- Add to kernel/celltypes.h (incl. eval() handling for non-mem cells)
- Add to InternalCellChecker::check() in kernel/rtlil.cc
- Add to techlibs/common/simlib.v
- - Add to techlibs/common/stdcells.v
+ - Add to techlibs/common/techmap.v
Things to do after finalizing the cell interface:
- yosys-bigsim: https://github.com/cliffordwolf/yosys-bigsim
- Technology mapping for real-world applications
- - Add bit-wise const-folding via cell parameters to techmap pass
- - Rewrite current stdcells.v techmap rules (modular and clean)
+ - Rewrite current techmap.v rules (modular and clean)
- Improve Xilinx FGPA synthesis (RAMB, CARRY4, SLR, etc.)
- Implement SAT-based formal equivialence checker
When no map file is provided, {\tt techmap} uses a built-in map file that
maps the Yosys RTL cell types to the internal gate library used by Yosys.
-The curious reader may find this map file as {\tt techlibs/common/stdcells.v} in
+The curious reader may find this map file as {\tt techlibs/common/techmap.v} in
the Yosys source tree.
Additional features have been added to {\tt techmap} to allow for conditional
-stdcells.inc
+techmap.inc
OBJS += passes/techmap/extract.o
endif
-GENFILES += passes/techmap/stdcells.inc
+GENFILES += passes/techmap/techmap.inc
-passes/techmap/stdcells.inc: techlibs/common/stdcells.v
+passes/techmap/techmap.inc: techlibs/common/techmap.v
$(P) echo "// autogenerated from $<" > $@.new
$(Q) echo "static char stdcells_code[] = {" >> $@.new
$(Q) od -v -td1 -An $< | $(SED) -e 's/[0-9][0-9]*/&,/g' >> $@.new
$(Q) echo "0};" >> $@.new
$(Q) mv $@.new $@
-passes/techmap/techmap.o: passes/techmap/stdcells.inc
+passes/techmap/techmap.o: passes/techmap/techmap.inc
TARGETS += yosys-filterlib
GENFILES += passes/techmap/filterlib.o
#include <stdio.h>
#include <string.h>
-#include "passes/techmap/stdcells.inc"
+#include "passes/techmap/techmap.inc"
// see simplemap.cc
extern void simplemap_get_mappers(std::map<std::string, void(*)(RTLIL::Module*, RTLIL::Cell*)> &mappers);
RTLIL::Design *map = new RTLIL::Design;
if (map_files.empty()) {
FILE *f = fmemopen(stdcells_code, strlen(stdcells_code), "rt");
- Frontend::frontend_call(map, f, "<stdcells.v>", verilog_frontend);
+ Frontend::frontend_call(map, f, "<techmap.v>", verilog_frontend);
fclose(f);
} else
for (auto &fn : map_files)
$(P) cat techlibs/common/simlib.v techlibs/common/simcells.v | $(SED) -rf techlibs/common/blackbox.sed > techlibs/common/blackbox.v.new
$(Q) mv techlibs/common/blackbox.v.new techlibs/common/blackbox.v
-EXTRA_TARGETS += share/simlib.v share/simcells.v share/blackbox.v share/pmux2mux.v
+EXTRA_TARGETS += share/simlib.v share/simcells.v share/techmap.v share/blackbox.v share/pmux2mux.v
share/simlib.v: techlibs/common/simlib.v
$(P) mkdir -p share
$(P) mkdir -p share
$(Q) cp techlibs/common/simcells.v share/simcells.v
+share/techmap.v: techlibs/common/techmap.v
+ $(P) mkdir -p share
+ $(Q) cp techlibs/common/techmap.v share/techmap.v
+
share/blackbox.v: techlibs/common/blackbox.v
$(P) mkdir -p share
$(Q) cp techlibs/common/blackbox.v share/blackbox.v
*
* This verilog library contains simple simulation models for the internal
* logic cells ($_INV_ , $_AND_ , ...) that are generated by the default technology
- * mapper (see "stdcells.v" in this directory) and expected by the "abc" pass.
+ * mapper (see "techmap.v" in this directory) and expected by the "abc" pass.
*
*/
+++ /dev/null
-/*
- * yosys -- Yosys Open SYnthesis Suite
- *
- * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
- * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
- * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
- * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
- * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
- * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
- *
- * ---
- *
- * The internal logic cell technology mapper.
- *
- * This verilog library contains the mapping of internal cells (e.g. $not with
- * variable bit width) to the internal logic cells (such as the single bit $_INV_
- * gate). Usually this logic network is then mapped to the actual technology
- * using e.g. the "abc" pass.
- *
- * Note that this library does not map $mem cells. They must be mapped to logic
- * and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
- * which is of course highly recommended for larger memories.)
- *
- */
-
-`define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
-`define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
-
-
-// --------------------------------------------------------
-// Use simplemap for trivial cell types
-// --------------------------------------------------------
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$pos $bu0" *)
-module simplemap_buffers;
-endmodule
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$not $and $or $xor $xnor" *)
-module simplemap_bool_ops;
-endmodule
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *)
-module simplemap_reduce_ops;
-endmodule
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$logic_not $logic_and $logic_or" *)
-module simplemap_logic_ops;
-endmodule
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$slice $concat $mux" *)
-module simplemap_various;
-endmodule
-
-(* techmap_simplemap *)
-(* techmap_celltype = "$sr $dff $adff $dffsr $dlatch" *)
-module simplemap_registers;
-endmodule
-
-
-// --------------------------------------------------------
-// Trivial substitutions
-// --------------------------------------------------------
-
-module \$neg (A, Y);
- parameter A_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- output [Y_WIDTH-1:0] Y;
-
- \$sub #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(1),
- .B_WIDTH(A_WIDTH),
- .Y_WIDTH(Y_WIDTH)
- ) _TECHMAP_REPLACE_ (
- .A(1'b0),
- .B(A),
- .Y(Y)
- );
-endmodule
-
-module \$ge (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- \$le #(
- .A_SIGNED(B_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(B_WIDTH),
- .B_WIDTH(A_WIDTH),
- .Y_WIDTH(Y_WIDTH)
- ) _TECHMAP_REPLACE_ (
- .A(B),
- .B(A),
- .Y(Y)
- );
-endmodule
-
-module \$gt (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- \$lt #(
- .A_SIGNED(B_SIGNED),
- .B_SIGNED(A_SIGNED),
- .A_WIDTH(B_WIDTH),
- .B_WIDTH(A_WIDTH),
- .Y_WIDTH(Y_WIDTH)
- ) _TECHMAP_REPLACE_ (
- .A(B),
- .B(A),
- .Y(Y)
- );
-endmodule
-
-
-// --------------------------------------------------------
-// Shift operators
-// --------------------------------------------------------
-
-(* techmap_celltype = "$shr $shl $sshl $sshr" *)
-module shift_ops_shr_shl_sshl_sshr (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- parameter _TECHMAP_CELLTYPE_ = "";
- localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl";
- localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr";
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH);
- localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH);
-
- wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
- wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
-
- integer i;
- reg [WIDTH-1:0] buffer;
- reg overflow;
-
- always @* begin
- overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0;
- buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A};
-
- for (i = 0; i < BB_WIDTH; i = i+1)
- if (B[i]) begin
- if (shift_left)
- buffer = {buffer, (2**i)'b0};
- else if (2**i < WIDTH)
- buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]};
- else
- buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}};
- end
- end
-
- assign Y = buffer;
-endmodule
-
-(* techmap_celltype = "$shift $shiftx" *)
-module shift_shiftx (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
- localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
-
- parameter _TECHMAP_CELLTYPE_ = "";
- localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
-
- wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
- wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
-
- integer i;
- reg [WIDTH-1:0] buffer;
- reg overflow;
-
- always @* begin
- overflow = 0;
- buffer = {WIDTH{extbit}};
- buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
-
- if (B_WIDTH > BB_WIDTH) begin
- if (B_SIGNED) begin
- for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
- if (B[i] != B[BB_WIDTH-1])
- overflow = 1;
- end else
- overflow = |B[B_WIDTH-1:BB_WIDTH];
- if (overflow)
- buffer = {WIDTH{extbit}};
- end
-
- for (i = BB_WIDTH-1; i >= 0; i = i-1)
- if (B[i]) begin
- if (B_SIGNED && i == BB_WIDTH-1)
- buffer = {buffer, {2**i{extbit}}};
- else if (2**i < WIDTH)
- buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
- else
- buffer = {WIDTH{extbit}};
- end
- end
-
- assign Y = buffer;
-endmodule
-
-
-// --------------------------------------------------------
-// ALU Infrastructure
-// --------------------------------------------------------
-
-module \$__fulladd (A, B, C, X, Y);
- // {X, Y} = A + B + C
- input A, B, C;
- output X, Y;
-
- // {t1, t2} = A + B
- wire t1, t2, t3;
-
- \$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
- \$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
- \$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
- \$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
- \$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
-endmodule
-
-module \$__alu (A, B, Cin, Y, Cout, Csign);
- parameter WIDTH = 1;
-
- input [WIDTH-1:0] A, B;
- input Cin;
-
- output [WIDTH-1:0] Y;
- output Cout, Csign;
-
- wire [WIDTH:0] carry;
- assign carry[0] = Cin;
- assign Cout = carry[WIDTH];
- assign Csign = carry[WIDTH-1];
-
- genvar i;
- generate
- for (i = 0; i < WIDTH; i = i + 1) begin:V
- \$__fulladd adder (
- .A(A[i]),
- .B(B[i]),
- .C(carry[i]),
- .X(carry[i+1]),
- .Y(Y[i])
- );
- end
- endgenerate
-endmodule
-
-
-// --------------------------------------------------------
-// Compare cells
-// --------------------------------------------------------
-
-module \$lt (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- \$__alu #(
- .WIDTH(WIDTH)
- ) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y_buf),
- .Cout(carry),
- .Csign(carry_sign)
- );
-
- // ALU flags
- wire cf, of, zf, sf;
- assign cf = !carry;
- assign of = carry ^ carry_sign;
- assign zf = ~|Y_buf;
- assign sf = Y_buf[WIDTH-1];
-
- generate
- if (A_SIGNED && B_SIGNED) begin
- assign Y = of != sf;
- end else begin
- assign Y = cf;
- end
- endgenerate
-endmodule
-
-module \$le (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- \$__alu #(
- .WIDTH(WIDTH)
- ) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y_buf),
- .Cout(carry),
- .Csign(carry_sign)
- );
-
- // ALU flags
- wire cf, of, zf, sf;
- assign cf = !carry;
- assign of = carry ^ carry_sign;
- assign zf = ~|Y_buf;
- assign sf = Y_buf[WIDTH-1];
-
- generate
- if (A_SIGNED && B_SIGNED) begin
- assign Y = zf || (of != sf);
- end else begin
- assign Y = zf || cf;
- end
- endgenerate
-endmodule
-
-
-// --------------------------------------------------------
-// Add and Subtract
-// --------------------------------------------------------
-
-module \$add (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire [Y_WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- \$__alu #(
- .WIDTH(Y_WIDTH)
- ) alu (
- .A(A_buf),
- .B(B_buf),
- .Cin(1'b0),
- .Y(Y)
- );
-endmodule
-
-module \$sub (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire [Y_WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- \$__alu #(
- .WIDTH(Y_WIDTH)
- ) alu (
- .A(A_buf),
- .B(~B_buf),
- .Cin(1'b1),
- .Y(Y)
- );
-endmodule
-
-
-// --------------------------------------------------------
-// Multiply
-// --------------------------------------------------------
-
-module \$__arraymul (A, B, Y);
- parameter WIDTH = 8;
- input [WIDTH-1:0] A, B;
- output [WIDTH-1:0] Y;
-
- wire [WIDTH*WIDTH-1:0] partials;
-
- genvar i;
- assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
- generate for (i = 1; i < WIDTH; i = i+1) begin:gen
- assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
- end endgenerate
-
- assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
-endmodule
-
-module \$mul (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire [Y_WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- \$__arraymul #(
- .WIDTH(Y_WIDTH)
- ) arraymul (
- .A(A_buf),
- .B(B_buf),
- .Y(Y)
- );
-endmodule
-
-
-// --------------------------------------------------------
-// Divide and Modulo
-// --------------------------------------------------------
-
-module \$__div_mod_u (A, B, Y, R);
- parameter WIDTH = 1;
-
- input [WIDTH-1:0] A, B;
- output [WIDTH-1:0] Y, R;
-
- wire [WIDTH*WIDTH-1:0] chaindata;
- assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
-
- genvar i;
- generate begin
- for (i = 0; i < WIDTH; i=i+1) begin:stage
- wire [WIDTH-1:0] stage_in;
-
- if (i == 0) begin:cp
- assign stage_in = A;
- end else begin:cp
- assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
- end
-
- assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
- assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
- end
- end endgenerate
-endmodule
-
-module \$__div_mod (A, B, Y, R);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH =
- A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
- B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y, R;
-
- wire [WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
- assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
- assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
-
- \$__div_mod_u #(
- .WIDTH(WIDTH)
- ) div_mod_u (
- .A(A_buf_u),
- .B(B_buf_u),
- .Y(Y_u),
- .R(R_u)
- );
-
- assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
- assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
-endmodule
-
-module \$div (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- \$__div_mod #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(B_SIGNED),
- .A_WIDTH(A_WIDTH),
- .B_WIDTH(B_WIDTH),
- .Y_WIDTH(Y_WIDTH)
- ) div_mod (
- .A(A),
- .B(B),
- .Y(Y)
- );
-endmodule
-
-module \$mod (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- \$__div_mod #(
- .A_SIGNED(A_SIGNED),
- .B_SIGNED(B_SIGNED),
- .A_WIDTH(A_WIDTH),
- .B_WIDTH(B_WIDTH),
- .Y_WIDTH(Y_WIDTH)
- ) div_mod (
- .A(A),
- .B(B),
- .R(Y)
- );
-endmodule
-
-
-// --------------------------------------------------------
-// Power
-// --------------------------------------------------------
-
-module \$pow (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire _TECHMAP_FAIL_ = 1;
-endmodule
-
-
-// --------------------------------------------------------
-// Equal and Not-Equal
-// --------------------------------------------------------
-
-module \$eq (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf;
- \$bu0 #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$bu0 #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- assign Y = ~|(A_buf ^ B_buf);
-endmodule
-
-module \$ne (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf;
- \$bu0 #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$bu0 #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- assign Y = |(A_buf ^ B_buf);
-endmodule
-
-module \$eqx (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- assign Y = ~|(A_buf ^ B_buf);
-endmodule
-
-module \$nex (A, B, Y);
- parameter A_SIGNED = 0;
- parameter B_SIGNED = 0;
- parameter A_WIDTH = 1;
- parameter B_WIDTH = 1;
- parameter Y_WIDTH = 1;
-
- localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
-
- input [A_WIDTH-1:0] A;
- input [B_WIDTH-1:0] B;
- output [Y_WIDTH-1:0] Y;
-
- wire carry, carry_sign;
- wire [WIDTH-1:0] A_buf, B_buf;
- \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
- \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
-
- assign Y = |(A_buf ^ B_buf);
-endmodule
-
-
-// --------------------------------------------------------
-// Parallel Multiplexers
-// --------------------------------------------------------
-
-module \$pmux (A, B, S, Y);
- parameter WIDTH = 1;
- parameter S_WIDTH = 1;
-
- input [WIDTH-1:0] A;
- input [WIDTH*S_WIDTH-1:0] B;
- input [S_WIDTH-1:0] S;
- output [WIDTH-1:0] Y;
-
- wire [WIDTH-1:0] Y_B;
-
- genvar i, j;
- generate
- wire [WIDTH*S_WIDTH-1:0] B_AND_S;
- for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
- assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
- end:B_AND
- for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
- wire [S_WIDTH-1:0] B_AND_BITS;
- for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
- assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
- end:B_AND_BITS_COLLECT
- assign Y_B[i] = |B_AND_BITS;
- end:B_OR
- endgenerate
-
- assign Y = |S ? Y_B : A;
-endmodule
-
-module \$safe_pmux (A, B, S, Y);
- parameter WIDTH = 1;
- parameter S_WIDTH = 1;
-
- input [WIDTH-1:0] A;
- input [WIDTH*S_WIDTH-1:0] B;
- input [S_WIDTH-1:0] S;
- output [WIDTH-1:0] Y;
-
- wire [S_WIDTH-1:0] status_found_first;
- wire [S_WIDTH-1:0] status_found_second;
-
- genvar i;
- generate
- for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
- wire pre_first;
- if (i > 0) begin:GEN2
- assign pre_first = status_found_first[i-1];
- end:GEN2 else begin:GEN3
- assign pre_first = 0;
- end:GEN3
- assign status_found_first[i] = pre_first | S[i];
- assign status_found_second[i] = pre_first & S[i];
- end:GEN1
- endgenerate
-
- \$pmux #(
- .WIDTH(WIDTH),
- .S_WIDTH(S_WIDTH)
- ) pmux_cell (
- .A(A),
- .B(B),
- .S(S & {S_WIDTH{~|status_found_second}}),
- .Y(Y)
- );
-endmodule
-
--- /dev/null
+/*
+ * yosys -- Yosys Open SYnthesis Suite
+ *
+ * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * ---
+ *
+ * The internal logic cell technology mapper.
+ *
+ * This verilog library contains the mapping of internal cells (e.g. $not with
+ * variable bit width) to the internal logic cells (such as the single bit $_INV_
+ * gate). Usually this logic network is then mapped to the actual technology
+ * using e.g. the "abc" pass.
+ *
+ * Note that this library does not map $mem cells. They must be mapped to logic
+ * and $dff cells using the "memory_map" pass first. (Or map it to custom cells,
+ * which is of course highly recommended for larger memories.)
+ *
+ */
+
+`define MIN(_a, _b) ((_a) < (_b) ? (_a) : (_b))
+`define MAX(_a, _b) ((_a) > (_b) ? (_a) : (_b))
+
+
+// --------------------------------------------------------
+// Use simplemap for trivial cell types
+// --------------------------------------------------------
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$pos $bu0" *)
+module simplemap_buffers;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$not $and $or $xor $xnor" *)
+module simplemap_bool_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$reduce_and $reduce_or $reduce_xor $reduce_xnor $reduce_bool" *)
+module simplemap_reduce_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$logic_not $logic_and $logic_or" *)
+module simplemap_logic_ops;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$slice $concat $mux" *)
+module simplemap_various;
+endmodule
+
+(* techmap_simplemap *)
+(* techmap_celltype = "$sr $dff $adff $dffsr $dlatch" *)
+module simplemap_registers;
+endmodule
+
+
+// --------------------------------------------------------
+// Trivial substitutions
+// --------------------------------------------------------
+
+module \$neg (A, Y);
+ parameter A_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ output [Y_WIDTH-1:0] Y;
+
+ \$sub #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(1),
+ .B_WIDTH(A_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) _TECHMAP_REPLACE_ (
+ .A(1'b0),
+ .B(A),
+ .Y(Y)
+ );
+endmodule
+
+module \$ge (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$le #(
+ .A_SIGNED(B_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(B_WIDTH),
+ .B_WIDTH(A_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) _TECHMAP_REPLACE_ (
+ .A(B),
+ .B(A),
+ .Y(Y)
+ );
+endmodule
+
+module \$gt (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$lt #(
+ .A_SIGNED(B_SIGNED),
+ .B_SIGNED(A_SIGNED),
+ .A_WIDTH(B_WIDTH),
+ .B_WIDTH(A_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) _TECHMAP_REPLACE_ (
+ .A(B),
+ .B(A),
+ .Y(Y)
+ );
+endmodule
+
+
+// --------------------------------------------------------
+// Shift operators
+// --------------------------------------------------------
+
+(* techmap_celltype = "$shr $shl $sshl $sshr" *)
+module shift_ops_shr_shl_sshl_sshr (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ parameter _TECHMAP_CELLTYPE_ = "";
+ localparam shift_left = _TECHMAP_CELLTYPE_ == "$shl" || _TECHMAP_CELLTYPE_ == "$sshl";
+ localparam sign_extend = A_SIGNED && _TECHMAP_CELLTYPE_ == "$sshr";
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH);
+ localparam BB_WIDTH = `MIN($clog2(shift_left ? Y_WIDTH : A_SIGNED ? WIDTH : A_WIDTH) + 1, B_WIDTH);
+
+ wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
+ wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
+
+ integer i;
+ reg [WIDTH-1:0] buffer;
+ reg overflow;
+
+ always @* begin
+ overflow = B_WIDTH > BB_WIDTH ? |B[B_WIDTH-1:BB_WIDTH] : 1'b0;
+ buffer = overflow ? {WIDTH{sign_extend ? A[A_WIDTH-1] : 1'b0}} : {{WIDTH-A_WIDTH{A_SIGNED ? A[A_WIDTH-1] : 1'b0}}, A};
+
+ for (i = 0; i < BB_WIDTH; i = i+1)
+ if (B[i]) begin
+ if (shift_left)
+ buffer = {buffer, (2**i)'b0};
+ else if (2**i < WIDTH)
+ buffer = {{2**i{sign_extend ? buffer[WIDTH-1] : 1'b0}}, buffer[WIDTH-1 : 2**i]};
+ else
+ buffer = {WIDTH{sign_extend ? buffer[WIDTH-1] : 1'b0}};
+ end
+ end
+
+ assign Y = buffer;
+endmodule
+
+(* techmap_celltype = "$shift $shiftx" *)
+module shift_shiftx (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ localparam BB_WIDTH = `MIN($clog2(`MAX(A_WIDTH, Y_WIDTH)) + (B_SIGNED ? 2 : 1), B_WIDTH);
+ localparam WIDTH = `MAX(A_WIDTH, Y_WIDTH) + (B_SIGNED ? 2**(BB_WIDTH-1) : 0);
+
+ parameter _TECHMAP_CELLTYPE_ = "";
+ localparam extbit = _TECHMAP_CELLTYPE_ == "$shift" ? 1'b0 : 1'bx;
+
+ wire [1023:0] _TECHMAP_DO_00_ = "proc;;";
+ wire [1023:0] _TECHMAP_DO_01_ = "CONSTMAP; opt_muxtree; opt_const -mux_undef -mux_bool -fine;;;";
+
+ integer i;
+ reg [WIDTH-1:0] buffer;
+ reg overflow;
+
+ always @* begin
+ overflow = 0;
+ buffer = {WIDTH{extbit}};
+ buffer[`MAX(A_WIDTH, Y_WIDTH)-1:0] = A;
+
+ if (B_WIDTH > BB_WIDTH) begin
+ if (B_SIGNED) begin
+ for (i = BB_WIDTH; i < B_WIDTH; i = i+1)
+ if (B[i] != B[BB_WIDTH-1])
+ overflow = 1;
+ end else
+ overflow = |B[B_WIDTH-1:BB_WIDTH];
+ if (overflow)
+ buffer = {WIDTH{extbit}};
+ end
+
+ for (i = BB_WIDTH-1; i >= 0; i = i-1)
+ if (B[i]) begin
+ if (B_SIGNED && i == BB_WIDTH-1)
+ buffer = {buffer, {2**i{extbit}}};
+ else if (2**i < WIDTH)
+ buffer = {{2**i{extbit}}, buffer[WIDTH-1 : 2**i]};
+ else
+ buffer = {WIDTH{extbit}};
+ end
+ end
+
+ assign Y = buffer;
+endmodule
+
+
+// --------------------------------------------------------
+// ALU Infrastructure
+// --------------------------------------------------------
+
+module \$__fulladd (A, B, C, X, Y);
+ // {X, Y} = A + B + C
+ input A, B, C;
+ output X, Y;
+
+ // {t1, t2} = A + B
+ wire t1, t2, t3;
+
+ \$_AND_ gate1 ( .A(A), .B(B), .Y(t1) );
+ \$_XOR_ gate2 ( .A(A), .B(B), .Y(t2) );
+ \$_AND_ gate3 ( .A(t2), .B(C), .Y(t3) );
+ \$_XOR_ gate4 ( .A(t2), .B(C), .Y(Y) );
+ \$_OR_ gate5 ( .A(t1), .B(t3), .Y(X) );
+endmodule
+
+module \$__alu (A, B, Cin, Y, Cout, Csign);
+ parameter WIDTH = 1;
+
+ input [WIDTH-1:0] A, B;
+ input Cin;
+
+ output [WIDTH-1:0] Y;
+ output Cout, Csign;
+
+ wire [WIDTH:0] carry;
+ assign carry[0] = Cin;
+ assign Cout = carry[WIDTH];
+ assign Csign = carry[WIDTH-1];
+
+ genvar i;
+ generate
+ for (i = 0; i < WIDTH; i = i + 1) begin:V
+ \$__fulladd adder (
+ .A(A[i]),
+ .B(B[i]),
+ .C(carry[i]),
+ .X(carry[i+1]),
+ .Y(Y[i])
+ );
+ end
+ endgenerate
+endmodule
+
+
+// --------------------------------------------------------
+// Compare cells
+// --------------------------------------------------------
+
+module \$lt (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ \$__alu #(
+ .WIDTH(WIDTH)
+ ) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y_buf),
+ .Cout(carry),
+ .Csign(carry_sign)
+ );
+
+ // ALU flags
+ wire cf, of, zf, sf;
+ assign cf = !carry;
+ assign of = carry ^ carry_sign;
+ assign zf = ~|Y_buf;
+ assign sf = Y_buf[WIDTH-1];
+
+ generate
+ if (A_SIGNED && B_SIGNED) begin
+ assign Y = of != sf;
+ end else begin
+ assign Y = cf;
+ end
+ endgenerate
+endmodule
+
+module \$le (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf, Y_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ \$__alu #(
+ .WIDTH(WIDTH)
+ ) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y_buf),
+ .Cout(carry),
+ .Csign(carry_sign)
+ );
+
+ // ALU flags
+ wire cf, of, zf, sf;
+ assign cf = !carry;
+ assign of = carry ^ carry_sign;
+ assign zf = ~|Y_buf;
+ assign sf = Y_buf[WIDTH-1];
+
+ generate
+ if (A_SIGNED && B_SIGNED) begin
+ assign Y = zf || (of != sf);
+ end else begin
+ assign Y = zf || cf;
+ end
+ endgenerate
+endmodule
+
+
+// --------------------------------------------------------
+// Add and Subtract
+// --------------------------------------------------------
+
+module \$add (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire [Y_WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ \$__alu #(
+ .WIDTH(Y_WIDTH)
+ ) alu (
+ .A(A_buf),
+ .B(B_buf),
+ .Cin(1'b0),
+ .Y(Y)
+ );
+endmodule
+
+module \$sub (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire [Y_WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ \$__alu #(
+ .WIDTH(Y_WIDTH)
+ ) alu (
+ .A(A_buf),
+ .B(~B_buf),
+ .Cin(1'b1),
+ .Y(Y)
+ );
+endmodule
+
+
+// --------------------------------------------------------
+// Multiply
+// --------------------------------------------------------
+
+module \$__arraymul (A, B, Y);
+ parameter WIDTH = 8;
+ input [WIDTH-1:0] A, B;
+ output [WIDTH-1:0] Y;
+
+ wire [WIDTH*WIDTH-1:0] partials;
+
+ genvar i;
+ assign partials[WIDTH-1 : 0] = A[0] ? B : 0;
+ generate for (i = 1; i < WIDTH; i = i+1) begin:gen
+ assign partials[WIDTH*(i+1)-1 : WIDTH*i] = (A[i] ? B << i : 0) + partials[WIDTH*i-1 : WIDTH*(i-1)];
+ end endgenerate
+
+ assign Y = partials[WIDTH*WIDTH-1 : WIDTH*(WIDTH-1)];
+endmodule
+
+module \$mul (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire [Y_WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(Y_WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(Y_WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ \$__arraymul #(
+ .WIDTH(Y_WIDTH)
+ ) arraymul (
+ .A(A_buf),
+ .B(B_buf),
+ .Y(Y)
+ );
+endmodule
+
+
+// --------------------------------------------------------
+// Divide and Modulo
+// --------------------------------------------------------
+
+module \$__div_mod_u (A, B, Y, R);
+ parameter WIDTH = 1;
+
+ input [WIDTH-1:0] A, B;
+ output [WIDTH-1:0] Y, R;
+
+ wire [WIDTH*WIDTH-1:0] chaindata;
+ assign R = chaindata[WIDTH*WIDTH-1:WIDTH*(WIDTH-1)];
+
+ genvar i;
+ generate begin
+ for (i = 0; i < WIDTH; i=i+1) begin:stage
+ wire [WIDTH-1:0] stage_in;
+
+ if (i == 0) begin:cp
+ assign stage_in = A;
+ end else begin:cp
+ assign stage_in = chaindata[i*WIDTH-1:(i-1)*WIDTH];
+ end
+
+ assign Y[WIDTH-(i+1)] = stage_in >= {B, {WIDTH-(i+1){1'b0}}};
+ assign chaindata[(i+1)*WIDTH-1:i*WIDTH] = Y[WIDTH-(i+1)] ? stage_in - {B, {WIDTH-(i+1){1'b0}}} : stage_in;
+ end
+ end endgenerate
+endmodule
+
+module \$__div_mod (A, B, Y, R);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH =
+ A_WIDTH >= B_WIDTH && A_WIDTH >= Y_WIDTH ? A_WIDTH :
+ B_WIDTH >= A_WIDTH && B_WIDTH >= Y_WIDTH ? B_WIDTH : Y_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y, R;
+
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ wire [WIDTH-1:0] A_buf_u, B_buf_u, Y_u, R_u;
+ assign A_buf_u = A_SIGNED && A_buf[WIDTH-1] ? -A_buf : A_buf;
+ assign B_buf_u = B_SIGNED && B_buf[WIDTH-1] ? -B_buf : B_buf;
+
+ \$__div_mod_u #(
+ .WIDTH(WIDTH)
+ ) div_mod_u (
+ .A(A_buf_u),
+ .B(B_buf_u),
+ .Y(Y_u),
+ .R(R_u)
+ );
+
+ assign Y = A_SIGNED && B_SIGNED && (A_buf[WIDTH-1] != B_buf[WIDTH-1]) ? -Y_u : Y_u;
+ assign R = A_SIGNED && B_SIGNED && A_buf[WIDTH-1] ? -R_u : R_u;
+endmodule
+
+module \$div (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$__div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) div_mod (
+ .A(A),
+ .B(B),
+ .Y(Y)
+ );
+endmodule
+
+module \$mod (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ \$__div_mod #(
+ .A_SIGNED(A_SIGNED),
+ .B_SIGNED(B_SIGNED),
+ .A_WIDTH(A_WIDTH),
+ .B_WIDTH(B_WIDTH),
+ .Y_WIDTH(Y_WIDTH)
+ ) div_mod (
+ .A(A),
+ .B(B),
+ .R(Y)
+ );
+endmodule
+
+
+// --------------------------------------------------------
+// Power
+// --------------------------------------------------------
+
+module \$pow (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire _TECHMAP_FAIL_ = 1;
+endmodule
+
+
+// --------------------------------------------------------
+// Equal and Not-Equal
+// --------------------------------------------------------
+
+module \$eq (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$bu0 #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$bu0 #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = ~|(A_buf ^ B_buf);
+endmodule
+
+module \$ne (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$bu0 #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$bu0 #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = |(A_buf ^ B_buf);
+endmodule
+
+module \$eqx (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = ~|(A_buf ^ B_buf);
+endmodule
+
+module \$nex (A, B, Y);
+ parameter A_SIGNED = 0;
+ parameter B_SIGNED = 0;
+ parameter A_WIDTH = 1;
+ parameter B_WIDTH = 1;
+ parameter Y_WIDTH = 1;
+
+ localparam WIDTH = A_WIDTH > B_WIDTH ? A_WIDTH : B_WIDTH;
+
+ input [A_WIDTH-1:0] A;
+ input [B_WIDTH-1:0] B;
+ output [Y_WIDTH-1:0] Y;
+
+ wire carry, carry_sign;
+ wire [WIDTH-1:0] A_buf, B_buf;
+ \$pos #(.A_SIGNED(A_SIGNED), .A_WIDTH(A_WIDTH), .Y_WIDTH(WIDTH)) A_conv (.A(A), .Y(A_buf));
+ \$pos #(.A_SIGNED(B_SIGNED), .A_WIDTH(B_WIDTH), .Y_WIDTH(WIDTH)) B_conv (.A(B), .Y(B_buf));
+
+ assign Y = |(A_buf ^ B_buf);
+endmodule
+
+
+// --------------------------------------------------------
+// Parallel Multiplexers
+// --------------------------------------------------------
+
+module \$pmux (A, B, S, Y);
+ parameter WIDTH = 1;
+ parameter S_WIDTH = 1;
+
+ input [WIDTH-1:0] A;
+ input [WIDTH*S_WIDTH-1:0] B;
+ input [S_WIDTH-1:0] S;
+ output [WIDTH-1:0] Y;
+
+ wire [WIDTH-1:0] Y_B;
+
+ genvar i, j;
+ generate
+ wire [WIDTH*S_WIDTH-1:0] B_AND_S;
+ for (i = 0; i < S_WIDTH; i = i + 1) begin:B_AND
+ assign B_AND_S[WIDTH*(i+1)-1:WIDTH*i] = B[WIDTH*(i+1)-1:WIDTH*i] & {WIDTH{S[i]}};
+ end:B_AND
+ for (i = 0; i < WIDTH; i = i + 1) begin:B_OR
+ wire [S_WIDTH-1:0] B_AND_BITS;
+ for (j = 0; j < S_WIDTH; j = j + 1) begin:B_AND_BITS_COLLECT
+ assign B_AND_BITS[j] = B_AND_S[WIDTH*j+i];
+ end:B_AND_BITS_COLLECT
+ assign Y_B[i] = |B_AND_BITS;
+ end:B_OR
+ endgenerate
+
+ assign Y = |S ? Y_B : A;
+endmodule
+
+module \$safe_pmux (A, B, S, Y);
+ parameter WIDTH = 1;
+ parameter S_WIDTH = 1;
+
+ input [WIDTH-1:0] A;
+ input [WIDTH*S_WIDTH-1:0] B;
+ input [S_WIDTH-1:0] S;
+ output [WIDTH-1:0] Y;
+
+ wire [S_WIDTH-1:0] status_found_first;
+ wire [S_WIDTH-1:0] status_found_second;
+
+ genvar i;
+ generate
+ for (i = 0; i < S_WIDTH; i = i + 1) begin:GEN1
+ wire pre_first;
+ if (i > 0) begin:GEN2
+ assign pre_first = status_found_first[i-1];
+ end:GEN2 else begin:GEN3
+ assign pre_first = 0;
+ end:GEN3
+ assign status_found_first[i] = pre_first | S[i];
+ assign status_found_second[i] = pre_first & S[i];
+ end:GEN1
+ endgenerate
+
+ \$pmux #(
+ .WIDTH(WIDTH),
+ .S_WIDTH(S_WIDTH)
+ ) pmux_cell (
+ .A(A),
+ .B(B),
+ .S(S & {S_WIDTH{~|status_found_second}}),
+ .Y(Y)
+ );
+endmodule
+