virtual std::string identify() const = 0;
};
-
+/** Arithmetic utilities regarding monomial sums.
+ *
+ * Note the following terminology:
+ *
+ * We say Node c is a {monomial constant} (or m-constant) if either:
+ * (a) c is a constant Rational, or
+ * (b) c is null.
+ *
+ * We say Node v is a {monomial variable} (or m-variable) if either:
+ * (a) v.getType().isReal() and v is not a constant, or
+ * (b) v is null.
+ *
+ * For m-constant or m-variable t, we write [t] to denote 1 if t.isNull() and
+ * t otherwise.
+ *
+ * A monomial m is a pair ( mvariable, mconstant ) of the form ( v, c ), which
+ * is interpreted as [c]*[v].
+ *
+ * A {monmoial sum} msum is represented by a std::map< Node, Node > having
+ * key-value pairs of the form ( mvariable, mconstant ).
+ * It is interpreted as:
+ * [msum] = sum_{( v, c ) \in msum } [c]*[v]
+ * It is critical that this map is ordered so that operations like adding
+ * two monomial sums can be done efficiently. The ordering itself is not
+ * important, and currently corresponds to the default ordering on Nodes.
+ *
+ * The following has utilities involving monmoial sums.
+ *
+ */
class QuantArith
{
public:
- static bool getMonomial( Node n, Node& c, Node& v );
- static bool getMonomial( Node n, std::map< Node, Node >& msum );
- static bool getMonomialSum( Node n, std::map< Node, Node >& msum );
- static bool getMonomialSumLit( Node lit, std::map< Node, Node >& msum );
- static Node mkNode( std::map< Node, Node >& msum );
- static Node mkCoeffTerm( Node coeff, Node t );
- //return 1 : solved on LHS, return -1 : solved on RHS, return 0: failed
- static int isolate( Node v, std::map< Node, Node >& msum, Node & veq_c, Node & val, Kind k );
- static int isolate( Node v, std::map< Node, Node >& msum, Node & veq, Kind k, bool doCoeff = false );
- static Node solveEqualityFor( Node lit, Node v );
- static Node negate( Node t );
- static Node offset( Node t, int i );
- static void debugPrintMonomialSum( std::map< Node, Node >& msum, const char * c );
+ /** get monomial
+ *
+ * If n = n[0]*n[1] where n[0] is constant and n[1] is not,
+ * this function returns true, sets c to n[0] and v to n[1].
+ */
+ static bool getMonomial(Node n, Node& c, Node& v);
+
+ /** get monomial
+ *
+ * If this function returns true, it adds the ( m-constant, m-variable )
+ * pair corresponding to the monomial representation of n to the
+ * monomial sum msum.
+ *
+ * This function returns false if the m-variable of n is already
+ * present in n.
+ */
+ static bool getMonomial(Node n, std::map<Node, Node>& msum);
+
+ /** get monomial sum for real-valued term n
+ *
+ * If this function returns true, it sets msum to a monmoial sum such that
+ * [msum] is equivalent to n
+ *
+ * This function may return false if n is not a sum of monomials
+ * whose variables are pairwise unique.
+ * If term n is in rewritten form, this function should always return true.
+ */
+ static bool getMonomialSum(Node n, std::map<Node, Node>& msum);
+
+ /** get monmoial sum literal for literal lit
+ *
+ * If this function returns true, it sets msum to a monmoial sum such that
+ * [msum] <k> 0 is equivalent to lit[0] <k> lit[1]
+ * where k is the Kind of lit, one of { EQUAL, GEQ }.
+ *
+ * This function may return false if either side of lit is not a sum
+ * of monomials whose variables are pairwise unique on that side.
+ * If literal lit is in rewritten form, this function should always return
+ * true.
+ */
+ static bool getMonomialSumLit(Node lit, std::map<Node, Node>& msum);
+
+ /** make node for monomial sum
+ *
+ * Make the Node corresponding to the interpretation of msum, [msum], where:
+ * [msum] = sum_{( v, c ) \in msum } [c]*[v]
+ */
+ static Node mkNode(std::map<Node, Node>& msum);
+
+ /** make coefficent term
+ *
+ * Input coeff is a m-constant.
+ * Returns the term t if coeff.isNull() or coeff*t otherwise.
+ */
+ static Node mkCoeffTerm(Node coeff, Node t);
+
+ /** isolate variable v in constraint ([msum] <k> 0)
+ *
+ * If this function returns a value ret where ret != 0, then
+ * veq_c is set to m-constant, and val is set to a term such that:
+ * If ret=1, then ([veq_c] * v <k> val) is equivalent to [msum] <k> 0.
+ * If ret=-1, then (val <k> [veq_c] * v) is equivalent to [msum] <k> 0.
+ * If veq_c is non-null, then it is a positive constant Rational.
+ * The returned value of veq_c is only non-null if v has integer type.
+ *
+ * This function returns 0 indicating a failure if msum does not contain
+ * a (non-zero) monomial having mvariable v.
+ */
+ static int isolate(
+ Node v, std::map<Node, Node>& msum, Node& veq_c, Node& val, Kind k);
+
+ /** isolate variable v in constraint ([msum] <k> 0)
+ *
+ * If this function returns a value ret where ret != 0, then veq
+ * is set to a literal that is equivalent to ([msum] <k> 0), and:
+ * If ret=1, then veq is of the form ( v <k> val) if veq_c.isNull(),
+ * or ([veq_c] * v <k> val) if !veq_c.isNull().
+ * If ret=-1, then veq is of the form ( val <k> v) if veq_c.isNull(),
+ * or (val <k> [veq_c] * v) if !veq_c.isNull().
+ * If doCoeff = false or v does not have Integer type, then veq_c is null.
+ *
+ * This function returns 0 indiciating a failure if msum does not contain
+ * a (non-zero) monomial having variable v, or if veq_c must be non-null
+ * for an integer constraint and doCoeff is false.
+ */
+ static int isolate(Node v,
+ std::map<Node, Node>& msum,
+ Node& veq,
+ Kind k,
+ bool doCoeff = false);
+
+ /** solve equality lit for variable
+ *
+ * If return value ret is non-null, then:
+ * v = ret is equivalent to lit.
+ *
+ * This function may return false if lit does not contain v,
+ * or if lit is an integer equality with a coefficent on v,
+ * e.g. 3*v = 7.
+ */
+ static Node solveEqualityFor(Node lit, Node v);
+
+ /** decompose real-valued term n
+ *
+ * If this function returns true, then
+ * ([coeff]*v + rem) is equivalent to n
+ * where coeff is non-zero m-constant.
+ *
+ * This function will return false if n is not a monomial sum containing
+ * a monomial with factor v.
+ */
+ static bool decompose(Node n, Node v, Node& coeff, Node& rem);
+
+ /** return the rewritten form of (UMINUS t) */
+ static Node negate(Node t);
+
+ /** return the rewritten form of (PLUS t (CONST_RATIONAL i)) */
+ static Node offset(Node t, int i);
+
+ /** debug print for a monmoial sum, prints to Trace(c) */
+ static void debugPrintMonomialSum(std::map<Node, Node>& msum, const char* c);
};