--- /dev/null
+/* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
+ Debugger.
+
+ Copyright 2000, 2004, 2005 Free Software Foundation, Inc.
+
+ Contributed by Red Hat.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 59 Temple Place - Suite 330,
+ Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
+#include "dwarf2-frame.h"
+#include "gdbtypes.h"
+#include "value.h"
+#include "dis-asm.h"
+#include "gdb_string.h"
+#include "arch-utils.h"
+#include "regcache.h"
+#include "osabi.h"
+#include "gdbcore.h"
+
+enum gdb_regnum
+{
+ E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
+ E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
+ E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
+ E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
+ E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
+ E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
+ E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
+ E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
+ E_PC_REGNUM,
+ E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
+ E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
+ E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
+ E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
+ E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
+ E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
+ E_NUM_REGS = E_PC_REGNUM + 1
+};
+
+/* Use an invalid address value as 'not available' marker. */
+enum { REG_UNAVAIL = (CORE_ADDR) -1 };
+
+struct iq2000_frame_cache
+{
+ /* Base address. */
+ CORE_ADDR base;
+ CORE_ADDR pc;
+ LONGEST framesize;
+ int using_fp;
+ CORE_ADDR saved_sp;
+ CORE_ADDR saved_regs [E_NUM_REGS];
+};
+
+/* Harvard methods: */
+
+static CORE_ADDR
+insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
+{
+ return addr & 0x7fffffffL;
+}
+
+static CORE_ADDR
+insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
+{
+ return (ptr & 0x7fffffffL) | 0x80000000L;
+}
+
+/* Function: pointer_to_address
+ Convert a target pointer to an address in host (CORE_ADDR) format. */
+
+static CORE_ADDR
+iq2000_pointer_to_address (struct type * type, const void * buf)
+{
+ enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
+ CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
+
+ if (target == TYPE_CODE_FUNC
+ || target == TYPE_CODE_METHOD
+ || (TYPE_FLAGS (TYPE_TARGET_TYPE (type)) & TYPE_FLAG_CODE_SPACE) != 0)
+ addr = insn_addr_from_ptr (addr);
+
+ return addr;
+}
+
+/* Function: address_to_pointer
+ Convert a host-format address (CORE_ADDR) into a target pointer. */
+
+static void
+iq2000_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
+{
+ enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
+
+ if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
+ addr = insn_ptr_from_addr (addr);
+ store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
+}
+
+/* Real register methods: */
+
+/* Function: register_name
+ Returns the name of the iq2000 register number N. */
+
+static const char *
+iq2000_register_name (int regnum)
+{
+ static const char * names[E_NUM_REGS] =
+ {
+ "r0", "r1", "r2", "r3", "r4",
+ "r5", "r6", "r7", "r8", "r9",
+ "r10", "r11", "r12", "r13", "r14",
+ "r15", "r16", "r17", "r18", "r19",
+ "r20", "r21", "r22", "r23", "r24",
+ "r25", "r26", "r27", "r28", "r29",
+ "r30", "r31",
+ "pc"
+ };
+ if (regnum < 0 || regnum >= E_NUM_REGS)
+ return NULL;
+ return names[regnum];
+}
+
+/* Prologue analysis methods: */
+
+/* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
+#define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
+#define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
+#define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
+#define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
+
+/* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
+#define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
+#define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
+#define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
+
+/* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
+#define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
+#define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
+#define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
+#define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
+
+/* Function: find_last_line_symbol
+
+ Given an address range, first find a line symbol corresponding to
+ the starting address. Then find the last line symbol within the
+ range that has a line number less than or equal to the first line.
+
+ For optimized code with code motion, this finds the last address
+ for the lowest-numbered line within the address range. */
+
+static struct symtab_and_line
+find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
+{
+ struct symtab_and_line sal = find_pc_line (start, notcurrent);
+ struct symtab_and_line best_sal = sal;
+
+ if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
+ return sal;
+
+ do
+ {
+ if (sal.line && sal.line <= best_sal.line)
+ best_sal = sal;
+ sal = find_pc_line (sal.end, notcurrent);
+ }
+ while (sal.pc && sal.pc < end);
+
+ return best_sal;
+}
+
+/* Function: scan_prologue
+ Decode the instructions within the given address range.
+ Decide when we must have reached the end of the function prologue.
+ If a frame_info pointer is provided, fill in its prologue information.
+
+ Returns the address of the first instruction after the prologue. */
+
+static CORE_ADDR
+iq2000_scan_prologue (CORE_ADDR scan_start,
+ CORE_ADDR scan_end,
+ struct frame_info *fi,
+ struct iq2000_frame_cache *cache)
+{
+ struct symtab_and_line sal;
+ CORE_ADDR pc;
+ CORE_ADDR loop_end;
+ int found_store_lr = 0;
+ int found_decr_sp = 0;
+ int srcreg;
+ int tgtreg;
+ signed short offset;
+
+ if (scan_end == (CORE_ADDR) 0)
+ {
+ loop_end = scan_start + 100;
+ sal.end = sal.pc = 0;
+ }
+ else
+ {
+ loop_end = scan_end;
+ if (fi)
+ sal = find_last_line_symbol (scan_start, scan_end, 0);
+ }
+
+ /* Saved registers:
+ We first have to save the saved register's offset, and
+ only later do we compute its actual address. Since the
+ offset can be zero, we must first initialize all the
+ saved regs to minus one (so we can later distinguish
+ between one that's not saved, and one that's saved at zero). */
+ for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
+ cache->saved_regs[srcreg] = -1;
+ cache->using_fp = 0;
+ cache->framesize = 0;
+
+ for (pc = scan_start; pc < loop_end; pc += 4)
+ {
+ LONGEST insn = read_memory_unsigned_integer (pc, 4);
+ /* Skip any instructions writing to (sp) or decrementing the
+ SP. */
+ if ((insn & 0xffe00000) == 0xac200000)
+ {
+ /* sw using SP/%1 as base. */
+ /* LEGACY -- from assembly-only port. */
+ tgtreg = ((insn >> 16) & 0x1f);
+ if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
+ cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
+
+ if (tgtreg == E_LR_REGNUM)
+ found_store_lr = 1;
+ continue;
+ }
+
+ if ((insn & 0xffff8000) == 0x20218000)
+ {
+ /* addi %1, %1, -N == addi %sp, %sp, -N */
+ /* LEGACY -- from assembly-only port */
+ found_decr_sp = 1;
+ cache->framesize = -((signed short) (insn & 0xffff));
+ continue;
+ }
+
+ if (INSN_IS_ADDIU (insn))
+ {
+ srcreg = ADDIU_REG_SRC (insn);
+ tgtreg = ADDIU_REG_TGT (insn);
+ offset = ADDIU_IMMEDIATE (insn);
+ if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
+ cache->framesize = -offset;
+ continue;
+ }
+
+ if (INSN_IS_STORE_WORD (insn))
+ {
+ srcreg = SW_REG_SRC (insn);
+ tgtreg = SW_REG_INDEX (insn);
+ offset = SW_OFFSET (insn);
+
+ if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
+ {
+ /* "push" to stack (via SP or FP reg) */
+ if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
+ cache->saved_regs[srcreg] = offset;
+ continue;
+ }
+ }
+
+ if (INSN_IS_MOVE (insn))
+ {
+ srcreg = MOVE_REG_SRC (insn);
+ tgtreg = MOVE_REG_TGT (insn);
+
+ if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
+ {
+ /* Copy sp to fp. */
+ cache->using_fp = 1;
+ continue;
+ }
+ }
+
+ /* Unknown instruction encountered in frame. Bail out?
+ 1) If we have a subsequent line symbol, we can keep going.
+ 2) If not, we need to bail out and quit scanning instructions. */
+
+ if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
+ continue;
+ else /* bail */
+ break;
+ }
+
+ return pc;
+}
+
+static void
+iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
+{
+ int i;
+
+ cache->base = 0;
+ cache->framesize = 0;
+ cache->using_fp = 0;
+ cache->saved_sp = 0;
+ for (i = 0; i < E_NUM_REGS; i++)
+ cache->saved_regs[i] = -1;
+}
+
+/* Function: iq2000_skip_prologue
+ If the input address is in a function prologue,
+ returns the address of the end of the prologue;
+ else returns the input address.
+
+ Note: the input address is likely to be the function start,
+ since this function is mainly used for advancing a breakpoint
+ to the first line, or stepping to the first line when we have
+ stepped into a function call. */
+
+static CORE_ADDR
+iq2000_skip_prologue (CORE_ADDR pc)
+{
+ CORE_ADDR func_addr = 0 , func_end = 0;
+
+ if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
+ {
+ struct symtab_and_line sal;
+ struct iq2000_frame_cache cache;
+
+ /* Found a function. */
+ sal = find_pc_line (func_addr, 0);
+ if (sal.end && sal.end < func_end)
+ /* Found a line number, use it as end of prologue. */
+ return sal.end;
+
+ /* No useable line symbol. Use prologue parsing method. */
+ iq2000_init_frame_cache (&cache);
+ return iq2000_scan_prologue (func_addr, func_end, NULL, &cache);
+ }
+
+ /* No function symbol -- just return the PC. */
+ return (CORE_ADDR) pc;
+}
+
+static struct iq2000_frame_cache *
+iq2000_frame_cache (struct frame_info *next_frame, void **this_cache)
+{
+ struct iq2000_frame_cache *cache;
+ CORE_ADDR current_pc;
+ int i;
+
+ if (*this_cache)
+ return *this_cache;
+
+ cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
+ iq2000_init_frame_cache (cache);
+ *this_cache = cache;
+
+ cache->base = frame_unwind_register_unsigned (next_frame, E_FP_REGNUM);
+ //if (cache->base == 0)
+ //return cache;
+
+ current_pc = frame_pc_unwind (next_frame);
+ find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
+ if (cache->pc != 0)
+ iq2000_scan_prologue (cache->pc, current_pc, next_frame, cache);
+ if (!cache->using_fp)
+ cache->base = frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
+
+ cache->saved_sp = cache->base + cache->framesize;
+
+ for (i = 0; i < E_NUM_REGS; i++)
+ if (cache->saved_regs[i] != -1)
+ cache->saved_regs[i] += cache->base;
+
+ return cache;
+}
+
+static void
+iq2000_frame_prev_register (struct frame_info *next_frame, void **this_cache,
+ int regnum, int *optimizedp,
+ enum lval_type *lvalp, CORE_ADDR *addrp,
+ int *realnump, void *valuep)
+{
+ struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
+ if (regnum == E_SP_REGNUM && cache->saved_sp)
+ {
+ *optimizedp = 0;
+ *lvalp = not_lval;
+ *addrp = 0;
+ *realnump = -1;
+ if (valuep)
+ store_unsigned_integer (valuep, 4, cache->saved_sp);
+ return;
+ }
+
+ if (regnum == E_PC_REGNUM)
+ regnum = E_LR_REGNUM;
+
+ if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
+ {
+ *optimizedp = 0;
+ *lvalp = lval_memory;
+ *addrp = cache->saved_regs[regnum];
+ *realnump = -1;
+ if (valuep)
+ read_memory (*addrp, valuep, register_size (current_gdbarch, regnum));
+ return;
+ }
+
+ *optimizedp = 0;
+ *lvalp = lval_register;
+ *addrp = 0;
+ *realnump = regnum;
+ if (valuep)
+ frame_unwind_register (next_frame, (*realnump), valuep);
+}
+
+static void
+iq2000_frame_this_id (struct frame_info *next_frame, void **this_cache,
+ struct frame_id *this_id)
+{
+ struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
+
+ /* This marks the outermost frame. */
+ if (cache->base == 0)
+ return;
+
+ *this_id = frame_id_build (cache->saved_sp, cache->pc);
+}
+
+static const struct frame_unwind iq2000_frame_unwind = {
+ NORMAL_FRAME,
+ iq2000_frame_this_id,
+ iq2000_frame_prev_register
+};
+
+static const struct frame_unwind *
+iq2000_frame_sniffer (struct frame_info *next_frame)
+{
+ return &iq2000_frame_unwind;
+}
+
+static CORE_ADDR
+iq2000_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
+}
+
+static CORE_ADDR
+iq2000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
+}
+
+static struct frame_id
+iq2000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ return frame_id_build (iq2000_unwind_sp (gdbarch, next_frame),
+ frame_pc_unwind (next_frame));
+}
+
+static CORE_ADDR
+iq2000_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct iq2000_frame_cache *cache = iq2000_frame_cache (next_frame, this_cache);
+
+ return cache->base;
+}
+
+static const struct frame_base iq2000_frame_base = {
+ &iq2000_frame_unwind,
+ iq2000_frame_base_address,
+ iq2000_frame_base_address,
+ iq2000_frame_base_address
+};
+
+static const unsigned char *
+iq2000_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
+ static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
+
+ if ((*pcptr & 3) != 0)
+ error ("breakpoint_from_pc: invalid breakpoint address 0x%lx",
+ (long) *pcptr);
+
+ *lenptr = 4;
+ return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? big_breakpoint
+ : little_breakpoint;
+}
+
+/* Target function return value methods: */
+
+/* Function: store_return_value
+ Copy the function return value from VALBUF into the
+ proper location for a function return. */
+
+static void
+iq2000_store_return_value (struct type *type, struct regcache *regcache,
+ const void *valbuf)
+{
+ int len = TYPE_LENGTH (type);
+ int regno = E_FN_RETURN_REGNUM;
+
+ while (len > 0)
+ {
+ char buf[4];
+ int size = len % 4 ?: 4;
+
+ memset (buf, 0, 4);
+ memcpy (buf + 4 - size, valbuf, size);
+ regcache_raw_write (regcache, regno++, buf);
+ len -= size;
+ valbuf = ((char *) valbuf) + size;
+ }
+}
+
+/* Function: use_struct_convention
+ Returns non-zero if the given struct type will be returned using
+ a special convention, rather than the normal function return method. */
+
+static int
+iq2000_use_struct_convention (struct type *type)
+{
+ return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
+ || (TYPE_CODE (type) == TYPE_CODE_UNION))
+ && TYPE_LENGTH (type) > 8;
+}
+
+/* Function: extract_return_value
+ Copy the function's return value into VALBUF.
+ This function is called only in the context of "target function calls",
+ ie. when the debugger forces a function to be called in the child, and
+ when the debugger forces a function to return prematurely via the
+ "return" command. */
+
+static void
+iq2000_extract_return_value (struct type *type, struct regcache *regcache,
+ void *valbuf)
+{
+ /* If the function's return value is 8 bytes or less, it is
+ returned in a register, and if larger than 8 bytes, it is
+ returned in a stack location which is pointed to by the same
+ register. */
+ CORE_ADDR return_buffer;
+ int len = TYPE_LENGTH (type);
+
+ if (len <= (2 * 4))
+ {
+ int regno = E_FN_RETURN_REGNUM;
+
+ /* Return values of <= 8 bytes are returned in
+ FN_RETURN_REGNUM. */
+ while (len > 0)
+ {
+ ULONGEST tmp;
+ int size = len % 4 ?: 4;
+
+ /* By using store_unsigned_integer we avoid having to
+ do anything special for small big-endian values. */
+ regcache_cooked_read_unsigned (regcache, regno++, &tmp);
+ store_unsigned_integer (valbuf, size, tmp);
+ len -= size;
+ valbuf = ((char *) valbuf) + size;
+ }
+ }
+ else
+ {
+ /* Return values > 8 bytes are returned in memory,
+ pointed to by FN_RETURN_REGNUM. */
+ regcache_cooked_read (regcache, E_FN_RETURN_REGNUM, & return_buffer);
+ read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
+ }
+}
+
+static enum return_value_convention
+iq2000_return_value (struct gdbarch *gdbarch, struct type *type,
+ struct regcache *regcache,
+ void *readbuf, const void *writebuf)
+{
+ if (iq2000_use_struct_convention (type))
+ return RETURN_VALUE_STRUCT_CONVENTION;
+ if (writebuf)
+ iq2000_store_return_value (type, regcache, writebuf);
+ else if (readbuf)
+ iq2000_extract_return_value (type, regcache, readbuf);
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+/* Function: register_virtual_type
+ Returns the default type for register N. */
+
+static struct type *
+iq2000_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ return builtin_type_int32;
+}
+
+static CORE_ADDR
+iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
+{
+ /* This is the same frame alignment used by gcc. */
+ return ((sp + 7) & ~7);
+}
+
+/* Convenience function to check 8-byte types for being a scalar type
+ or a struct with only one long long or double member. */
+static int
+iq2000_pass_8bytetype_by_address (struct type *type)
+{
+ struct type *ftype;
+
+ /* Skip typedefs. */
+ while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
+ type = TYPE_TARGET_TYPE (type);
+ /* Non-struct and non-union types are always passed by value. */
+ if (TYPE_CODE (type) != TYPE_CODE_STRUCT
+ && TYPE_CODE (type) != TYPE_CODE_UNION)
+ return 0;
+ /* Structs with more than 1 field are always passed by address. */
+ if (TYPE_NFIELDS (type) != 1)
+ return 1;
+ /* Get field type. */
+ ftype = (TYPE_FIELDS (type))[0].type;
+ /* The field type must have size 8, otherwise pass by address. */
+ if (TYPE_LENGTH (ftype) != 8)
+ return 1;
+ /* Skip typedefs of field type. */
+ while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
+ ftype = TYPE_TARGET_TYPE (ftype);
+ /* If field is int or float, pass by value. */
+ if (TYPE_CODE (ftype) == TYPE_CODE_FLT
+ || TYPE_CODE (ftype) == TYPE_CODE_INT)
+ return 0;
+ /* Everything else, pass by address. */
+ return 1;
+}
+
+static CORE_ADDR
+iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
+ struct regcache *regcache, CORE_ADDR bp_addr,
+ int nargs, struct value **args, CORE_ADDR sp,
+ int struct_return, CORE_ADDR struct_addr)
+{
+ const bfd_byte *val;
+ bfd_byte buf[4];
+ struct type *type;
+ int i, argreg, typelen, slacklen;
+ int stackspace = 0;
+ /* Used to copy struct arguments into the stack. */
+ CORE_ADDR struct_ptr;
+
+ /* First determine how much stack space we will need. */
+ for (i = 0, argreg = E_1ST_ARGREG + (struct_return != 0); i < nargs; i++)
+ {
+ type = value_type (args[i]);
+ typelen = TYPE_LENGTH (type);
+ if (typelen <= 4)
+ {
+ /* Scalars of up to 4 bytes,
+ structs of up to 4 bytes, and
+ pointers. */
+ if (argreg <= E_LAST_ARGREG)
+ argreg++;
+ else
+ stackspace += 4;
+ }
+ else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
+ {
+ /* long long,
+ double, and possibly
+ structs with a single field of long long or double. */
+ if (argreg <= E_LAST_ARGREG - 1)
+ {
+ /* 8-byte arg goes into a register pair
+ (must start with an even-numbered reg) */
+ if (((argreg - E_1ST_ARGREG) % 2) != 0)
+ argreg ++;
+ argreg += 2;
+ }
+ else
+ {
+ argreg = E_LAST_ARGREG + 1; /* no more argregs. */
+ /* 8-byte arg goes on stack, must be 8-byte aligned. */
+ stackspace = ((stackspace + 7) & ~7);
+ stackspace += 8;
+ }
+ }
+ else
+ {
+ /* Structs are passed as pointer to a copy of the struct.
+ So we need room on the stack for a copy of the struct
+ plus for the argument pointer. */
+ if (argreg <= E_LAST_ARGREG)
+ argreg++;
+ else
+ stackspace += 4;
+ /* Care for 8-byte alignment of structs saved on stack. */
+ stackspace += ((typelen + 7) & ~7);
+ }
+ }
+
+ /* Now copy params, in ascending order, into their assigned location
+ (either in a register or on the stack). */
+
+ sp -= (sp % 8); /* align */
+ struct_ptr = sp;
+ sp -= stackspace;
+ sp -= (sp % 8); /* align again */
+ stackspace = 0;
+
+ argreg = E_1ST_ARGREG;
+ if (struct_return)
+ {
+ /* A function that returns a struct will consume one argreg to do so.
+ */
+ regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ type = value_type (args[i]);
+ typelen = TYPE_LENGTH (type);
+ val = value_contents (args[i]);
+ if (typelen <= 4)
+ {
+ /* Char, short, int, float, pointer, and structs <= four bytes. */
+ slacklen = (4 - (typelen % 4)) % 4;
+ memset (buf, 0, sizeof (buf));
+ memcpy (buf + slacklen, val, typelen);
+ if (argreg <= E_LAST_ARGREG)
+ {
+ /* Passed in a register. */
+ regcache_raw_write (regcache, argreg++, buf);
+ }
+ else
+ {
+ /* Passed on the stack. */
+ write_memory (sp + stackspace, buf, 4);
+ stackspace += 4;
+ }
+ }
+ else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
+ {
+ /* (long long), (double), or struct consisting of
+ a single (long long) or (double). */
+ if (argreg <= E_LAST_ARGREG - 1)
+ {
+ /* 8-byte arg goes into a register pair
+ (must start with an even-numbered reg) */
+ if (((argreg - E_1ST_ARGREG) % 2) != 0)
+ argreg++;
+ regcache_raw_write (regcache, argreg++, val);
+ regcache_raw_write (regcache, argreg++, val + 4);
+ }
+ else
+ {
+ /* 8-byte arg goes on stack, must be 8-byte aligned. */
+ argreg = E_LAST_ARGREG + 1; /* no more argregs. */
+ stackspace = ((stackspace + 7) & ~7);
+ write_memory (sp + stackspace, val, typelen);
+ stackspace += 8;
+ }
+ }
+ else
+ {
+ /* Store struct beginning at the upper end of the previously
+ computed stack space. Then store the address of the struct
+ using the usual rules for a 4 byte value. */
+ struct_ptr -= ((typelen + 7) & ~7);
+ write_memory (struct_ptr, val, typelen);
+ if (argreg <= E_LAST_ARGREG)
+ regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
+ else
+ {
+ store_unsigned_integer (buf, 4, struct_ptr);
+ write_memory (sp + stackspace, buf, 4);
+ stackspace += 4;
+ }
+ }
+ }
+
+ /* Store return address. */
+ regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
+
+ /* Update stack pointer. */
+ regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
+
+ /* And that should do it. Return the new stack pointer. */
+ return sp;
+}
+
+/* Function: gdbarch_init
+ Initializer function for the iq2000 gdbarch vector.
+ Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
+
+static struct gdbarch *
+iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch *gdbarch;
+
+ /* Look up list for candidates - only one. */
+ arches = gdbarch_list_lookup_by_info (arches, &info);
+ if (arches != NULL)
+ return arches->gdbarch;
+
+ gdbarch = gdbarch_alloc (&info, NULL);
+
+ set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
+ set_gdbarch_num_pseudo_regs (gdbarch, 0);
+ set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
+ set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
+ set_gdbarch_register_name (gdbarch, iq2000_register_name);
+ set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
+ set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
+ set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
+ set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
+ set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
+ set_gdbarch_float_format (gdbarch, & floatformat_ieee_single_big);
+ set_gdbarch_double_format (gdbarch, & floatformat_ieee_double_big);
+ set_gdbarch_long_double_format (gdbarch, & floatformat_ieee_double_big);
+ set_gdbarch_return_value (gdbarch, iq2000_return_value);
+ set_gdbarch_breakpoint_from_pc (gdbarch, iq2000_breakpoint_from_pc);
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+ set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+ set_gdbarch_print_insn (gdbarch, print_insn_iq2000);
+ set_gdbarch_register_type (gdbarch, iq2000_register_type);
+ set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
+ set_gdbarch_unwind_sp (gdbarch, iq2000_unwind_sp);
+ set_gdbarch_unwind_pc (gdbarch, iq2000_unwind_pc);
+ set_gdbarch_unwind_dummy_id (gdbarch, iq2000_unwind_dummy_id);
+ frame_base_set_default (gdbarch, &iq2000_frame_base);
+ set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
+
+ gdbarch_init_osabi (info, gdbarch);
+
+ frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
+ frame_unwind_append_sniffer (gdbarch, iq2000_frame_sniffer);
+
+ return gdbarch;
+}
+
+/* Function: _initialize_iq2000_tdep
+ Initializer function for the iq2000 module.
+ Called by gdb at start-up. */
+
+void
+_initialize_iq2000_tdep (void)
+{
+ register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);
+}