// Instructions that do the same thing to multiple sets of arguments.
//
-let {{
- def doInst(name, Name, opTypeSet):
- if not instDict.has_key(Name):
- raise Exception, "Unrecognized instruction: %s" % Name
- inst = instDict[Name]()
- return inst.emit(opTypeSet)
-}};
-
def format Inst(*opTypeSet) {{
- (header_output,
- decoder_output,
- decode_block,
- exce_output) = doInst(name, Name, list(opTypeSet)).makeList()
+ decode_block = specializeInst(Name, list(opTypeSet), EmulEnv())
}};
def format MultiInst(switchVal, *opTypeSets) {{
switcher = {}
for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
- switcher[count] = (opTypeSet,)
- (header_output,
- decoder_output,
- decode_block,
- exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher).makeList()
+ switcher[count] = (opTypeSet, EmulEnv())
+ decode_block = doSplitDecode(Name, specializeInst, switchVal, switcher)
}};
#include "arch/x86/faults.hh"
#include "arch/x86/isa_traits.hh"
#include "arch/x86/regfile.hh"
+#include "arch/x86/types.hh"
#include "base/misc.hh"
#include "cpu/static_inst.hh"
#include "mem/packet.hh"
}};
output decoder {{
+
+namespace X86Macroop {
+};
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "cpu/thread_context.hh" // for Jump::branchTarget()
output header {{
- // Base class for macroops
+ // Base class for combinationally generated macroops
class MacroOp : public StaticInst
{
protected:
// Basic instruction class declaration template.
def template MacroDeclare {{
- /**
- * Static instruction class for "%(mnemonic)s".
- */
- class %(class_name)s : public %(base_class)s
+ namespace X86Microop
{
- public:
- // Constructor.
- %(class_name)s(ExtMachInst machInst);
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ public:
+ // Constructor.
+ %(class_name)s(ExtMachInst machInst);
+ };
};
}};
//
let {{
- def genMacroOp(name, Name, opSeq):
- numMicroOps = len(opSeq)
- allocMicroOps = ''
- micropc = 0
- for op in opSeq:
- allocMicroOps += \
- "microOps[%d] = %s;\n" % \
- (micropc, op.getAllocator('"' + name + '"', True, False,
- #op.delayed,
- micropc == 0,
- micropc == numMicroOps - 1))
- micropc += 1
- iop = InstObjParams(name, Name, 'MacroOp',
- {'code' : '', 'num_micro_ops' : numMicroOps,
- 'alloc_micro_ops' : allocMicroOps})
- header_output = MacroDeclare.subst(iop)
- decoder_output = MacroConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = ''
- return (header_output, decoder_output, decode_block, exec_output)
+ from micro_asm import Combinational_Macroop, Rom_Macroop
+ class X86Macroop(Combinational_Macroop):
+ def __init__(self, name):
+ super(X86Macroop, self).__init__(name)
+ self.directives = {
+ }
+ self.declared = False
+ def getAllocator(self, env):
+ return "new X86Macroop::%s(machInst)" % self.name
+ def getDeclaration(self):
+ #FIXME This first parameter should be the mnemonic. I need to
+ #write some code which pulls that out
+ iop = InstObjParams(self.name, self.name, "Macroop", {"code" : ""})
+ return MacroDeclare.subst(iop);
+ def getDefinition(self):
+ #FIXME This first parameter should be the mnemonic. I need to
+ #write some code which pulls that out
+ numMicroops = len(self.microops)
+ allocMicroops = ''
+ micropc = 0
+ for op in self.microops:
+ allocMicroops += \
+ "microOps[%d] = %s;\n" % \
+ (micropc, op.getAllocator(True, False,
+ micropc == 0,
+ micropc == numMicroops - 1))
+ micropc += 1
+ iop = InstObjParams(self.name, self.name, "Macroop",
+ {"code" : "", "num_micro_ops" : numMicroops,
+ "alloc_micro_ops" : allocMicroops})
+ return MacroConstructor.subst(iop);
+}};
+
+output header {{
+ struct EmulEnv
+ {
+ X86ISA::RegIndex reg;
+ X86ISA::RegIndex regm;
+ uint64_t immediate;
+ uint64_t displacement;
+ int addressSize;
+ int dataSize;
+
+ EmulEnv(X86ISA::RegIndex _reg, X86ISA::RegIndex _regm,
+ uint64_t _immediate, uint64_t _displacement,
+ int _addressSize, int _dataSize) :
+ reg(_reg), regm(_regm),
+ immediate(_immediate), displacement(_displacement),
+ addressSize(_addressSize), dataSize(_dataSize)
+ {;}
+ };
+}};
+
+let {{
+ class EmulEnv(object):
+ def __init__(self):
+ self.reg = "Not specified"
+ self.regm = "Not specified"
+ self.immediate = "IMMEDIATE"
+ self.displacement = "DISPLACEMENT"
+ self.addressSize = "ADDRSIZE"
+ self.dataSize = "OPSIZE"
+ def getAllocator(self):
+ return "EmulEmv(%(reg)s, %(regm)s, %(immediate)s, %(displacement)s, %(addressSize)s, %(dataSize)s)" % \
+ self.__dict__()
+}};
+
+let {{
+ def genMacroop(Name, env):
+ if not macroopDict.has_key(Name):
+ raise Exception, "Unrecognized instruction: %s" % Name
+ macroop = macroopDict[Name]
+ if not macroop.declared:
+ global header_output
+ global decoder_output
+ header_output = macroop.getDeclaration()
+ decoder_output = macroop.getDefinition()
+ return "return %s;\n" % macroop.getAllocator(env)
}};
namespace X86ISA;
-////////////////////////////////////////////////////////////////////
-//
-// General infrastructure code. These files provide infrastructure
-// which was developed to support x86 but isn't specific to it.
-//
-
-//Include code to build macroops.
-##include "macroop.isa"
-
-////////////////////////////////////////////////////////////////////
-//
-// X86 only infrastructure code.
-//
-
//Include the base class for x86 instructions, and some support code.
##include "base.isa"
-//Include code to specialize an instruction template to operate on
-//a particular set of operands. This is specific to x86 and the x86
-//microcode ISA.
-##include "specialize.isa"
-
-////////////////////////////////////////////////////////////////////
-//
-// Code which directly specifies isa components like instructions
-// microops, and the decoder.
-//
-
//Include the definitions for the instruction formats
##include "formats/formats.isa"
//internal instruction set.
##include "microops/microops.isa"
-//Include the instruction definitions which are microop assembler programs.
-##include "insts/insts.isa"
+//Include code to build macroops.
+##include "macroop.isa"
+
+//Include the simple microcode assembler. This will hopefully stay
+//unspecialized for x86 and can later be made available to other ISAs.
+##include "microasm.isa"
+
+//Include code to specialize an instruction template to operate on
+//a particular set of operands. This is specific to x86 and the x86
+//microcode ISA.
+##include "specialize.isa"
//Include the bitfield definitions
##include "bitfields.isa"
//
// Authors: Gabe Black
+//##include "microops/microops.isa"
+//##include "macroop.isa"
+
+let {{
+ import sys
+ sys.path[0:0] = ["src/arch/x86/isa/"]
+ from insts import microcode
+ print microcode
+ from micro_asm import MicroAssembler, Rom_Macroop, Rom
+ mainRom = Rom('main ROM')
+ assembler = MicroAssembler(X86Macroop, microopClasses, mainRom, Rom_Macroop)
+ macroopDict = assembler.assemble(microcode)
+}};
+
////////////////////////////////////////////////////////////////////
//
// Microcode assembler specialization for x86
return text
def getAllocator(self, mnemonic, *microFlags):
- args = ''
- return 'new %s(machInst, %s%s%s)' % (self.className, mnemonic, self.microFlagsText(microFlags), args)
+ return 'new %s(machInst, %s)' % (self.className, mnemonic, self.microFlagsText(microFlags))
}};
}};
let {{
- class RegOp(object):
+ class RegOp(X86Microop):
def __init__(self, dest, src1, src2):
self.dest = dest
self.src1 = src1
"dataSize" : self.dataSize,
"ext" : self.ext}
- class RegOpImm(object):
+ class RegOpImm(X86Microop):
def __init__(self, dest, src1, imm):
self.dest = dest
self.src1 = src1
decoder_output = ""
exec_output = ""
- def defineMicroIntOp(mnemonic, code):
+ def defineMicroRegOp(mnemonic, code):
global header_output
global decoder_output
global exec_output
+ global microopClasses
Name = mnemonic
name = mnemonic.lower()
class RegOpChild(RegOp):
def __init__(self, dest, src1, src2):
- super(RegOpChild, self).__init__(self, dest, src1, src2)
+ super(RegOpChild, self).__init__(dest, src1, src2)
+ self.className = Name
self.mnemonic = name
microopClasses[name] = RegOpChild
class RegOpImmChild(RegOpImm):
def __init__(self, dest, src1, imm):
- super(RegOpImmChild, self).__init__(self, dest, src1, imm)
+ super(RegOpImmChild, self).__init__(dest, src1, imm)
+ self.className = Name + "Imm"
self.mnemonic = name + "i"
microopClasses[name + "i"] = RegOpChild
- defineMicroIntOp('Add', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to set OF,CF,SF
- defineMicroIntOp('Or', 'DestReg = merge(DestReg, SrcReg1 | op2, dataSize)')
- defineMicroIntOp('Adc', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to add in CF, set OF,CF,SF
- defineMicroIntOp('Sbb', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to subtract CF, set OF,CF,SF
- defineMicroIntOp('And', 'DestReg = merge(DestReg, SrcReg1 & op2, dataSize)')
- defineMicroIntOp('Sub', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to set OF,CF,SF
- defineMicroIntOp('Xor', 'DestReg = merge(DestReg, SrcReg1 ^ op2, dataSize)')
- defineMicroIntOp('Cmp', 'DestReg = merge(DestReg, DestReg - op2, dataSize)') #Needs to set OF,CF,SF and not DestReg
- defineMicroIntOp('Mov', 'DestReg = merge(SrcReg1, op2, dataSize)')
+ defineMicroRegOp('Add', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to set OF,CF,SF
+ defineMicroRegOp('Or', 'DestReg = merge(DestReg, SrcReg1 | op2, dataSize)')
+ defineMicroRegOp('Adc', 'DestReg = merge(DestReg, SrcReg1 + op2, dataSize)') #Needs to add in CF, set OF,CF,SF
+ defineMicroRegOp('Sbb', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to subtract CF, set OF,CF,SF
+ defineMicroRegOp('And', 'DestReg = merge(DestReg, SrcReg1 & op2, dataSize)')
+ defineMicroRegOp('Sub', 'DestReg = merge(DestReg, SrcReg1 - op2, dataSize)') #Needs to set OF,CF,SF
+ defineMicroRegOp('Xor', 'DestReg = merge(DestReg, SrcReg1 ^ op2, dataSize)')
+ defineMicroRegOp('Cmp', 'DestReg = merge(DestReg, DestReg - op2, dataSize)') #Needs to set OF,CF,SF and not DestReg
+ defineMicroRegOp('Mov', 'DestReg = merge(SrcReg1, op2, dataSize)')
}};
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
- def doSplitDecode(name, Name, builder, switchVal, vals, default = None):
- blocks = OutputBlocks()
- blocks.decode_block += 'switch(%s) {\n' % switchVal
+ def doSplitDecode(Name, builder, switchVal, vals, default = None):
+ decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
- built = builder(name, Name, *todo)
- built.decode_block = '\tcase %s: %s\n' % (val, built.decode_block)
- blocks.append(built)
+ new_block = builder(Name, *todo)
+ new_block = '\tcase %s: %s\n' % (val, new_block)
+ decode_block += new_block
if default:
- built = builder(name, Name, *default)
- built.decode_block = '\tdefault: %s\n' % built.decode_block
- blocks.append(built)
- blocks.decode_block += '}\n'
- return blocks
+ new_block = builder(Name, *default)
+ new_block = '\tdefault: %s\n' % new_block
+ decode_block += new_block
+ decode_block += '}\n'
+ return decode_block
}};
let {{
class OpType(object):
- parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Za-z0-9][A-Za-z0-9]*))")
+ parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9])(?P<rsize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
+ self.rsize = match.group("rsize")
# This function specializes the given piece of code to use a particular
- # set of argument types described by "opTypes". These are "implemented"
- # in reverse order.
- def specializeInst(name, Name, code, opTypes):
- opNum = len(opTypes) - 1
+ # set of argument types described by "opTypes".
+ def specializeInst(Name, opTypes, env):
while len(opTypes):
# print "Building a composite op with tags", opTypes
# print "And code", code
opNum = len(opTypes) - 1
- # A regular expression to find the operand placeholders we're
- # interested in.
- opRe = re.compile("\\^(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
- # Parse the operand type strign we're working with
+ # Parse the operand type string we're working with
opType = OpType(opTypes[opNum])
if opType.reg:
#Figure out what to do with fixed register operands
- if opType.reg in ("Ax", "Bx", "Cx", "Dx"):
- code = opRe.sub("%%{INTREG_R%s}" % opType.reg.upper(), code)
- elif opType.reg == "Al":
- # We need a way to specify register width
- code = opRe.sub("%{INTREG_RAX}", code)
- else:
- print "Didn't know how to encode fixed register %s!" % opType.reg
+ #This is the index to use, so we should stick it some place.
+ print "INTREG_R%s" % (opType.reg + opType.size.upper())
+ if opType.size:
+ if opType.rsize in ("l", "h", "b"):
+ print "byte"
+ elif opType.rsize == "x":
+ print "word"
+ else:
+ print "Didn't recognize fixed register size %s!" % opType.rsize
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
- code = opRe.sub("%{(uint8_t)MODRM_REG}", code)
+ print "(uint8_t)MODRM_REG"
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
- regCode = opRe.sub("%{(uint8_t)MODRM_RM}", code)
+ print "(uint8_t)MODRM_RM"
regTypes = copy.copy(opTypes)
- regTypes.pop(-1)
+ regTypes.pop(0)
+ regEnv = copy.copy(env)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
- code = "GenFault ${new UnimpInstFault}\n" + code
- memCode = opRe.sub("%0", code)
+ # code = "GenFault #${new UnimpInstFault}#\n" + code
+ print "%0"
memTypes = copy.copy(opTypes)
- memTypes.pop(-1)
- return doSplitDecode(name, Name, specializeInst, "MODRM_MOD",
- {"3" : (regCode, regTypes)}, (memCode, memTypes))
+ memTypes.pop(0)
+ memEnv = copy.copy(env)
+ return doSplitDecode(Name, specializeInst, "MODRM_MOD",
+ {"3" : (regTypes, memEnv)}, (memTypes, memEnv))
elif opType.tag in ("I", "J"):
# Immediates are already in the instruction, so don't leave in
# those parameters
- code = opRe.sub("${IMMEDIATE}", code)
+ print "IMMEDIATE"
elif opType.tag == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
- code = "GenFault ${new UnimpInstFault}\n" + code
- code = opRe.sub("%0", code)
+ #code = "GenFault #${new UnimpInstFault}#\n" + code
+ print "%0"
elif opType.tag in ("PR", "R", "VR"):
# There should probably be a check here to verify that mod
# is equal to 11b
- code = opRe.sub("%{(uint8_t)MODRM_RM}", code)
+ print "(uint8_t)MODRM_RM"
else:
raise Exception, "Unrecognized tag %s." % opType.tag
- opTypes.pop(-1)
+ opTypes.pop(0)
# At this point, we've built up "code" to have all the necessary extra
# instructions needed to implement whatever types of operands were
# specified. Now we'll assemble it it into a StaticInst.
- blocks = OutputBlocks()
- blocks.append(assembleMicro(name, Name, code))
- return blocks
+ return genMacroop(Name, env)
}};