module \$__DFFS_PP0_ (input D, C, R, output Q); DFFR _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .RESET(R)); endmodule
// DFFS D Flip-Flop with Synchronous Set
-module \$__DFFS_PN1_ (input D, C, S, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!S)); endmodule
-module \$__DFFS_PP1_ (input D, C, S, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(S)); endmodule
+module \$__DFFS_PN1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(!R)); endmodule
+module \$__DFFS_PP1_ (input D, C, R, output Q); DFFS _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .SET(R)); endmodule
// DFFP D Flip-Flop with Asynchronous Preset
module \$_DFF_PP1_ (input D, C, R, output Q); DFFP _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R)); endmodule
module \$_DFF_PN0_ (input D, C, R, output Q); DFFC _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R)); endmodule
// DFFPE D Flip-Flop with Clock Enable and Asynchronous Preset
-module \$__DFFE_PP1_ (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule
-module \$__DFFE_PN1_ (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule
+module \$__DFFE_PP1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(R), .CE(E)); endmodule
+module \$__DFFE_PN1 (input D, C, R, E, output Q); DFFPE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .PRESET(!R), .CE(E)); endmodule
// DFFCE D Flip-Flop with Clock Enable and Asynchronous Clear
-module \$__DFFE_PP0_ (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule
-module \$__DFFE_PN0_ (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule
+module \$__DFFE_PP0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(R), .CE(E)); endmodule
+module \$__DFFE_PN0 (input D, C, R, E, output Q); DFFCE _TECHMAP_REPLACE_ (.D(D), .Q(Q), .CLK(C), .CLEAR(!R), .CE(E)); endmodule
module \$_MUX_ (input A, B, S, output Y); MUX2 _TECHMAP_REPLACE_ (.I0(A), .I1(B), .S0(S), .O(Y)); endmodule
end
endmodule // DFFR (positive clock edge; synchronous reset)
+module DFFE (output reg Q, input D, CLK, CE);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK) begin
+ if (CE)
+ Q <= D;
+ end
+endmodule // DFFE (positive clock edge; clock enable)
+
+
+module DFFS (output reg Q, input D, CLK, SET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK) begin
+ if (SET)
+ Q <= 1'b1;
+ else
+ Q <= D;
+ end
+endmodule // DFFS (positive clock edge; synchronous set)
+
+
+module DFFSE (output reg Q, input D, CLK, CE, SET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK) begin
+ if (SET)
+ Q <= 1'b1;
+ else if (CE)
+ Q <= D;
+end
+endmodule // DFFSE (positive clock edge; synchronous set takes precedence over clock enable)
+
+
+module DFFR (output reg Q, input D, CLK, RESET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK) begin
+ if (RESET)
+ Q <= 1'b0;
+ else
+ Q <= D;
+ end
+endmodule // DFFR (positive clock edge; synchronous reset)
+
+
+module DFFRE (output reg Q, input D, CLK, CE, RESET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK) begin
+ if (RESET)
+ Q <= 1'b0;
+ else if (CE)
+ Q <= D;
+ end
+endmodule // DFFRE (positive clock edge; synchronous reset takes precedence over clock enable)
+
+
+module DFFP (output reg Q, input D, CLK, PRESET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK or posedge PRESET) begin
+ if(PRESET)
+ Q <= 1'b1;
+ else
+ Q <= D;
+ end
+endmodule // DFFP (positive clock edge; asynchronous preset)
+
+
+module DFFPE (output reg Q, input D, CLK, CE, PRESET);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK or posedge PRESET) begin
+ if(PRESET)
+ Q <= 1'b1;
+ else if (CE)
+ Q <= D;
+ end
+endmodule // DFFPE (positive clock edge; asynchronous preset; clock enable)
+
+
+module DFFC (output reg Q, input D, CLK, CLEAR);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK or posedge CLEAR) begin
+ if(CLEAR)
+ Q <= 1'b0;
+ else
+ Q <= D;
+ end
+endmodule // DFFC (positive clock edge; asynchronous clear)
+
+
+module DFFCE (output reg Q, input D, CLK, CE, CLEAR);
+ parameter [0:0] INIT = 1'b0;
+ initial Q = INIT;
+ always @(posedge CLK or posedge CLEAR) begin
+ if(CLEAR)
+ Q <= 1'b0;
+ else if (CE)
+ Q <= D;
+ end
+endmodule // DFFCE (positive clock edge; asynchronous clear; clock enable)
+
// TODO add more DFF sim cells
module VCC(output V);