{
// |---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|---v---|
log("\n");
- log(" pmux2shiftx [selection]\n");
+ log(" pmux2shiftx [options] [selection]\n");
log("\n");
log("This pass transforms $pmux cells to $shiftx cells.\n");
log("\n");
+ log(" -density non_offset_percentage offset_percentage\n");
+ log(" specifies the minimum density for non_offset- and for offset-mode\n");
+ log(" default values are 30 (non-offset) and 50 (offset)\n");
+ log("\n");
}
void execute(std::vector<std::string> args, RTLIL::Design *design) YS_OVERRIDE
{
+ int non_offset_percentage = 30;
+ int offset_percentage = 50;
+
log_header(design, "Executing PMUX2SHIFTX pass.\n");
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++) {
+ if (args[argidx] == "-density" && argidx+2 < args.size()) {
+ non_offset_percentage = atoi(args[++argidx].c_str());
+ offset_percentage = atoi(args[++argidx].c_str());
+ continue;
+ }
break;
}
extra_args(args, argidx, design);
// find the relevant choices
dict<Const, int> choices;
- vector<int> onescnt(GetSize(sig));
for (int i : seldb.at(sig)) {
Const val = eqdb.at(S[i]).second;
choices[val] = i;
- for (int k = 0; k < GetSize(val); k++)
- if (val[k] == State::S1)
- onescnt[k] |= 1;
- else
- onescnt[k] |= 2;
}
// TBD: also find choices that are using signals that are subsets of the bits in "sig"
// find the best permutation
- vector<pair<int, int>> perm(GetSize(sig));
- for (int i = 0; i < GetSize(onescnt); i++)
- perm[i] = make_pair(onescnt[i], i);
- // TBD: this is not the best permutation
- std::sort(perm.rbegin(), perm.rend());
+ vector<int> perm_new_from_old(GetSize(sig));
+ Const perm_xormask(State::S0, GetSize(sig));
+ {
+ vector<int> values(GetSize(choices));
+ vector<bool> used_src_columns(GetSize(sig));
+ vector<vector<bool>> columns(GetSize(sig), vector<bool>(GetSize(values)));
+
+ for (int i = 0; i < GetSize(choices); i++) {
+ Const val = choices.element(i)->first;
+ for (int k = 0; k < GetSize(val); k++)
+ if (val[k] == State::S1)
+ columns[k][i] = true;
+ }
+
+ for (int dst_col = GetSize(sig)-1; dst_col >= 0; dst_col--)
+ {
+ int best_src_col = -1;
+ bool best_inv = false;
+ int best_maxval = 0;
+ int best_delta = 0;
+
+ // find best src colum for this dst column
+ for (int src_col = 0; src_col < GetSize(sig); src_col++)
+ {
+ if (used_src_columns[src_col])
+ continue;
+
+ int this_maxval = 0;
+ int this_minval = 1 << 30;
+
+ int this_inv_maxval = 0;
+ int this_inv_minval = 1 << 30;
+
+ for (int i = 0; i < GetSize(values); i++)
+ {
+ int val = values[i];
+ int inv_val = val;
+
+ if (columns[src_col][i])
+ val |= 1 << dst_col;
+ else
+ inv_val |= 1 << dst_col;
+
+ this_maxval = std::max(this_maxval, val);
+ this_minval = std::min(this_minval, val);
+
+ this_inv_maxval = std::max(this_inv_maxval, inv_val);
+ this_inv_minval = std::min(this_inv_minval, inv_val);
+ }
+
+ int this_delta = this_maxval - this_minval;
+ int this_inv_delta = this_maxval - this_minval;
+ bool this_inv = false;
+
+ if (this_delta != this_inv_delta)
+ this_inv = this_inv_delta < this_delta;
+ else if (this_maxval != this_inv_maxval)
+ this_inv = this_inv_maxval < this_maxval;
+
+ if (this_inv) {
+ this_delta = this_inv_delta;
+ this_maxval = this_inv_maxval;
+ this_minval = this_inv_minval;
+ }
+
+ bool this_is_better = false;
+
+ if (best_src_col < 0)
+ this_is_better = true;
+ else if (this_delta != best_delta)
+ this_is_better = this_delta < best_delta;
+ else if (this_maxval != best_maxval)
+ this_is_better = this_maxval < best_maxval;
+ else
+ this_is_better = sig[best_src_col] < sig[src_col];
+
+ if (this_is_better) {
+ best_src_col = src_col;
+ best_inv = this_inv;
+ best_maxval = this_maxval;
+ best_delta = this_delta;
+ }
+ }
+
+ used_src_columns[best_src_col] = true;
+ perm_new_from_old[dst_col] = best_src_col;
+ perm_xormask[dst_col] = best_inv ? State::S1 : State::S0;
+ }
+ }
// permutated sig
- Const perm_xormask(State::S0, GetSize(sig));
SigSpec perm_sig(State::S0, GetSize(sig));
- for (int i = 0; i < GetSize(sig); i++) {
- if (perm[i].first == 1)
- perm_xormask[i] = State::S1;
- perm_sig[i] = sig[perm[i].second];
- }
+ for (int i = 0; i < GetSize(sig); i++)
+ perm_sig[i] = sig[perm_new_from_old[i]];
log(" best permutation: %s\n", log_signal(perm_sig));
log(" best xor mask: %s\n", log_signal(perm_xormask));
Const new_c(State::S0, GetSize(old_c));
for (int i = 0; i < GetSize(old_c); i++)
- new_c[i] = old_c[perm[i].second];
+ new_c[i] = old_c[perm_new_from_old[i]];
Const new_c_before_xor = new_c;
new_c = const_xor(new_c, perm_xormask, false, false, GetSize(new_c));
log(" %s -> %s -> %s\n", log_signal(old_c), log_signal(new_c_before_xor), log_signal(new_c));
}
+ int range_density = 100*GetSize(choices) / (max_choice-min_choice+1);
+ int absolute_density = 100*GetSize(choices) / (max_choice+1);
+
log(" choices: %d\n", GetSize(choices));
log(" min choice: %d\n", min_choice);
log(" max choice: %d\n", max_choice);
- log(" range density: %d%%\n", 100*GetSize(choices)/(max_choice-min_choice+1));
- log(" absolute density: %d%%\n", 100*GetSize(choices)/(max_choice+1));
+ log(" range density: %d%%\n", range_density);
+ log(" absolute density: %d%%\n", absolute_density);
bool full_case = (min_choice == 0) && (max_choice == (1 << GetSize(sig))-1) && (max_choice+1 == GetSize(choices));
log(" full case: %s\n", full_case ? "true" : "false");
- // use arithmetic offset if density is less than 30%
+ // check density percentages
Const offset(State::S0, GetSize(sig));
- if (3*GetSize(choices) < max_choice && 3*GetSize(choices) >= (max_choice-min_choice))
+ if (absolute_density < non_offset_percentage && range_density >= offset_percentage)
{
log(" using offset method.\n");
for (auto &it : perm_choices)
new_perm_choices[const_sub(it.first, offset, false, false, GetSize(sig))] = it.second;
perm_choices.swap(new_perm_choices);
- }
-
- // ignore cases with a absolute density of less than 30%
- if (3*GetSize(choices) < max_choice) {
+ } else
+ if (absolute_density < non_offset_percentage) {
log(" insufficient density.\n");
seldb.erase(sig);
continue;