex != ADDR_INVALID_EQUATION_INDEX)
+ {
+ pOut->blockWidth = m_blockWidth[pOut->equationIndex];
+
+ pOut->blockHeight = m_blockHeight[pOut->equationIndex];
+
+ pOut->blockSlices = m_blockSlices[pOut->equationIndex];
+ }
+ }
+ else
+ {
+ pOut->equationIndex = ADDR_INVALID_EQUATION_INDEX;
+ }
+
+ return retCode;
}
/**
nextHeight,
nextSlices,
pIn->numSamples,
- pOut->pitchAlign,
- pOut->heightAlign,
+ pOut->blockWidth,
+ pOut->blockHeight,
pOut->pTileInfo);
pOut->last2DLevel = IsMicroTiled(nextTileMode);
* Tile setting info.
***************************************************************************************************
*/
-const ADDR_TILECONFIG* SiAddrLib::GetTileSetting(
+const AddrTileConfig* SiAddrLib::GetTileSetting(
UINT_32 index ///< [in] Tile index
) const
{
}
else
{
- const ADDR_TILECONFIG* pCfgTable = GetTileSetting(index);
+ const AddrTileConfig* pCfgTable = GetTileSetting(index);
if (pInfo)
{
*/
VOID SiAddrLib::ReadGbTileMode(
UINT_32 regValue, ///< [in] GB_TILE_MODE register
- ADDR_TILECONFIG* pCfg ///< [out] output structure
+ AddrTileConfig* pCfg ///< [out] output structure
) const
{
GB_TILE_MODE gbTileMode;
* Override tile modes (for PRT only, avoid client passes in an invalid PRT mode for SI.
*
* @return
-* Suitable tile mode
+* N/A
*
***************************************************************************************************
*/
-BOOL_32 SiAddrLib::HwlOverrideTileMode(
- const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn, ///< [in] input structure
- AddrTileMode* pTileMode, ///< [in/out] pointer to the tile mode
- AddrTileType* pTileType ///< [in/out] pointer to the tile type
+void SiAddrLib::HwlOverrideTileMode(
+ ADDR_COMPUTE_SURFACE_INFO_INPUT* pInOut ///< [in/out] input output structure
) const
{
- BOOL_32 bOverrided = FALSE;
- AddrTileMode tileMode = *pTileMode;
+ AddrTileMode tileMode = pInOut->tileMode;
switch (tileMode)
{
break;
}
- if (tileMode != *pTileMode)
+ if ((pInOut->flags.needEquation == TRUE) &&
+ (IsMacroTiled(tileMode) == TRUE) &&
+ (pInOut->numSamples <= 1))
{
- *pTileMode = tileMode;
- bOverrided = TRUE;
- ADDR_ASSERT(pIn->flags.prt == TRUE);
+ UINT_32 thickness = Thickness(tileMode);
+
+ pInOut->flags.prt = TRUE;
+
+ if (thickness > 1)
+ {
+ tileMode = ADDR_TM_1D_TILED_THICK;
+ }
+ else if (pInOut->numSlices > 1)
+ {
+ tileMode = ADDR_TM_1D_TILED_THIN1;
+ }
+ else
+ {
+ tileMode = ADDR_TM_2D_TILED_THIN1;
+ }
}
- return bOverrided;
+ if (tileMode != pInOut->tileMode)
+ {
+ pInOut->tileMode = tileMode;
+
+ ADDR_ASSERT(pInOut->flags.prt == TRUE);
+ }
}
/**
return ADDR_OK;
}
+/**
+***************************************************************************************************
+* SiAddrLib::InitEquationTable
+*
+* @brief
+* Initialize Equation table.
+*
+* @return
+* N/A
+***************************************************************************************************
+*/
+VOID SiAddrLib::InitEquationTable()
+{
+ ADDR_EQUATION_KEY equationKeyTable[EquationTableSize];
+ memset(equationKeyTable, 0, sizeof(equationKeyTable));
+
+ memset(m_equationTable, 0, sizeof(m_equationTable));
+
+ memset(m_blockWidth, 0, sizeof(m_blockWidth));
+
+ memset(m_blockHeight, 0, sizeof(m_blockHeight));
+
+ memset(m_blockSlices, 0, sizeof(m_blockSlices));
+
+ // Loop all possible bpp
+ for (UINT_32 log2ElementBytes = 0; log2ElementBytes < MaxNumElementBytes; log2ElementBytes++)
+ {
+ // Get bits per pixel
+ UINT_32 bpp = 1 << (log2ElementBytes + 3);
+
+ // Loop all possible tile index
+ for (INT_32 tileIndex = 0; tileIndex < m_noOfEntries; tileIndex++)
+ {
+ UINT_32 equationIndex = ADDR_INVALID_EQUATION_INDEX;
+
+ AddrTileConfig tileConfig = m_tileTable[tileIndex];
+
+ ADDR_SURFACE_FLAGS flags = {{0}};
+
+ // Compute tile info, hardcode numSamples to 1 because MSAA is not supported
+ // in swizzle pattern equation
+ HwlComputeMacroModeIndex(tileIndex, flags, bpp, 1, &tileConfig.info, NULL, NULL);
+
+ // Check if the input is supported
+ if (IsEquationSupported(bpp, tileConfig, tileIndex) == TRUE)
+ {
+ ADDR_EQUATION_KEY key = {{0}};
+
+ // Generate swizzle equation key from bpp and tile config
+ key.fields.log2ElementBytes = log2ElementBytes;
+ key.fields.tileMode = tileConfig.mode;
+ // Treat depth micro tile type and non-display micro tile type as the same key
+ // because they have the same equation actually
+ key.fields.microTileType = (tileConfig.type == ADDR_DEPTH_SAMPLE_ORDER) ?
+ ADDR_NON_DISPLAYABLE : tileConfig.type;
+ key.fields.pipeConfig = tileConfig.info.pipeConfig;
+ key.fields.numBanks = tileConfig.info.banks;
+ key.fields.bankWidth = tileConfig.info.bankWidth;
+ key.fields.bankHeight = tileConfig.info.bankHeight;
+ key.fields.macroAspectRatio = tileConfig.info.macroAspectRatio;
+
+ // Find in the table if the equation has been built based on the key
+ for (UINT_32 i = 0; i < m_numEquations; i++)
+ {
+ if (key.value == equationKeyTable[i].value)
+ {
+ equationIndex = i;
+ break;
+ }
+ }
+
+ // If found, just fill the index into the lookup table and no need
+ // to generate the equation again. Otherwise, generate the equation.
+ if (equationIndex == ADDR_INVALID_EQUATION_INDEX)
+ {
+ ADDR_EQUATION equation;
+ ADDR_E_RETURNCODE retCode;
+
+ memset(&equation, 0, sizeof(ADDR_EQUATION));
+
+ // Generate the equation
+ if (IsMicroTiled(tileConfig.mode))
+ {
+ retCode = ComputeMicroTileEquation(log2ElementBytes,
+ tileConfig.mode,
+ tileConfig.type,
+ &equation);
+ }
+ else
+ {
+ retCode = ComputeMacroTileEquation(log2ElementBytes,
+ tileConfig.mode,
+ tileConfig.type,
+ &tileConfig.info,
+ &equation);
+ }
+ // Only fill the equation into the table if the return code is ADDR_OK,
+ // otherwise if the return code is not ADDR_OK, it indicates this is not
+ // a valid input, we do nothing but just fill invalid equation index
+ // into the lookup table.
+ if (retCode == ADDR_OK)
+ {
+ equationIndex = m_numEquations;
+ ADDR_ASSERT(equationIndex < EquationTableSize);
+
+ m_blockSlices[equationIndex] = Thickness(tileConfig.mode);
+
+ if (IsMicroTiled(tileConfig.mode))
+ {
+ m_blockWidth[equationIndex] = MicroTileWidth;
+ m_blockHeight[equationIndex] = MicroTileHeight;
+ }
+ else
+ {
+ const ADDR_TILEINFO* pTileInfo = &tileConfig.info;
+
+ m_blockWidth[equationIndex] =
+ HwlGetPipes(pTileInfo) * MicroTileWidth * pTileInfo->bankWidth *
+ pTileInfo->macroAspectRatio;
+ m_blockHeight[equationIndex] =
+ MicroTileHeight * pTileInfo->bankHeight * pTileInfo->banks /
+ pTileInfo->macroAspectRatio;
+
+ if (m_chipFamily == ADDR_CHIP_FAMILY_SI)
+ {
+ static const UINT_32 PrtTileSize = 0x10000;
+
+ UINT_32 macroTileSize =
+ m_blockWidth[equationIndex] * m_blockHeight[equationIndex] *
+ bpp / 8;
+
+ if (macroTileSize < PrtTileSize)
+ {
+ UINT_32 numMacroTiles = PrtTileSize / macroTileSize;
+
+ ADDR_ASSERT(macroTileSize == (1u << equation.numBits));
+ ADDR_ASSERT((PrtTileSize % macroTileSize) == 0);
+
+ UINT_32 numBits = Log2(numMacroTiles);
+
+ UINT_32 xStart = Log2(m_blockWidth[equationIndex]) +
+ log2ElementBytes;
+
+ m_blockWidth[equationIndex] *= numMacroTiles;
+
+ for (UINT_32 i = 0; i < numBits; i++)
+ {
+ equation.addr[equation.numBits + i].valid = 1;
+ equation.addr[equation.numBits + i].index = xStart + i;
+ }
+
+ equation.numBits += numBits;
+ }
+ }
+ }
+
+ equationKeyTable[equationIndex] = key;
+ m_equationTable[equationIndex] = equation;
+
+ m_numEquations++;
+ }
+ }
+ }
+
+ // Fill the index into the lookup table, if the combination is not supported
+ // fill the invalid equation index
+ m_equationLookupTable[log2ElementBytes][tileIndex] = equationIndex;
+ }
+ }
+}
+
+/**
+***************************************************************************************************
+* SiAddrLib::IsEquationSupported
+*
+* @brief
+* Check if it is supported for given bpp and tile config to generate a equation.
+*
+* @return
+* TRUE if supported
+***************************************************************************************************
+*/
+BOOL_32 SiAddrLib::IsEquationSupported(
+ UINT_32 bpp, ///< Bits per pixel
+ AddrTileConfig tileConfig, ///< Tile config
+ INT_32 tileIndex ///< Tile index
+ ) const
+{
+ BOOL_32 supported = TRUE;
+
+ // Linear tile mode is not supported in swizzle pattern equation
+ if (IsLinear(tileConfig.mode))
+ {
+ supported = FALSE;
+ }
+ // These tile modes are for Tex2DArray and Tex3D which has depth (num_slice > 1) use,
+ // which is not supported in swizzle pattern equation due to slice rotation
+ else if ((tileConfig.mode == ADDR_TM_2D_TILED_THICK) ||
+ (tileConfig.mode == ADDR_TM_2D_TILED_XTHICK) ||
+ (tileConfig.mode == ADDR_TM_3D_TILED_THIN1) ||
+ (tileConfig.mode == ADDR_TM_3D_TILED_THICK) ||
+ (tileConfig.mode == ADDR_TM_3D_TILED_XTHICK))
+ {
+ supported = FALSE;
+ }
+ // Only 8bpp(stencil), 16bpp and 32bpp is supported for depth
+ else if ((tileConfig.type == ADDR_DEPTH_SAMPLE_ORDER) && (bpp > 32))
+ {
+ supported = FALSE;
+ }
+ // Tile split is not supported in swizzle pattern equation
+ else if (IsMacroTiled(tileConfig.mode))
+ {
+ UINT_32 thickness = Thickness(tileConfig.mode);
+ if (((bpp >> 3) * MicroTilePixels * thickness) > tileConfig.info.tileSplitBytes)
+ {
+ supported = FALSE;
+ }
+
+ if ((supported == TRUE) && (m_chipFamily == ADDR_CHIP_FAMILY_SI))
+ {
+ // Please refer to SiAddrLib::HwlSetupTileInfo for PRT tile index selecting
+ // Tile index 3, 6, 21-25 are for PRT single sample
+ if (tileIndex == 3)
+ {
+ supported = (bpp == 16);
+ }
+ else if (tileIndex == 6)
+ {
+ supported = (bpp == 32);
+ }
+ else if ((tileIndex >= 21) && (tileIndex <= 25))
+ {
+ supported = (bpp == 8u * (1u << (static_cast<UINT_32>(tileIndex) - 21u)));
+ }
+ else
+ {
+ supported = FALSE;
+ }
+ }
+ }
+
+ return supported;
+}
+
+
* @brief Describes the information in tile mode table
***************************************************************************************************
*/
-struct ADDR_TILECONFIG
+struct AddrTileConfig
{
AddrTileMode mode;
AddrTileType type;
UINT_32 pitch, UINT_32 height, UINT_32 bpp,
BOOL_32 isLinear, UINT_32 numSlices, UINT_64* pSliceBytes, UINT_32 baseAlign) const;
+ virtual ADDR_E_RETURNCODE ComputeBankEquation(
+ UINT_32 log2BytesPP, UINT_32 threshX, UINT_32 threshY,
+ ADDR_TILEINFO* pTileInfo, ADDR_EQUATION* pEquation) const;
+
+ virtual ADDR_E_RETURNCODE ComputePipeEquation(
+ UINT_32 log2BytesPP, UINT_32 threshX, UINT_32 threshY,
+ ADDR_TILEINFO* pTileInfo, ADDR_EQUATION* pEquation) const;
+
virtual UINT_32 ComputePipeFromCoord(
UINT_32 x, UINT_32 y, UINT_32 slice,
AddrTileMode tileMode, UINT_32 pipeSwizzle, BOOL_32 ignoreSE,
virtual AddrTileMode HwlDegradeThickTileMode(
AddrTileMode baseTileMode, UINT_32 numSlices, UINT_32* pBytesPerTile) const;
- virtual BOOL_32 HwlOverrideTileMode(
- const ADDR_COMPUTE_SURFACE_INFO_INPUT* pIn,
- AddrTileMode* pTileMode,
- AddrTileType* pTileType) const;
+ virtual VOID HwlOverrideTileMode(ADDR_COMPUTE_SURFACE_INFO_INPUT* pInOut) const;
virtual BOOL_32 HwlSanityCheckMacroTiled(
ADDR_TILEINFO* pTileInfo) const
virtual ADDR_E_RETURNCODE HwlGetMaxAlignments(ADDR_GET_MAX_ALINGMENTS_OUTPUT* pOut) const;
+ // Get equation table pointer and number of equations
+ virtual UINT_32 HwlGetEquationTableInfo(const ADDR_EQUATION** ppEquationTable) const
+ {
+ *ppEquationTable = m_equationTable;
+
+ return m_numEquations;
+ }
+
+ // Check if it is supported for given bpp and tile config to generate an equation
+ BOOL_32 IsEquationSupported(
+ UINT_32 bpp, AddrTileConfig tileConfig, INT_32 tileIndex) const;
+
// Protected non-virtual functions
VOID ComputeTileCoordFromPipeAndElemIdx(
UINT_32 elemIdx, UINT_32 pipe, AddrPipeCfg pipeCfg, UINT_32 pitchInMacroTile,
BOOL_32 DecodeGbRegs(
const ADDR_REGISTER_VALUE* pRegValue);
- const ADDR_TILECONFIG* GetTileSetting(
+ const AddrTileConfig* GetTileSetting(
UINT_32 index) const;
+ // Initialize equation table
+ VOID InitEquationTable();
+
static const UINT_32 TileTableSize = 32;
- ADDR_TILECONFIG m_tileTable[TileTableSize];
+ AddrTileConfig m_tileTable[TileTableSize];
UINT_32 m_noOfEntries;
+ // Max number of bpp (8bpp/16bpp/32bpp/64bpp/128bpp)
+ static const UINT_32 MaxNumElementBytes = 5;
+ // More than half slots in tile mode table can't support equation
+ static const UINT_32 EquationTableSize = (MaxNumElementBytes * TileTableSize) / 2;
+ // Equation table
+ ADDR_EQUATION m_equationTable[EquationTableSize];
+ UINT_32 m_blockWidth[EquationTableSize];
+ UINT_32 m_blockHeight[EquationTableSize];
+ UINT_32 m_blockSlices[EquationTableSize];
+ // Number of equation entries in the table
+ UINT_32 m_numEquations;
+ // Equation lookup table according to bpp and tile index
+ UINT_32 m_equationLookupTable[MaxNumElementBytes][TileTableSize];
+
private:
UINT_32 GetPipePerSurf(AddrPipeCfg pipeConfig) const;
VOID ReadGbTileMode(
- UINT_32 regValue, ADDR_TILECONFIG* pCfg) const;
+ UINT_32 regValue, AddrTileConfig* pCfg) const;
BOOL_32 InitTileSettingTable(
const UINT_32 *pSetting, UINT_32 noOfEntries);