log(" -seq <N>\n");
log(" the max. number of time steps to be considered (default = 4)\n");
log("\n");
+ log("This command is very effective in proving complex sequential circuits, when\n");
+ log("the internal state of the circuit quickly propagates to $equiv cells.\n");
+ log("\n");
+ log("However, this command uses a weak definition of 'equivalence': This command\n");
+ log("proves that the two circuits will not diverge after they produce equal\n");
+ log("outputs (observable points via $equiv) for at least <N> cycles (the <N>\n");
+ log("specified via -seq).\n");
+ log("\n");
+ log("Combined with simulation this is very powerful because simulation can give\n");
+ log("you confidence that the circuits start out synced for at least <N> cycles\n");
+ log("after reset.\n");
+ log("\n");
}
virtual void execute(std::vector<std::string> args, Design *design)
{
}
}
+ void find_undriven_nets()
+ {
+ pool<SigBit> undriven_bits;
+ SigMap assign_map(equiv_mod);
+
+ for (auto wire : equiv_mod->wires()) {
+ for (auto bit : assign_map(wire))
+ if (bit.wire)
+ undriven_bits.insert(bit);
+ }
+
+ for (auto wire : equiv_mod->wires()) {
+ if (wire->port_input)
+ for (auto bit : assign_map(wire))
+ undriven_bits.erase(bit);
+ }
+
+ for (auto cell : equiv_mod->cells()) {
+ for (auto &conn : cell->connections())
+ if (!ct.cell_known(cell->type) || ct.cell_output(cell->type, conn.first))
+ for (auto bit : assign_map(conn.second))
+ undriven_bits.erase(bit);
+ }
+
+ SigSpec undriven_sig(undriven_bits);
+ undriven_sig.sort_and_unify();
+
+ for (auto chunk : undriven_sig.chunks()) {
+ log("Setting undriven nets to undef: %s\n", log_signal(chunk));
+ equiv_mod->connect(chunk, SigSpec(State::Sx, chunk.width));
+ }
+ }
+
void run()
{
copy_to_equiv();
find_same_wires();
find_same_cells();
+ find_undriven_nets();
}
};