## List of 2-arg opcodes
-[[!table data="""
-opcode | Description | pseudocode | Extension |
-FATAN2 | atan2 arc tangent | rd = atan2(rs2, rs1) | Zarctrignpi |
-FATAN2PI | atan2 arc tangent / pi | rd = atan2(rs2, rs1) / pi | Zarctrigpi |
-FPOW | x power of y | rd = pow(rs1, rs2) | ZftransAdv |
-FPOWN | x power of n (n int) | rd = pow(rs1, rs2) | ZftransAdv |
-FPOWR | x power of y (x +ve) | rd = exp(rs1 log(rs2)) | ZftransAdv |
-FROOTN | x power 1/n (n integer)| rd = pow(rs1, 1/rs2) | ZftransAdv |
-FHYPOT | hypotenuse | rd = sqrt(rs1^2 + rs2^2) | ZftransAdv |
-"""]]
-
+| opcode | Description | pseudocode | Extension |
+| ------ | ---------------- | ---------------- | ----------- |
+| FATAN2 | atan2 arc tangent | rd = atan2(rs2, rs1) | Zarctrignpi |
+| FATAN2PI | atan2 arc tangent / pi | rd = atan2(rs2, rs1) / pi | Zarctrigpi |
+| FPOW | x power of y | rd = pow(rs1, rs2) | ZftransAdv |
+| FPOWN | x power of n (n int) | rd = pow(rs1, rs2) | ZftransAdv |
+| FPOWR | x power of y (x +ve) | rd = exp(rs1 log(rs2)) | ZftransAdv |
+| FROOTN | x power 1/n (n integer)| rd = pow(rs1, 1/rs2) | ZftransAdv |
+| FHYPOT | hypotenuse | rd = sqrt(rs1^2 + rs2^2) | ZftransAdv |
+
## List of 1-arg transcendental opcodes
-[[!table data="""
-opcode | Description | pseudocode | Extension |
-FRSQRT | Reciprocal Square-root | rd = sqrt(rs1) | Zfrsqrt |
-FCBRT | Cube Root | rd = pow(rs1, 1.0 / 3) | ZftransAdv |
-FRECIP | Reciprocal | rd = 1.0 / rs1 | Zftrans |
-FEXP2 | power-of-2 | rd = pow(2, rs1) | Zftrans |
-FLOG2 | log2 | rd = log(2. rs1) | Zftrans |
-FEXPM1 | exponential minus 1 | rd = pow(e, rs1) - 1.0 | ZftransExt |
-FLOG1P | log plus 1 | rd = log(e, 1 + rs1) | ZftransExt |
-FEXP | exponential | rd = pow(e, rs1) | ZftransExt |
-FLOG | natural log (base e) | rd = log(e, rs1) | ZftransExt |
-FEXP10 | power-of-10 | rd = pow(10, rs1) | ZftransExt |
-FLOG10 | log base 10 | rd = log(10, rs1) | ZftransExt |
-"""]]
+| opcode | Description | pseudocode | Extension |
+| ------ | ---------------- | ---------------- | ----------- |
+| FRSQRT | Reciprocal Square-root | rd = sqrt(rs1) | Zfrsqrt |
+| FCBRT | Cube Root | rd = pow(rs1, 1.0 / 3) | ZftransAdv |
+| FRECIP | Reciprocal | rd = 1.0 / rs1 | Zftrans |
+| FEXP2 | power-of-2 | rd = pow(2, rs1) | Zftrans |
+| FLOG2 | log2 | rd = log(2. rs1) | Zftrans |
+| FEXPM1 | exponential minus 1 | rd = pow(e, rs1) - 1.0 | ZftransExt |
+| FLOG1P | log plus 1 | rd = log(e, 1 + rs1) | ZftransExt |
+| FEXP | exponential | rd = pow(e, rs1) | ZftransExt |
+| FLOG | natural log (base e) | rd = log(e, rs1) | ZftransExt |
+| FEXP10 | power-of-10 | rd = pow(10, rs1) | ZftransExt |
+| FLOG10 | log base 10 | rd = log(10, rs1) | ZftransExt |
## List of 1-arg trigonometric opcodes
-
-[[!table data="""
-opcode | Description | pseudo-code | Extension |
-FSIN | sin (radians) | rd = sin(rs1) | Ztrignpi |
-FCOS | cos (radians) | rd = cos(rs1) | Ztrignpi |
-FTAN | tan (radians) | rd = tan(rs1) | Ztrignpi |
-FASIN | arcsin (radians) | rd = asin(rs1) | Zarctrignpi |
-FACOS | arccos (radians) | rd = acos(rs1) | Zarctrignpi |
-FATAN | arctan (radians) | rd = atan(rs1) | Zarctrignpi |
-FSINPI | sin times pi | rd = sin(pi * rs1) | Ztrigpi |
-FCOSPI | cos times pi | rd = cos(pi * rs1) | Ztrigpi |
-FTANPI | tan times pi | rd = tan(pi * rs1) | Ztrigpi |
-FASINPI | arcsin / pi | rd = asin(rs1) / pi | Zarctrigpi |
-FACOSPI | arccos / pi | rd = acos(rs1) / pi | Zarctrigpi |
-FATANPI | arctan / pi | rd = atan(rs1) / pi | Zarctrigpi |
-FSINH | hyperbolic sin (radians) | rd = sinh(rs1) | Zfhyp |
-FCOSH | hyperbolic cos (radians) | rd = cosh(rs1) | Zfhyp |
-FTANH | hyperbolic tan (radians) | rd = tanh(rs1) | Zfhyp |
-FASINH | inverse hyperbolic sin | rd = asinh(rs1) | Zfhyp |
-FACOSH | inverse hyperbolic cos | rd = acosh(rs1) | Zfhyp |
-FATANH | inverse hyperbolic tan | rd = atanh(rs1) | Zfhyp |
-"""]]
+
+| opcode | Description | pseudo-code | Extension |
+| ------ | ---------------- | ---------------- | ----------- |
+| FSIN | sin (radians) | rd = sin(rs1) | Ztrignpi |
+| FCOS | cos (radians) | rd = cos(rs1) | Ztrignpi |
+| FTAN | tan (radians) | rd = tan(rs1) | Ztrignpi |
+| FASIN | arcsin (radians) | rd = asin(rs1) | Zarctrignpi |
+| FACOS | arccos (radians) | rd = acos(rs1) | Zarctrignpi |
+| FATAN | arctan (radians) | rd = atan(rs1) | Zarctrignpi |
+| FSINPI | sin times pi | rd = sin(pi * rs1) | Ztrigpi |
+| FCOSPI | cos times pi | rd = cos(pi * rs1) | Ztrigpi |
+| FTANPI | tan times pi | rd = tan(pi * rs1) | Ztrigpi |
+| FASINPI | arcsin / pi | rd = asin(rs1) / pi | Zarctrigpi |
+| FACOSPI | arccos / pi | rd = acos(rs1) / pi | Zarctrigpi |
+| FATANPI | arctan / pi | rd = atan(rs1) / pi | Zarctrigpi |
+| FSINH | hyperbolic sin (radians) | rd = sinh(rs1) | Zfhyp |
+| FCOSH | hyperbolic cos (radians) | rd = cosh(rs1) | Zfhyp |
+| FTANH | hyperbolic tan (radians) | rd = tanh(rs1) | Zfhyp |
+| FASINH | inverse hyperbolic sin | rd = asinh(rs1) | Zfhyp |
+| FACOSH | inverse hyperbolic cos | rd = acosh(rs1) | Zfhyp |
+| FATANH | inverse hyperbolic tan | rd = atanh(rs1) | Zfhyp |