# 4 reset = 0;
# 6 $finish;
end
-
+
/* Make enable with period of 8 and 6,7 low */
reg en = 1;
always begin
/* Make a regular pulsing clock. */
reg clk = 0;
always #1 clk = !clk;
-
+
/* UUT */
wire [2:0] count;
counter c1 (clk, reset, en, count);
# iverlog simulation
echo "Doing Verilog simulation with iverilog"
-iverilog -o counter_tb counter.v counter_tb.v
+iverilog -o counter_tb counter.v counter_tb.v
./counter_tb; gtkwave counter_tb.gtkw &
# yosys synthesis
always @(*) begin
case(SW)
- 4'h1: HEX0 = 7'b1111001;
- 4'h2: HEX0 = 7'b0100100;
- 4'h3: HEX0 = 7'b0110000;
- 4'h4: HEX0 = 7'b0011001;
- 4'h5: HEX0 = 7'b0010010;
- 4'h6: HEX0 = 7'b0000010;
- 4'h7: HEX0 = 7'b1111000;
- 4'h8: HEX0 = 7'b0000000;
- 4'h9: HEX0 = 7'b0011000;
+ 4'h1: HEX0 = 7'b1111001;
+ 4'h2: HEX0 = 7'b0100100;
+ 4'h3: HEX0 = 7'b0110000;
+ 4'h4: HEX0 = 7'b0011001;
+ 4'h5: HEX0 = 7'b0010010;
+ 4'h6: HEX0 = 7'b0000010;
+ 4'h7: HEX0 = 7'b1111000;
+ 4'h8: HEX0 = 7'b0000000;
+ 4'h9: HEX0 = 7'b0011000;
4'ha: HEX0 = 7'b0001000;
4'hb: HEX0 = 7'b0000011;
4'hc: HEX0 = 7'b1000110;
4'hf: HEX0 = 7'b0001110;
4'h0: HEX0 = 7'b1000000;
endcase // case (SW)
- end
-
+ end
+
endmodule
`default_nettype none
module top ( output wire [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7,
input wire [15:0] SW );
-
-
+
+
sevenseg UUD0 (.HEX0(HEX0), .SW(4'h7));
sevenseg UUD1 (.HEX0(HEX1), .SW(4'h1));
sevenseg UUD2 (.HEX0(HEX2), .SW(4'h0));
sevenseg UUD5 (.HEX0(HEX5), .SW(SW[7:4]));
sevenseg UUD6 (.HEX0(HEX6), .SW(SW[11:8]));
sevenseg UUD7 (.HEX0(HEX7), .SW(SW[15:12]));
-
+
endmodule
always @(*) begin
case(SW)
- 4'h1: HEX0 = 7'b1111001;
- 4'h2: HEX0 = 7'b0100100;
- 4'h3: HEX0 = 7'b0110000;
- 4'h4: HEX0 = 7'b0011001;
- 4'h5: HEX0 = 7'b0010010;
- 4'h6: HEX0 = 7'b0000010;
- 4'h7: HEX0 = 7'b1111000;
- 4'h8: HEX0 = 7'b0000000;
- 4'h9: HEX0 = 7'b0011000;
+ 4'h1: HEX0 = 7'b1111001;
+ 4'h2: HEX0 = 7'b0100100;
+ 4'h3: HEX0 = 7'b0110000;
+ 4'h4: HEX0 = 7'b0011001;
+ 4'h5: HEX0 = 7'b0010010;
+ 4'h6: HEX0 = 7'b0000010;
+ 4'h7: HEX0 = 7'b1111000;
+ 4'h8: HEX0 = 7'b0000000;
+ 4'h9: HEX0 = 7'b0011000;
4'ha: HEX0 = 7'b0001000;
4'hb: HEX0 = 7'b0000011;
4'hc: HEX0 = 7'b1000110;
4'hf: HEX0 = 7'b0001110;
4'h0: HEX0 = 7'b1000000;
endcase // case (SW)
- end
-
+ end
+
endmodule
`default_nettype none
module top ( output wire [6:0] HEX0, HEX1, HEX2, HEX3, HEX4, HEX5, HEX6, HEX7,
input wire [15:0] SW );
-
-
+
+
sevenseg UUD0 (.HEX0(HEX0), .SW(4'h7));
sevenseg UUD1 (.HEX0(HEX1), .SW(4'h1));
sevenseg UUD2 (.HEX0(HEX2), .SW(4'h0));
sevenseg UUD5 (.HEX0(HEX5), .SW(SW[7:4]));
sevenseg UUD6 (.HEX0(HEX6), .SW(SW[11:8]));
sevenseg UUD7 (.HEX0(HEX7), .SW(SW[15:12]));
-
+
endmodule
for (auto bit : queue)
visited.insert(bit);
-
+
for (auto bit : queue)
{
auto &cells = up_bit2cells[bit];
for (auto &port_it : cell->connections())
if (cell->output(port_it.first)) {
SigSpec sig = assign_map(port_it.second);
- Const val(set_output ? State::S1 : State::S0, GetSize(sig));
+ Const val(set_output ? State::S1 : State::S0, GetSize(sig));
ce.set(sig, val);
}
}
for (auto w : warnings) warnmsg += " " + w;
log_warning("%s", warnmsg.c_str());
} else {
- log("FSM state register %s.%s already has fsm_encoding attribute.\n", log_id(wire->module), log_id(wire));
+ log("FSM state register %s.%s already has fsm_encoding attribute.\n", log_id(wire->module), log_id(wire));
}
}
else
//references the constant signal in the comparison
RTLIL::SigSpec sigConst;
- // note that this signal must be constant for the optimization
+ // note that this signal must be constant for the optimization
// to take place, but it is not checked beforehand.
// If new passes are added, this signal must be checked for const-ness
RTLIL::SigSpec a_prime(RTLIL::State::S0, 1);
if(is_lt){
a_prime[0] = RTLIL::State::S1;
- log("Replacing %s cell `%s' (implementing unsigned X[%d:0] < %s[%d:0]) with constant 0.\n", log_id(cell->type), log_id(cell), width-1, log_signal(sigConst),const_width-1);
+ log("Replacing %s cell `%s' (implementing unsigned X[%d:0] < %s[%d:0]) with constant 0.\n", log_id(cell->type), log_id(cell), width-1, log_signal(sigConst),const_width-1);
}
else{
- log("Replacing %s cell `%s' (implementing unsigned X[%d:0]>= %s[%d:0]) with constant 1.\n", log_id(cell->type), log_id(cell), width-1, log_signal(sigConst),const_width-1);
+ log("Replacing %s cell `%s' (implementing unsigned X[%d:0]>= %s[%d:0]) with constant 1.\n", log_id(cell->type), log_id(cell), width-1, log_signal(sigConst),const_width-1);
}
module->connect(cell->getPort("\\Y"), a_prime);
module->remove(cell);
for (auto bit : sigmap(conn.second))
bit_lut_count[bit]++;
}
-
+
for (auto &cand : candidate_ratings)
{
for (auto &conn : cand.first->connections())
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
-
+
module VCC (output V);
assign V = 1'b1;
endmodule // VCC
assign oe = oe;
endmodule // fiftyfivenm_io_obuf
-/* Altera MAX10 4-input non-fracturable LUT Primitive */
+/* Altera MAX10 4-input non-fracturable LUT Primitive */
module cycloneiv_lcell_comb (output combout, cout,
input dataa, datab, datac, datad, cin);
/* Internal parameters which define the behaviour
of the LUT primitive.
lut_mask define the lut function, can be expressed in 16-digit bin or hex.
- sum_lutc_input define the type of LUT (combinational | arithmetic).
+ sum_lutc_input define the type of LUT (combinational | arithmetic).
dont_touch for retiming || carry options.
- lpm_type for WYSIWYG */
-
+ lpm_type for WYSIWYG */
+
parameter lut_mask = 16'hFFFF;
parameter dont_touch = "off";
parameter lpm_type = "cycloneiv_lcell_comb";
parameter sum_lutc_input = "datac";
-
-reg [1:0] lut_type;
+
+reg [1:0] lut_type;
reg cout_rt;
reg combout_rt;
wire dataa_w;
initial begin
if (sum_lutc_input == "datac") lut_type = 0;
- else
+ else
if (sum_lutc_input == "cin") lut_type = 1;
else begin
$error("Error in sum_lutc_input. Parameter %s is not a valid value.\n", sum_lutc_input);
always @(dataa_w or datab_w or datac_w or datad_w or cin_w) begin
if (lut_type == 0) begin // logic function
- combout_rt = lut_data(lut_mask, dataa_w, datab_w,
+ combout_rt = lut_data(lut_mask, dataa_w, datab_w,
datac_w, datad_w);
end
else if (lut_type == 1) begin // arithmetic function
- combout_rt = lut_data(lut_mask, dataa_w, datab_w,
+ combout_rt = lut_data(lut_mask, dataa_w, datab_w,
cin_w, datad_w);
end
cout_rt = lut_data(lut_mask, dataa_w, datab_w, cin_w, 'b0);
/* Altera Cyclone IV Flip-Flop Primitive */
// TODO: Implement advanced simulation functions
-module dffeas ( output q,
- input d, clk, clrn, prn, ena,
+module dffeas ( output q,
+ input d, clk, clrn, prn, ena,
input asdata, aload, sclr, sload );
-
+
parameter power_up="dontcare";
parameter is_wysiwyg="false";
reg q;
always @(posedge clk)
q <= d;
-
+
endmodule
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
-
+
// Flip-flop D
module \$_DFF_P_ (input D, input C, output Q);
parameter WYSIWYG="TRUE";
// Input buffer map
module \$__inpad (input I, output O);
cycloneiv_io_ibuf _TECHMAP_REPLACE_ (.o(O), .i(I), .ibar(1'b0));
-endmodule
+endmodule
-// Output buffer map
+// Output buffer map
module \$__outpad (input I, output O);
cycloneiv_io_obuf _TECHMAP_REPLACE_ (.o(O), .i(I), .oe(1'b1));
-endmodule
+endmodule
// LUT Map
/* 0 -> datac
parameter LUT = 0;
input [WIDTH-1:0] A;
output Y;
- generate
+ generate
if (WIDTH == 1) begin
assign Y = ~A[0]; // Not need to spend 1 logic cell for such an easy function
end else
if (WIDTH == 2) begin
cycloneiv_lcell_comb #(.lut_mask({4{LUT}}), .sum_lutc_input("datac")) _TECHMAP_REPLACE_ (.combout(Y), .dataa(A[0]), .datab(A[1]), .datac(1'b1),.datad(1'b1));
end else
- if(WIDTH == 3) begin
+ if(WIDTH == 3) begin
cycloneiv_lcell_comb #(.lut_mask({2{LUT}}), .sum_lutc_input("datac")) _TECHMAP_REPLACE_ (.combout(Y), .dataa(A[0]), .datab(A[1]), .datac(A[2]),.datad(1'b1));
end else
if(WIDTH == 4) begin
endgenerate
endmodule //
-
+
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
-
+
// NOTE: This is still WIP.
(* techmap_celltype = "$altpll" *)
-module _80_altpll_altera ( input [1:0] inclk,
- input fbin,
- input pllena,
- input clkswitch,
- input areset,
- input pfdena,
- input clkena,
- input extclkena,
- input scanclk,
- input scanaclr,
- input scanclkena,
- input scanread,
- input scanwrite,
- input scandata,
- input phasecounterselect,
+module _80_altpll_altera ( input [1:0] inclk,
+ input fbin,
+ input pllena,
+ input clkswitch,
+ input areset,
+ input pfdena,
+ input clkena,
+ input extclkena,
+ input scanclk,
+ input scanaclr,
+ input scanclkena,
+ input scanread,
+ input scanwrite,
+ input scandata,
+ input phasecounterselect,
input phaseupdown,
input phasestep,
input configupdate,
inout fbmimicbidir,
-
- output [width_clock-1:0] clk,
- output [3:0] extclk,
- output [1:0] clkbad,
- output enable0,
- output enable1,
- output activeclock,
- output clkloss,
- output locked,
- output scandataout,
- output scandone,
- output sclkout0,
- output sclkout1,
+
+ output [width_clock-1:0] clk,
+ output [3:0] extclk,
+ output [1:0] clkbad,
+ output enable0,
+ output enable1,
+ output activeclock,
+ output clkloss,
+ output locked,
+ output scandataout,
+ output scandone,
+ output sclkout0,
+ output sclkout1,
output phasedone,
output vcooverrange,
output vcounderrange,
output fbout,
output fref,
output icdrclk );
-
+
parameter intended_device_family = "MAX 10";
parameter operation_mode = "NORMAL";
parameter pll_type = "AUTO";
parameter clk2_phase_shift = "0";
parameter clk1_phase_shift = "0";
parameter clk0_phase_shift = "0";
-
+
parameter clk9_duty_cycle = 50;
parameter clk8_duty_cycle = 50;
parameter clk7_duty_cycle = 50;
parameter pfd_min = 0;
parameter pfd_max = 0;
parameter m_initial = 1;
- parameter m = 0;
+ parameter m = 0;
parameter n = 1;
parameter m2 = 1;
parameter n2 = 1;
parameter port_scanclkena = "PORT_CONNECTIVITY";
parameter using_fbmimicbidir_port = "ON";
-endmodule
\ No newline at end of file
+endmodule
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;
parameter LUT = 0;
-
+
input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] X, Y;
wire [Y_WIDTH-1:0] AA = A_buf;
wire [Y_WIDTH-1:0] BB = BI ? ~B_buf : B_buf;
wire [Y_WIDTH-1:0] C = {CO, CI};
-
+
genvar i;
generate for (i = 0; i < Y_WIDTH; i = i + 1) begin:slice
- fiftyfivenm_lcell_comb #(.lut_mask(LUT), .sum_lutc_input("cin")) _TECHMAP_REPLACE_
- ( .dataa(AA),
- .datab(BB),
- .datac(C),
- .datad(1'b0),
- .cin(C[i]),
+ fiftyfivenm_lcell_comb #(.lut_mask(LUT), .sum_lutc_input("cin")) _TECHMAP_REPLACE_
+ ( .dataa(AA),
+ .datab(BB),
+ .datac(C),
+ .datad(1'b0),
+ .cin(C[i]),
.cout(CO[i]),
.combout(Y[i]) );
end: slice
endgenerate
assign X = C;
endmodule
-
+
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
-
+
module VCC (output V);
assign V = 1'b1;
endmodule // VCC
assign G = 1'b0;
endmodule // GND
-/* Altera MAX10 devices Input Buffer Primitive */
+/* Altera MAX10 devices Input Buffer Primitive */
module fiftyfivenm_io_ibuf (output o, input i, input ibar);
assign ibar = ibar;
assign o = i;
assign oe = oe;
endmodule // fiftyfivenm_io_obuf
-/* Altera MAX10 4-input non-fracturable LUT Primitive */
+/* Altera MAX10 4-input non-fracturable LUT Primitive */
module fiftyfivenm_lcell_comb (output combout, cout,
input dataa, datab, datac, datad, cin);
-
+
/* Internal parameters which define the behaviour
of the LUT primitive.
lut_mask define the lut function, can be expressed in 16-digit bin or hex.
- sum_lutc_input define the type of LUT (combinational | arithmetic).
+ sum_lutc_input define the type of LUT (combinational | arithmetic).
dont_touch for retiming || carry options.
- lpm_type for WYSIWYG */
-
+ lpm_type for WYSIWYG */
+
parameter lut_mask = 16'hFFFF;
parameter dont_touch = "off";
parameter lpm_type = "fiftyfivenm_lcell_comb";
parameter sum_lutc_input = "datac";
-
-reg [1:0] lut_type;
+
+reg [1:0] lut_type;
reg cout_rt;
reg combout_rt;
wire dataa_w;
initial begin
if (sum_lutc_input == "datac") lut_type = 0;
- else
+ else
if (sum_lutc_input == "cin") lut_type = 1;
else begin
$error("Error in sum_lutc_input. Parameter %s is not a valid value.\n", sum_lutc_input);
always @(dataa_w or datab_w or datac_w or datad_w or cin_w) begin
if (lut_type == 0) begin // logic function
- combout_rt = lut_data(lut_mask, dataa_w, datab_w,
+ combout_rt = lut_data(lut_mask, dataa_w, datab_w,
datac_w, datad_w);
end
else if (lut_type == 1) begin // arithmetic function
- combout_rt = lut_data(lut_mask, dataa_w, datab_w,
+ combout_rt = lut_data(lut_mask, dataa_w, datab_w,
cin_w, datad_w);
end
cout_rt = lut_data(lut_mask, dataa_w, datab_w, cin_w, 'b0);
/* Altera MAX10 D Flip-Flop Primitive */
// TODO: Implement advanced simulation functions
-module dffeas ( output q,
- input d, clk, clrn, prn, ena,
+module dffeas ( output q,
+ input d, clk, clrn, prn, ena,
input asdata, aload, sclr, sload );
-
+
parameter power_up="dontcare";
parameter is_wysiwyg="false";
reg q;
always @(posedge clk)
q <= d;
-
+
endmodule
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
-
+
// Flip-flop D
module \$_DFF_P_ (input D, input C, output Q);
parameter WYSIWYG="TRUE";
// Input buffer map
module \$__inpad (input I, output O);
fiftyfivenm_io_ibuf _TECHMAP_REPLACE_ (.o(O), .i(I), .ibar(1'b0));
-endmodule
+endmodule
-// Output buffer map
+// Output buffer map
module \$__outpad (input I, output O);
fiftyfivenm_io_obuf _TECHMAP_REPLACE_ (.o(O), .i(I), .oe(1'b1));
-endmodule
+endmodule
// LUT Map
/* 0 -> datac
parameter LUT = 0;
input [WIDTH-1:0] A;
output Y;
- generate
+ generate
if (WIDTH == 1) begin
assign Y = ~A[0]; // Not need to spend 1 logic cell for such an easy function
end else
if (WIDTH == 2) begin
fiftyfivenm_lcell_comb #(.lut_mask({4{LUT}}), .sum_lutc_input("datac")) _TECHMAP_REPLACE_ (.combout(Y), .dataa(A[0]), .datab(A[1]), .datac(1'b1),.datad(1'b1));
end else
- if(WIDTH == 3) begin
+ if(WIDTH == 3) begin
fiftyfivenm_lcell_comb #(.lut_mask({2{LUT}}), .sum_lutc_input("datac")) _TECHMAP_REPLACE_ (.combout(Y), .dataa(A[0]), .datab(A[1]), .datac(A[2]),.datad(1'b1));
end else
if(WIDTH == 4) begin
endgenerate
endmodule //
-
+
if (!design->full_selection())
log_cmd_error("This comannd only operates on fully selected designs!\n");
-
+
if (family_opt != "max10" && family_opt !="cycloneiv" )
log_cmd_error("Invalid or not family specified: '%s'\n", family_opt.c_str());
else if(!other_conns_allowed)
return false;
}
-
+
if( (!found_a) || (!found_b) )
return false;
}
-
+
return true;
}
if(ports.size() > 1)
return false;
}
-
+
return true;
}
int greenpak4_counters_tryextract(ModIndex& index, Cell *cell, CounterExtraction& extract)
{
SigMap& sigmap = index.sigmap;
-
+
//GreenPak does not support counters larger than 14 bits so immediately skip anything bigger
int a_width = cell->getParam("\\A_WIDTH").as_int();
extract.width = a_width;
if(a_width > 14)
return 1;
-
+
//Second input must be a single bit
int b_width = cell->getParam("\\B_WIDTH").as_int();
if(b_width != 1)
return 2;
-
+
//Both inputs must be unsigned, so don't extract anything with a signed input
bool a_sign = cell->getParam("\\A_SIGNED").as_bool();
bool b_sign = cell->getParam("\\B_SIGNED").as_bool();
const RTLIL::SigSpec b_port = sigmap(cell->getPort("\\B"));
if(!b_port.is_fully_const() || (b_port.as_int() != 1) )
return 4;
-
+
//BI and CI must be constant 1 as well
const RTLIL::SigSpec bi_port = sigmap(cell->getPort("\\BI"));
if(!bi_port.is_fully_const() || (bi_port.as_int() != 1) )
const RTLIL::SigSpec ci_port = sigmap(cell->getPort("\\CI"));
if(!ci_port.is_fully_const() || (ci_port.as_int() != 1) )
return 6;
-
+
//CO and X must be unconnected (exactly one connection to each port)
if(!is_unconnected(sigmap(cell->getPort("\\CO")), index))
return 7;
if(!is_unconnected(sigmap(cell->getPort("\\X")), index))
return 8;
-
+
//Y must have exactly one connection, and it has to be a $mux cell.
//We must have a direct bus connection from our Y to their A.
const RTLIL::SigSpec aluy = sigmap(cell->getPort("\\Y"));
if(!underflow.is_fully_const())
return 12;
extract.count_value = underflow.as_int();
-
+
//S connection of the mux must come from an inverter (need not be the only load)
const RTLIL::SigSpec muxsel = sigmap(count_mux->getPort("\\S"));
extract.outsig = muxsel;
pool<Cell*> muxsel_conns = get_other_cells(muxsel, index, count_mux);
Cell* underflow_inv = NULL;
for(auto c : muxsel_conns)
- {
+ {
if(c->type != "$logic_not")
continue;
if(!is_full_bus(muxsel, index, c, "\\Y", count_mux, "\\S", true))
continue;
-
+
underflow_inv = c;
break;
}
if(underflow_inv == NULL)
return 13;
extract.underflow_inv = underflow_inv;
-
+
//Y connection of the mux must have exactly one load, the counter's internal register
const RTLIL::SigSpec muxy = sigmap(count_mux->getPort("\\Y"));
pool<Cell*> muxy_loads = get_other_cells(muxy, index, count_mux);
else if(count_reg->type == "$adff")
{
extract.has_reset = true;
-
+
//Verify ARST_VALUE is zero and ARST_POLARITY is 1
//TODO: infer an inverter to make it 1 if necessary, so we can support negative level resets?
if(count_reg->getParam("\\ARST_POLARITY").as_int() != 1)
return 22;
if(count_reg->getParam("\\ARST_VALUE").as_int() != 0)
return 23;
-
+
//Save the reset
extract.rst = sigmap(count_reg->getPort("\\ARST"));
}
return 15;
if(!is_full_bus(muxy, index, count_mux, "\\Y", count_reg, "\\D"))
return 16;
-
+
//TODO: Verify count_reg CLK_POLARITY is 1
-
+
//Register output must have exactly two loads, the inverter and ALU
const RTLIL::SigSpec cnout = sigmap(count_reg->getPort("\\Q"));
pool<Cell*> cnout_loads = get_other_cells(cnout, index, count_reg);
return 18;
if(!is_full_bus(cnout, index, count_reg, "\\Q", cell, "\\A", true))
return 19;
-
+
//Look up the clock from the register
extract.clk = sigmap(count_reg->getPort("\\CLK"));
-
+
//Register output net must have an INIT attribute equal to the count value
extract.rwire = cnout.as_wire();
if(extract.rwire->attributes.find("\\init") == extract.rwire->attributes.end())
int rinit = extract.rwire->attributes["\\init"].as_int();
if(rinit != extract.count_value)
return 21;
-
+
return 0;
}
pool<Cell*>& cells_to_remove)
{
SigMap& sigmap = index.sigmap;
-
+
//Core of the counter must be an ALU
if (cell->type != "$alu")
return;
-
+
//A input is the count value. Check if it has COUNT_EXTRACT set.
//If it's not a wire, don't even try
auto port = sigmap(cell->getPort("\\A"));
log_id(a_wire),
count_reg_src.c_str(),
extract_value.c_str());
-
+
if(extract_value == "FORCE")
force_extract = true;
else if(extract_value == "NO")
extract_value.c_str());
}
}
-
+
//If we're explicitly told not to extract, don't infer a counter
if(never_extract)
return;
-
+
//Attempt to extract a counter
CounterExtraction extract;
int reason = greenpak4_counters_tryextract(index, cell, extract);
-
+
//Nonzero code - we could not find a matchable counter.
//Do nothing, unless extraction was forced in which case give an error
if(reason != 0)
"Reset polarity is not positive", //22
"Reset is not to zero" //23
};
-
+
if(force_extract)
{
log_error(
}
return;
}
-
+
//Figure out the final cell type based on the counter size
string celltype = "\\GP_COUNT8";
if(extract.width > 8)
celltype = "\\GP_COUNT14";
-
+
//Log it
total_counters ++;
string reset_type = "non-resettable";
extract.count_value,
log_id(extract.rwire->name),
count_reg_src.c_str());
-
+
//Wipe all of the old connections to the ALU
cell->unsetPort("\\A");
cell->unsetPort("\\B");
//Change the cell type
cell->type = celltype;
-
+
//Hook up resets
if(extract.has_reset)
{
cell->setParam("\\RESET_MODE", RTLIL::Const("RISING"));
cell->setPort("\\RST", RTLIL::SigSpec(false));
}
-
+
//Hook up other stuff
cell->setParam("\\CLKIN_DIVIDE", RTLIL::Const(1));
cell->setParam("\\COUNT_TO", RTLIL::Const(extract.count_value));
-
+
cell->setPort("\\CLK", extract.clk);
cell->setPort("\\OUT", extract.outsig);
-
+
//Delete the cells we've replaced (let opt_clean handle deleting the now-redundant wires)
cells_to_remove.insert(extract.count_mux);
cells_to_remove.insert(extract.count_reg);
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log_header(design, "Executing GREENPAK4_COUNTERS pass (mapping counters to hard IP blocks).\n");
-
+
size_t argidx;
for (argidx = 1; argidx < args.size(); argidx++)
{
break;
}
extra_args(args, argidx, design);
-
+
//Extract all of the counters we could find
unsigned int total_counters = 0;
for (auto module : design->selected_modules())
{
pool<Cell*> cells_to_remove;
-
+
ModIndex index(module);
for (auto cell : module->selected_cells())
greenpak4_counters_worker(index, cell, total_counters, cells_to_remove);
-
+
for(auto cell : cells_to_remove)
module->remove(cell);
}
-
+
if(total_counters)
log("Extracted %u counters\n", total_counters);
}
always @* begin
if (A == 4'b1111) begin // All-Const at port (eq)
X = B;
- end
+ end
else begin
X = 4'b0000; // All-Const at port (mux)
end