}
}
+/**
+ * Build a manual selection sequence for cube face sc/tc coordinates and
+ * major axis vector (multiplied by 2 for consistency) for the given
+ * vec3 \p coords, for the face implied by \p selcoords.
+ *
+ * For the major axis, we always adjust the sign to be in the direction of
+ * selcoords.ma; i.e., a positive out_ma means that coords is pointed towards
+ * the selcoords major axis.
+ */
+static void build_cube_select(LLVMBuilderRef builder,
+ const struct cube_selection_coords *selcoords,
+ const LLVMValueRef *coords,
+ LLVMValueRef *out_st,
+ LLVMValueRef *out_ma)
+{
+ LLVMTypeRef f32 = LLVMTypeOf(coords[0]);
+ LLVMValueRef is_ma_positive;
+ LLVMValueRef sgn_ma;
+ LLVMValueRef is_ma_z, is_not_ma_z;
+ LLVMValueRef is_ma_y;
+ LLVMValueRef is_ma_x;
+ LLVMValueRef sgn;
+ LLVMValueRef tmp;
+
+ is_ma_positive = LLVMBuildFCmp(builder, LLVMRealUGE,
+ selcoords->ma, LLVMConstReal(f32, 0.0), "");
+ sgn_ma = LLVMBuildSelect(builder, is_ma_positive,
+ LLVMConstReal(f32, 1.0), LLVMConstReal(f32, -1.0), "");
+
+ is_ma_z = LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 4.0), "");
+ is_not_ma_z = LLVMBuildNot(builder, is_ma_z, "");
+ is_ma_y = LLVMBuildAnd(builder, is_not_ma_z,
+ LLVMBuildFCmp(builder, LLVMRealUGE, selcoords->id, LLVMConstReal(f32, 2.0), ""), "");
+ is_ma_x = LLVMBuildAnd(builder, is_not_ma_z, LLVMBuildNot(builder, is_ma_y, ""), "");
+
+ /* Select sc */
+ tmp = LLVMBuildSelect(builder, is_ma_z, coords[2], coords[0], "");
+ sgn = LLVMBuildSelect(builder, is_ma_y, LLVMConstReal(f32, 1.0),
+ LLVMBuildSelect(builder, is_ma_x, sgn_ma,
+ LLVMBuildFNeg(builder, sgn_ma, ""), ""), "");
+ out_st[0] = LLVMBuildFMul(builder, tmp, sgn, "");
+
+ /* Select tc */
+ tmp = LLVMBuildSelect(builder, is_ma_y, coords[2], coords[1], "");
+ sgn = LLVMBuildSelect(builder, is_ma_y, LLVMBuildFNeg(builder, sgn_ma, ""),
+ LLVMConstReal(f32, -1.0), "");
+ out_st[1] = LLVMBuildFMul(builder, tmp, sgn, "");
+
+ /* Select ma */
+ tmp = LLVMBuildSelect(builder, is_ma_z, coords[2],
+ LLVMBuildSelect(builder, is_ma_y, coords[1], coords[0], ""), "");
+ sgn = LLVMBuildSelect(builder, is_ma_positive,
+ LLVMConstReal(f32, 2.0), LLVMConstReal(f32, -2.0), "");
+ *out_ma = LLVMBuildFMul(builder, tmp, sgn, "");
+}
+
static void si_llvm_cube_to_2d_coords(struct lp_build_tgsi_context *bld_base,
LLVMValueRef *in, LLVMValueRef *out)
{
unsigned opcode = emit_data->inst->Instruction.Opcode;
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMBuilderRef builder = gallivm->builder;
+ LLVMTypeRef type = bld_base->base.elem_type;
+ struct cube_selection_coords selcoords;
LLVMValueRef coords[4];
- unsigned i;
+ LLVMValueRef invma;
- si_llvm_cube_to_2d_coords(bld_base, coords_arg, coords);
+ build_cube_intrinsic(gallivm, coords_arg, &selcoords);
+
+ invma = lp_build_intrinsic(builder, "llvm.fabs.f32",
+ type, &selcoords.ma, 1, LP_FUNC_ATTR_READNONE);
+ invma = lp_build_emit_llvm_unary(bld_base, TGSI_OPCODE_RCP, invma);
+
+ for (int i = 0; i < 2; ++i)
+ coords[i] = LLVMBuildFMul(builder, selcoords.stc[i], invma, "");
+
+ coords[2] = selcoords.id;
if (opcode == TGSI_OPCODE_TXD && derivs_arg) {
LLVMValueRef derivs[4];
/* Convert cube derivatives to 2D derivatives. */
for (axis = 0; axis < 2; axis++) {
- LLVMValueRef shifted_cube_coords[4], shifted_coords[4];
-
- /* Shift the cube coordinates by the derivatives to get
- * the cube coordinates of the "neighboring pixel".
- */
- for (i = 0; i < 3; i++)
- shifted_cube_coords[i] =
- LLVMBuildFAdd(builder, coords_arg[i],
- derivs_arg[axis*3+i], "");
- shifted_cube_coords[3] = LLVMGetUndef(bld_base->base.elem_type);
-
- /* Project the shifted cube coordinates onto the face. */
- si_llvm_cube_to_2d_coords(bld_base, shifted_cube_coords,
- shifted_coords);
-
- /* Subtract both sets of 2D coordinates to get 2D derivatives.
- * This won't work if the shifted coordinates ended up
- * in a different face.
+ LLVMValueRef deriv_st[2];
+ LLVMValueRef deriv_ma;
+
+ /* Transform the derivative alongside the texture
+ * coordinate. Mathematically, the correct formula is
+ * as follows. Assume we're projecting onto the +Z face
+ * and denote by dx/dh the derivative of the (original)
+ * X texture coordinate with respect to horizontal
+ * window coordinates. The projection onto the +Z face
+ * plane is:
+ *
+ * f(x,z) = x/z
+ *
+ * Then df/dh = df/dx * dx/dh + df/dz * dz/dh
+ * = 1/z * dx/dh - x/z * 1/z * dz/dh.
+ *
+ * This motivatives the implementation below.
+ *
+ * Whether this actually gives the expected results for
+ * apps that might feed in derivatives obtained via
+ * finite differences is anyone's guess. The OpenGL spec
+ * seems awfully quiet about how textureGrad for cube
+ * maps should be handled.
*/
- for (i = 0; i < 2; i++)
+ build_cube_select(builder, &selcoords, &derivs_arg[axis * 3],
+ deriv_st, &deriv_ma);
+
+ deriv_ma = LLVMBuildFMul(builder, deriv_ma, invma, "");
+
+ for (int i = 0; i < 2; ++i)
derivs[axis * 2 + i] =
- LLVMBuildFSub(builder, shifted_coords[i],
- coords[i], "");
+ LLVMBuildFSub(builder,
+ LLVMBuildFMul(builder, deriv_st[i], invma, ""),
+ LLVMBuildFMul(builder, deriv_ma, coords[i], ""), "");
}
memcpy(derivs_arg, derivs, sizeof(derivs));
}
+ /* Shift the texture coordinate. This must be applied after the
+ * derivative calculation.
+ */
+ for (int i = 0; i < 2; ++i)
+ coords[i] = LLVMBuildFAdd(builder, coords[i], LLVMConstReal(type, 1.5), "");
+
if (target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
/* for cube arrays coord.z = coord.w(array_index) * 8 + face */