+2011-03-24 Paolo Carlini <paolo.carlini@oracle.com>
+
+ * include/bits/random.h (negative_binomial_distribution<>::
+ negative_binomial_distribution(_IntType, double),
+ negative_binomial_distribution<>::
+ negative_binomial_distribution(const param_type&)): Fix
+ construction of _M_gd.
+ * include/bits/random.tcc (negative_binomial_distribution<>::
+ operator()): Fix computation, per Leger's algorithm.
+ * testsuite/util/testsuite_random.h (discrete_pdf,
+ negative_binomial_pdf, poisson_pdf, uniform_int_pdf): New.
+ (binomial_pdf): Swap last two parameters.
+ * testsuite/26_numerics/random/discrete_distribution/
+ operators/values.cc: New.
+ * testsuite/26_numerics/random/negative_binomial_distribution/
+ operators/values.cc: Likewise.
+ * testsuite/26_numerics/random/poisson_distribution/
+ operators/values.cc: Likewise.
+ * testsuite/26_numerics/random/uniform_int_distribution/
+ operators/values.cc: Likewise.
+ * testsuite/26_numerics/random/binomial_distribution/
+ operators/values.cc: Adjust.
+
2011-03-24 Rainer Orth <ro@CeBiTec.Uni-Bielefeld.DE>
* config/abi/post/solaris2.8/baseline_symbols.txt: Regenerate.
param_type(double __p = 0.5)
: _M_p(__p)
{
- _GLIBCXX_DEBUG_ASSERT((_M_p > 0.0)
- && (_M_p < 1.0));
+ _GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
_M_initialize();
}
explicit
param_type(_IntType __k = 1, double __p = 0.5)
: _M_k(__k), _M_p(__p)
- { }
+ {
+ _GLIBCXX_DEBUG_ASSERT((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0));
+ }
_IntType
k() const
explicit
negative_binomial_distribution(_IntType __k = 1, double __p = 0.5)
- : _M_param(__k, __p), _M_gd(__k, __p / (1.0 - __p))
+ : _M_param(__k, __p), _M_gd(__k, 1.0)
{ }
explicit
negative_binomial_distribution(const param_type& __p)
- : _M_param(__p), _M_gd(__p.k(), __p.p() / (1.0 - __p.p()))
+ : _M_param(__p), _M_gd(__p.k(), 1.0)
{ }
/**
return __is;
}
-
+ // This is Leger's algorithm.
template<typename _IntType>
template<typename _UniformRandomNumberGenerator>
typename negative_binomial_distribution<_IntType>::result_type
const double __y = _M_gd(__urng);
// XXX Is the constructor too slow?
- std::poisson_distribution<result_type> __poisson(__y);
+ std::poisson_distribution<result_type> __poisson(__y * (1.0 - p())
+ / p());
return __poisson(__urng);
}
typedef typename std::gamma_distribution<result_type>::param_type
param_type;
- const double __y =
- _M_gd(__urng, param_type(__p.k(), __p.p() / (1.0 - __p.p())));
+ const double __y = _M_gd(__urng, param_type(__p.k(), 1.0));
- std::poisson_distribution<result_type> __poisson(__y);
+ std::poisson_distribution<result_type> __poisson(__y * (1.0 - __p.p())
+ / __p.p() );
return __poisson(__urng);
}
std::binomial_distribution<> bd1(5, 0.3);
auto bbd1 = std::bind(bd1, eng);
- testDiscreteDist(bbd1, [](int n) { return binomial_pdf(n, 0.3, 5); } );
+ testDiscreteDist(bbd1, [](int n) { return binomial_pdf(n, 5, 0.3); } );
std::binomial_distribution<> bd2(55, 0.3);
auto bbd2 = std::bind(bd2, eng);
- testDiscreteDist(bbd2, [](int n) { return binomial_pdf(n, 0.3, 55); } );
+ testDiscreteDist(bbd2, [](int n) { return binomial_pdf(n, 55, 0.3); } );
// libstdc++/48114
std::binomial_distribution<> bd3(10, 0.75);
auto bbd3 = std::bind(bd3, eng);
- testDiscreteDist(bbd3, [](int n) { return binomial_pdf(n, 0.75, 10); } );
+ testDiscreteDist(bbd3, [](int n) { return binomial_pdf(n, 10, 0.75); } );
}
int main()
--- /dev/null
+// { dg-options "-std=gnu++0x" }
+// { dg-require-cstdint "" }
+//
+// Copyright (C) 2011 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// 26.5.8.6.1 Class template discrete_distribution [rand.dist.samp.discrete]
+
+#include <random>
+#include <functional>
+#include <testsuite_random.h>
+
+void test01()
+{
+ using namespace __gnu_test;
+
+ std::mt19937 eng;
+
+ std::discrete_distribution<> dd1({ });
+ auto bdd1 = std::bind(dd1, eng);
+ testDiscreteDist(bdd1, [](int n) { return discrete_pdf(n, { }); } );
+
+ std::discrete_distribution<> dd2({ 1.0, 3.0, 2.0});
+ auto bdd2 = std::bind(dd2, eng);
+ testDiscreteDist(bdd2, [](int n)
+ { return discrete_pdf(n, { 1.0, 3.0, 2.0}); } );
+
+ std::discrete_distribution<> dd3({ 2.0, 2.0, 1.0, 0.0, 4.0});
+ auto bdd3 = std::bind(dd3, eng);
+ testDiscreteDist(bdd3, [](int n)
+ { return discrete_pdf(n, { 2.0, 2.0, 1.0, 0.0, 4.0}); } );
+}
+
+int main()
+{
+ test01();
+ return 0;
+}
--- /dev/null
+// { dg-options "-std=gnu++0x" }
+// { dg-require-cstdint "" }
+// { dg-require-cmath "" }
+//
+// Copyright (C) 2011 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// 26.5.8.3.4 Class template negative_binomial_distribution
+// [rand.dist.bern.negbin]
+
+#include <random>
+#include <functional>
+#include <testsuite_random.h>
+
+void test01()
+{
+ using namespace __gnu_test;
+
+ std::mt19937 eng;
+
+ std::negative_binomial_distribution<> nbd1(5, 0.3);
+ auto bnbd1 = std::bind(nbd1, eng);
+ testDiscreteDist(bnbd1, [](int n)
+ { return negative_binomial_pdf(n, 5, 0.3); } );
+
+ std::negative_binomial_distribution<> nbd2(55, 0.3);
+ auto bnbd2 = std::bind(nbd2, eng);
+ testDiscreteDist(bnbd2, [](int n)
+ { return negative_binomial_pdf(n, 55, 0.3); } );
+
+ std::negative_binomial_distribution<> nbd3(10, 0.75);
+ auto bnbd3 = std::bind(nbd3, eng);
+ testDiscreteDist(bnbd3, [](int n)
+ { return negative_binomial_pdf(n, 10, 0.75); } );
+}
+
+int main()
+{
+ test01();
+ return 0;
+}
--- /dev/null
+// { dg-options "-std=gnu++0x" }
+// { dg-require-cstdint "" }
+// { dg-require-cmath "" }
+//
+// Copyright (C) 2011 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// 26.5.8.4.1 Class template poisson_distribution [rand.dist.pois.poisson]
+
+#include <random>
+#include <functional>
+#include <testsuite_random.h>
+
+void test01()
+{
+ using namespace __gnu_test;
+
+ std::mt19937 eng;
+
+ std::poisson_distribution<> pd1(3.0);
+ auto bpd1 = std::bind(pd1, eng);
+ testDiscreteDist(bpd1, [](int n) { return poisson_pdf(n, 3.0); } );
+
+ std::poisson_distribution<> pd2(15.0);
+ auto bpd2 = std::bind(pd2, eng);
+ testDiscreteDist(bpd2, [](int n) { return poisson_pdf(n, 15.0); } );
+
+ std::poisson_distribution<> pd3(30.0);
+ auto bpd3 = std::bind(pd3, eng);
+ testDiscreteDist(bpd3, [](int n) { return poisson_pdf(n, 30.0); } );
+}
+
+int main()
+{
+ test01();
+ return 0;
+}
--- /dev/null
+// { dg-options "-std=gnu++0x" }
+// { dg-require-cstdint "" }
+//
+// Copyright (C) 2011 Free Software Foundation, Inc.
+//
+// This file is part of the GNU ISO C++ Library. This library is free
+// software; you can redistribute it and/or modify it under the
+// terms of the GNU General Public License as published by the
+// Free Software Foundation; either version 3, or (at your option)
+// any later version.
+//
+// This library is distributed in the hope that it will be useful,
+// but WITHOUT ANY WARRANTY; without even the implied warranty of
+// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU General Public License along
+// with this library; see the file COPYING3. If not see
+// <http://www.gnu.org/licenses/>.
+
+// 26.5.8.2.1 Class template uniform_int_distribution [rand.dist.uni.int]
+
+#include <random>
+#include <functional>
+#include <testsuite_random.h>
+
+void test01()
+{
+ using namespace __gnu_test;
+
+ std::mt19937 eng;
+
+ std::uniform_int_distribution<> uid1(0, 2);
+ auto buid1 = std::bind(uid1, eng);
+ testDiscreteDist(buid1, [](int n) { return uniform_int_pdf(n, 0, 2); } );
+
+ std::uniform_int_distribution<> uid2(3, 7);
+ auto buid2 = std::bind(uid2, eng);
+ testDiscreteDist(buid2, [](int n) { return uniform_int_pdf(n, 3, 7); } );
+
+ std::uniform_int_distribution<> uid3(1, 20);
+ auto buid3 = std::bind(uid3, eng);
+ testDiscreteDist(buid3, [](int n) { return uniform_int_pdf(n, 1, 20); } );
+}
+
+int main()
+{
+ test01();
+ return 0;
+}
#define _GLIBCXX_TESTSUITE_RANDOM_H
#include <cmath>
+#include <initializer_list>
#include <testsuite_hooks.h>
namespace __gnu_test
else if (k == 1)
return p;
else
- return 0;
+ return 0.0;
}
#ifdef _GLIBCXX_USE_C99_MATH_TR1
inline double
- binomial_pdf(int k, double p, int n)
+ binomial_pdf(int k, int n, double p)
{
if (k < 0 || k > n)
- return 0;
+ return 0.0;
else
{
double q;
- if (p == 0)
- q = (k == 0) ? 1 : 0;
- else if (p == 1)
- q = (k == n) ? 1 : 0;
+ if (p == 0.0)
+ q = (k == 0) ? 1.0 : 0.0;
+ else if (p == 1.0)
+ q = (k == n) ? 1.0 : 0.0;
else
{
- double ln_Cnk = (std::lgamma(n + 1) - std::lgamma(k + 1)
- - std::lgamma(n - k + 1));
+ double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
+ - std::lgamma(n - k + 1.0));
q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
q = std::exp(q);
}
}
#endif
+ inline double
+ discrete_pdf(int k, std::initializer_list<double> wl)
+ {
+ if (!wl.size())
+ wl = { 1.0 };
+
+ if (k < 0 || k >= wl.size())
+ return 0.0;
+ else
+ {
+ double sum = 0.0;
+ for (auto it = wl.begin(); it != wl.end(); ++it)
+ sum += *it;
+ return wl.begin()[k] / sum;
+ }
+ }
+
inline double
geometric_pdf(int k, double p)
{
if (k < 0)
- return 0;
+ return 0.0;
else if (k == 0)
return p;
else
return p * std::pow(1 - p, k);
}
+
+#ifdef _GLIBCXX_USE_C99_MATH_TR1
+ inline double
+ negative_binomial_pdf(int k, int n, double p)
+ {
+ if (k < 0)
+ return 0.0;
+ else
+ {
+ double f = std::lgamma(k + (double)n);
+ double a = std::lgamma(n);
+ double b = std::lgamma(k + 1.0);
+
+ return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
+ }
+ }
+
+ inline double
+ poisson_pdf(int k, double mu)
+ {
+ if (k < 0)
+ return 0.0;
+ else
+ {
+ double lf = std::lgamma(k + 1.0);
+ return std::exp(std::log(mu) * k - lf - mu);
+ }
+ }
+#endif
+
+ inline double
+ uniform_int_pdf(int k, int a, int b)
+ {
+ if (k < 0 || k < a || k > b)
+ return 0.0;
+ else
+ return 1.0 / (b - a + 1.0);
+ }
+
} // namespace __gnu_test
#endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H